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7.1. Jacobi symbol.

Definition 7.1. Let m be a positive odd integer. Let us factor m:

m =
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where pi are primes. Then for any n ∈ Z, we define Jacobi symbols as
follows
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We further define
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= 0 if a ∈ pZ.

Theorem 7.2 (quadratic reciprocity theorem). For any positive odd

integers n,m, we have
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= (−1)(m−1)(n−1)/4.

Theorem 7.3. Let n be a postive odd integer. Then:
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= (−1)(m
2
−1)/8.

Exercise 7.1. p = 113357 is a prime. (You may use the fact without
proving it.) Is there any integer n such that

n2 = 11351 in Z/pZ ?

If so, can you find such n?
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A litte appendix. (The following is borrowed fromWikipedia(“Riemann
zeta function”,Japanese version,May 2019))
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here we have put

π(x) = #{p; p ≤ x}, Π(x) =

∞
∑

n=1

1

n
π(x1/n).

Note also that we have used 1
pns = s

∫

∞
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x−s−1dx.


