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We basically follow a treatment given in [1]

Definition 0.1. A functor F : (rings) → (sets) is said to be repre-
sentable if there exists a ring A such that

F (R) = Hom(A,R)

Examples GL2(R), SL2(R), GLn(R), SLn(R) are representable.

Theorem 0.2 (Yoneda’s lemma). Let E and F be set-valued func-
tors erpresented by k-algebras A and B. The natural maps E → F
correspond to k-algebra homomorphisms B → A.

1. tensor products

tensor products of modules over an algebra

Definition 1.1. Let A be a (not necessarily commutative) ring. Let
M be a right A-module. Let N be a left A-module. Then we define
the tensor product of M and N over A, denoted by

M ⊗A N

as a module generated by symbols

{m⊗ n;m ∈ M,n ∈ N}
with the following relations.

(1)

(m1 +m2)⊗ n = m1 ⊗ n+m2 ⊗ n (m1,m2 ∈ M, n ∈ N)

(2)

m⊗ (n1 + n2) = m⊗ n1 +m⊗ n2 (m ∈ M, n1, n2 ∈ N)

(3)

ma⊗ n = m⊗ an (m ∈ M, n ∈ N, a ∈ A)

universality of tensor products

Definition 1.2. Let A be a (not necessarily commutative) ring.
Let M be a right A-module. Let N be a left A-module. Then for
any module X, a map f : M × N → X is said to be an A-balanced
biadditive map if it satisfies the following conditions.

(1) f(m1 +m2, n) = f(m1, n) + f(m2, n) (∀m1,m2 ∈ M, ∀n ∈ N)
(2) f(m,n1 + n2) = f(m,n1) + f(m,n2) (∀m ∈ M, ∀n1, n2 ∈ N)
(3) f(ma, n) = f(m, an) (∀m ∈ M, ∀n ∈ N, ∀a ∈ A)

Lemma 1.3. Let A be a (not necessarily commutative) ring. Let M
be a right A-module. Let N be a left A-module. Then for any module
X, there is a bijective additive correspondence between the following
two objects.

(1) An A-balanced bilinear map M ×N → X
(2) An additive map M ⊗A N → X
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1.1. additional structures on tensor products.

Lemma 1.4. Let A be a (not necessarily commutative) ring. Let M
be a right A-module. Let N be a left A-module. If M carries a structure
of an A-algebra, then the tensor product M ×A N carries a structure
of M-module in the following manner.

x.(y ⊗ n) = (xy)⊗ n (x, y ∈ M,n ∈ N)

For G = GLn of G = SLn , the multiplication map G×G → G, the
unit: {e} → G, the inverse G → G are natural maps. The correspond-
ing ring k[G] satisfies a certain set of axioms.

1.2. bialgebras.

Definition 1.5. Let K be a field. (B,m, η,∆, ϵ) is a bialgebra over
K if it has the following properties:

(1) B is a vector space over K;
(2) There are K-linear maps (multiplication) m : B ⊗ B → B

(equivalent to K-multilinear map m : B × B → B) and (unit)
η : K → B, such that (B,m, η) is a unital associative algebra.

(3) There are K-linear maps (comultiplication) ∆ : B → B → B
and (counit) ϵ : B → K, such that (B,∆, ϵ) is a (counital
coassociative) coalgebra.

(4) The pair (m,∆) satisifies the following compatibility condition.
∆(m(f, g)) = (m⊗m)((1⊗τ⊗1)∆(f)∆(g)) (where τ(b1⊗b2) =
b2 ⊗ b1. )

Definition 1.6. A Hopf algebra (B,m, η,∆, ϵ, S) is a bialgebra
(B,m, η,∆, ϵ) with a K-linear map S : B → B (‘antipode’) which
satisfy the following condition.

m(S ⊗ 1)∆ = ηϵ = m(1⊗ S)∆

For bialgebras, we denote the product m(f, g) as fg. Furthermore,
the coproduct ∆(f) is a value of the sum of a type ∆(f) =

∑
i f

i
(1)f

i
(2),

which we simply denote as f(1)f(2) (“sumless version of Sweedler’s no-
tation”).

Example 1.7. GL2(K). B = K[x, y, z, w, (xy−zw)(−1)] = K[x, y, z, w|xy−
zw ̸= 0].

∆(x) = x⊗ x+ y ⊗ z, ∆(y) = x⊗ y + z ⊗ w,

∆(z) = z ⊗ x+ w ⊗ z, ∆(w)= z ⊗ y + w ⊗ w.

S(x) = w(xw − yz)−1 etc.
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