# CONGRUENT ZETA FUNCTIONS. NO. 1 

YOSHIFUMI TSUCHIMOTO

In this lecture we define and observe some properties of conguent zeta functions.
existence of finite fields.
For a good brief account of finite fields, consult Chapter I of a book [1] of Serre.

Lemma 1.1. For any prime number $p, \mathbb{Z} / p \mathbb{Z}$ is a field. (We denote it by $\mathbb{F}_{p}$.)

Funny things about this field are:
Lemma 1.2. Let $p$ be a prime number. Let $R$ be a commutative ring which contains $\mathbb{F}_{p}$ as a subring. Then we have the following facts.
(1)

$$
\underbrace{1+1+\cdots+1}_{p \text {-times }}=0
$$

holds in $R$.
(2) For any $x, y \in R$, we have

$$
(x+y)^{p}=x^{p}+y^{p}
$$

We would like to show existence of "finite fields". A first thing to do is to know their basic properties.

Lemma 1.3. Let $F$ be a finite field (that means, a field which has only a finite number of elements.) Then we have,
(1) There exists a prime number $p$ such that $p=0$ holds in $F$.
(2) $F$ contains $\mathbb{F}_{p}$ as a subfield.
(3) $q=\#(F)$ is a power of $p$.
(4) For any $x \in F$, we have $x^{q}-x=0$.
(5) The multiplicative group $\left(F_{q}\right)^{\times}$is a cyclic group of order $q-1$.

The next task is to construct such field. An important tool is the following lemma.

Lemma 1.4. For any field $K$ and for any non zero polynomial $f \in$ $K[X]$, there exists a field $L$ containing $L$ such that $f$ is decomposed into polynomials of degree 1 .

To prove it we use the following lemma.
Lemma 1.5. For any field $K$ and for any irreducible polynomial $f \in$ $K[X]$ of degree $d>0$, we have the following.
(1) $L=K[X] /(f(X))$ is a field.
(2) Let a be the class of $X$ in $L$. Then a satisfies $f(a)=0$.

Then we have the following lemma.
Lemma 1.6. Let $p$ be a prime number. Let $q=p^{r}$ be a power of $p$. Let $L$ be a field extension of $\mathbb{F}_{p}$ such that $X^{q}-X$ is decomposed into polynomials of degree 1 in L. Then

$$
\begin{equation*}
L_{1}=\left\{x \in L ; x^{q}=x\right\} \tag{1}
\end{equation*}
$$

is a subfield of $L$ containing $\mathbb{F}_{p}$.
(2) $L_{1}$ has exactly $q$ elements.

Finally we have the following lemma.
Lemma 1.7. Let $p$ be a prime number. Let $r$ be a positive integer. Let $q=p^{r}$. Then we have the following facts.
(1) There exists a field which has exactly $q$ elements.
(2) There exists an irreducible polynomial $f$ of degree $r$ over $\mathbb{F}_{p}$.
(3) $X^{q}-X$ is divisible by $f$.
(4) For any field $K$ which has exactly $q$-elements, there exists an element $a \in K$ such that $f(a)=0$.

In conclusion, we obtain:
Theorem 1.8. For any power $q$ of $p$, there exists a field which has exactly $q$ elements. It is unique up to an isomorphism. (We denote it by $\mathbb{F}_{q}$.)

The relation between various $\mathbb{F}_{q}$ 's is described in the following lemma.
Lemma 1.9. There exists a homomorphism from $\mathbb{F}_{q}$ to $\mathbb{F}_{q^{\prime}}$ if and only if $q^{\prime}$ is a power of $q$.

Exercise 1.1. Compute the inverse of 113 in the field $\mathbb{F}_{359}$.

## References

[1] J. P. Serre, Cours d'arithmétique, Presses Universitaires de France, 1970.

