AFFINE GROUP SCHEMES

YOSHIFUMI TSUCHIMOTO

We basically follow a treatment given in [1]
Definition 0.1. A functor $F:($ rings $) \rightarrow($ sets $)$ is said to be representable if there exists a ring A such that

$$
F(R)=\operatorname{Hom}(A, R)
$$

Examples $\mathrm{GL}_{2}(R), \mathrm{SL}_{2}(R), \mathrm{GL}_{n}(R), \mathrm{SL}_{n}(R)$ are representable.
Theorem 0.2 (Yoneda's lemma). Let E and F be set-valued functors erpresented by k-algebras A and B. The natural maps $E \rightarrow F$ correspond to k-algebra homomorphisms $B \rightarrow A$.

1. TENSOR PRODUCTS

tensor products of modules over an algebra
Definition 1.1. Let A be a (not necessarily commutative) ring. Let M be a right A-module. Let N be a left A-module. Then we define the tensor product of M and N over A, denoted by

$$
M \otimes_{A} N
$$

as a module generated by symbols

$$
\{m \otimes n ; m \in M, n \in N\}
$$

with the following relations.

$$
\begin{equation*}
\left(m_{1}+m_{2}\right) \otimes n=m_{1} \otimes n+m_{2} \otimes n \quad\left(m_{1}, m_{2} \in M, n \in N\right) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
m \otimes\left(n_{1}+n_{2}\right)=m \otimes n_{1}+m \otimes n_{2} \quad\left(m \in M, n_{1}, n_{2} \in N\right) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
m a \otimes n=m \otimes a n \quad(m \in M, n \in N, a \in A) \tag{3}
\end{equation*}
$$

universality of tensor products
Definition 1.2. Let A be a (not necessarily commutative) ring. Let M be a right A-module. Let N be a left A-module. Then for any module X, a map $f: M \times N \rightarrow X$ is said to be an A-balanced biadditive map if it satisfies the following conditions.
(1) $f\left(m_{1}+m_{2}, n\right)=f\left(m_{1}, n\right)+f\left(m_{2}, n\right) \quad\left(\forall m_{1}, m_{2} \in M, \forall n \in N\right)$
(2) $f\left(m, n_{1}+n_{2}\right)=f\left(m, n_{1}\right)+f\left(m, n_{2}\right) \quad\left(\forall m \in M, \forall n_{1}, n_{2} \in N\right)$
(3) $f(m a, n)=f(m, a n) \quad(\forall m \in M, \forall n \in N, \forall a \in A)$

Lemma 1.3. Let A be a (not necessarily commutative) ring. Let M be a right A-module. Let N be a left A-module. Then for any module X, there is a bijective additive correspondence between the following two objects.
(1) An A-balanced bilinear map $M \times N \rightarrow X$
(2) An additive map $M \otimes_{A} N \rightarrow X$

1.1. additional structures on tensor products.

Lemma 1.4. Let A be a (not necessarily commutative) ring. Let M be a right A-module. Let N be a left A-module. If M carries a structure of an A-algebra, then the tensor product $M \times_{A} N$ carries a structure of M-module in the following manner.

$$
x \cdot(y \otimes n)=(x y) \otimes n \quad(x, y \in M, n \in N)
$$

For $G=\mathrm{GL}_{n}$ of $G=\mathrm{SL}_{n}$, the multiplication map $G \times G \rightarrow G$, the unit: $\{e\} \rightarrow G$, the inverse $G \rightarrow G$ are natural maps. The corresponding ring $k[G]$ satisfies a certain set of axioms.

1.2. bialgebras.

Definition 1.5. Let K be a field. $(B, m, \eta, \Delta, \epsilon)$ is a bialgebra over K if it has the following properties:
(1) B is a vector space over K;
(2) There are K-linear maps (multiplication) $m: B \otimes B \rightarrow B$ (equivalent to K-multilinear map $m: B \times B \rightarrow B$) and (unit) $\eta: K \rightarrow B$, such that (B, m, η) is a unital associative algebra.
(3) There are K-linear maps (comultiplication) $\Delta: B \rightarrow B \rightarrow B$ and (counit) $\epsilon: B \rightarrow K$, such that (B, Δ, ϵ) is a (counital coassociative) coalgebra.
(4) The pair (m, Δ) satisifies the following compatibility condition. $\Delta(m(f, g))=(m \otimes m)((1 \otimes \tau \otimes 1) \Delta(f) \Delta(g))\left(\right.$ where $\tau\left(b_{1} \otimes b_{2}\right)=$ $\left.b_{2} \otimes b_{1}.\right)$

Definition 1.6. A Hopf algebra $(B, m, \eta, \Delta, \epsilon, S)$ is a bialgebra ($B, m, \eta, \Delta, \epsilon$) with a K-linear map $S: B \rightarrow B$ ('antipode') which satisfy the following condition.

$$
m(S \otimes 1) \Delta=\eta \epsilon=m(1 \otimes S) \Delta
$$

For bialgebras, we denote the product $m(f, g)$ as $f g$. Furthermore, the coproduct $\Delta(f)$ is a value of the sum of a type $\Delta(f)=\sum_{i} f_{(1)}^{i} f_{(2)}^{i}$, which we simply denote as $f_{(1)} f_{(2)}$ ("sumless version of Sweedler's notation").

Example 1.7. $G L_{2}(K) . B=K\left[x, y, z, w,(x y-z w)^{(-1)}\right]=K[x, y, z, w \mid x y-$ $z w \neq 0]$.

$$
\begin{gathered}
\Delta(x)=x \otimes x+y \otimes z, \quad \Delta(y)=x \otimes y+z \otimes w \\
\Delta(z)=z \otimes x+w \otimes z, \quad \Delta(w)=z \otimes y+w \otimes w . \\
S(x)=w(x w-y z)^{-1} \quad \text { etc. }
\end{gathered}
$$

References

[1] W. C. Waterhouse, Introduction to affine group schemes, Springer Verlag, 1997.

