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3.1. Introduction. For any topological space X , we define

C(X) = {X → C; continuous}.
It has a natural structure of a ring by introducing “point-wise opera-
tions”:

(f+g)(x) = f(x)+g(x), (f ·g)(x) = f(x)·g(x) (∀x ∈ X, ∀f, g ∈ C(X)).

It has an extra structure of ∗-operation:
(f ∗)(x) = f(x) (complexconjugate).

and a topology (locally uniform topology) which we shall not describe
in detail.

Theorem 3.1 (Gelfand-Naimark). (”Commutative Case”)

(Compact Hausdorff space) ∋ K 7→ C(K) ∈ (C∗-algebras)

is a bijection.

The inverse of the correspondence above is given by associating to a
commutative C∗-algebra A a set

Spm(A) = {maximal ideal of A}
with a certain topology.
A first interesting part of modern algebraic geometry is that we may

mimic the correspondence in the Gelfand-Naimark theorem above and
associate to any commutive ring a compact (but not Hausdorff) space
Spec(A). The elements of A may then be considered as “continuous
functions” on Spec(A).
The upshot is that we may “cut and paste”, as one usually does

with functions, elements of abstract commutative rings. Any other
method of functional analysis also has the possibility to be applied in
the commutative ring theory.
On the other hand, it is possible to manipulate the compact space

Spec(A) and create new algebras out of the existing commutative ring
A. We may furtheremore paste such Spec(A)’s altogther and define
another geometric objects.

Problem 3.2. LetX be a finite set with the discrete topology. Show
that C(X) has exactly #X pieces of maximal ideals.
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3.2. SpecA.

Definition 3.3. An ideal I of a ring A is said to be

(1) a prime ideal if A/I is an integral domain.
(2) a maximal ideal if A/I is a field.
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Definition 3.4. Let A be a ring. Then we define its affine spectrum
as

Spec(A) = {p ⊂ A; p is a prime ideal of A}.
Definition 3.5. Let A be a ring. For any p ∈ Spec(A) we define

“evaluation map” evalp as follows:

evalp : A → A/p

Note that A/p is a subring of a field Q(A/p), the field of fractions
of the integral domain A/p. We interpret each element f of A as a
something of a “fuction”, whose value at a point p is given by evalp(f).
We introduce a topology on Spec(A). We basically mimic the fol-

lowing Lemma:

Lemma 3.6. Let X be a topological space. then for any continuous
function f : X → C, its zero points {x ∈ X ; f(x) = 0} is a closed
subset of X. Furthermore, for any family {fλ} of continous C-valued
functions, its common zeros {x ∈ X ; fλ(x) = 0 (∀λ)} is a closed
subset of X.

Definition 3.7. Let A be a ring. Let S be a subset of A, then we
define the common zero of S as

V (S) = {p ∈ Spec(A); evalp(f) = 0 (∀f ∈ S}.
For any subset S of A, let us denote by 〈S〉A the ideal of A generated
by S. Then we may soon see that we have V (S) = V (〈S〉A). So when
thinking of V (S) we may in most cases assume that S is an ideal of A.

Lemma 3.8. Let A be a ring. Then:

(1) V (0) = Spec(A), V ({1})(= V (A)) = ∅.
(2) For any family {Iλ} of ideals of A, we have ∩λV (Iλ) = V (

∑
λ
Iλ).

(3) For any ideals I, J of A, we have V (I) ∪ V (J) = V (I · J).
Proposition 3.9. Let A be a ring. {V (I); I is an ideal of A} sat-

isfies the axiom of closed sets of Spec(A). We call this the Zariski
topology of Spec(A).

Problem 3.10. Prove Lemma 3.8.

Algebraic geometry and Ring theory Yoshifumi Tsuchimoto .03

3.3. Examples of SpecA.

(1) Spec(Z) = {(0)} ∪ {(p)|p : prime }.
(2) Spec(k[X ]) = {(0)} ∪ {(p)|p : irreducible polynomial}.
(3) Spec(C[X, Y ]) = {(0)}∪{(p)|p : irreducible polynomial} ∪{(X−

a, Y − b)|a, b ∈ C}.
3.4. Further properties of Spec.

Lemma 3.11. Let A be a ring. Then:

(1) For any f ∈ A, D(f) = {p ∈ Spec(A); f /∈ p} is an open set of
Spec(A).

(2) Given a point p of Spec(A) and an open set U which contains
p, we may always find an element f ∈ A such that p ∈ D(f) ⊂
U . (In other words, {D(f)} forms an open base of the Zariski
topology.

Theorem 3.12. For any ring A, Spec(A) is compact. (But it is not
Hausdorff in most of the case.)
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Definition 3.13. Let X be a topological space. A closed set F of
X is said to be reducible if there exist closed sets F1 and F2 such that

F = F1 ∪ F2, F1 6= F, F2 6= F

holds. F is said to be irreducible if it is not reducible.

Recall that we have defined, for any ring A and for any ideal I, a
closed subset V (I) of Spec(A) by

V (I) = {p ∈ Spec(A); evalp(f) = 0 (∀f ∈ I).

We define:

Definition 3.14. Let A be a ring. Let X be a subset of Spec(A).
Then we define

I(X) = {f ∈ A; evalp(f) = 0 (∀p ∈ I)}.
Lemma 3.15. Let A be a ring. Then:

(1) For any subset X of Spec(A), I(X) is an ideal of A.
(2) (For any subset S of A, V (S) is a closed subset of Spec(A).)
(3) For any subsets X1 ⊂ X2 of Spec(A), we have I(X1) ⊃ I(X2).
(4) For any subsets S1 ⊂ S2 of A, we have V (S1) ⊃ V (S2).
(5) For any subset X of Spec(A), we have V (I(X)) ⊂ X.
(6) For any subset S of A, we have I(V (S)) ⊂ S.

Corollary 3.16. Let A be a ring. Then:

(1) For any subset X of Spec(A), we have I(V (I(X))) = I(X).
(2) For any subset S of A, we have V (I(V (S))) = V (S).

Definition 3.17. Let I be an ideal of a ring A. Then we define its
radical to be√

I = {x ∈ A; ∃N ∈ Z>0 such that xN ∈ I}.
Proposition 3.18. Let A be a ring. Then;

(1) For any ideal I of A, we have V (I) = V (
√
I).

(2) For two ideals I, J of A, V (I) = V (J) holds if and only if√
I =

√
J .

(3) For an ideal I of A, V (I) is irreducible if and only if
√
I is a

prime ideal.


