AFFINE GROUP SCHEMES

YOSHIFUMI TSUCHIMOTO

We basically follow a treatment given in [1]

DEFINITION 0.1. A functor F: (rings) — (sets) is said to be repre-
sentable if there exists a ring A such that
F(R) = Hom(A, R)
Examples GLo(R), SLo(R), GL,(R), SL,(R) are representable.
THEOREM 0.2 (Yoneda’s lemma). Let E and F' be set-valued func-

tors erpresented by k-algebras A and B. The natural maps E — F
correspond to k-algebra homomorphisms B — A.

1. TENSOR PRODUCTS
tensor products of modules over an algebra

DEFINITION 1.1. Let A be a (not necessarily commutative) ring. Let
M be a right A-module. Let N be a left A-module. Then we define
the tensor product of M and N over A, denoted by

M ®4 N
as a module generated by symbols
{m®n;me M,ne N}
with the following relations.
(1)
(mi+my)@n=m n+megn (my,mg € M, n€ N)
(2)
m(ng+n)=men +meny (meM, nj,ny €N)
(3)
ma®@n=m®g an (me M, neN, a€ A

universality of tensor products

DEFINITION 1.2. Let A be a (not necessarily commutative) ring.
Let M be a right A-module. Let N be a left A-module. Then for
any module X, amap f: M x N — X is said to be an A-balanced
biadditive map if it satisfies the following conditions.

(1) f(myi+ma,n) = f(my,n)+ f(ma,n) (¥Ymy,my € M,¥n € N)
(2) f(m,ny +n2) = f(m,ny) + f(m,n2) (Ym € M,Vny,ny € N)
(3) f(ma,n) = f(m,an) (Vm € M,Vn € N,Va € A)

LEMMA 1.3. Let A be a (not necessarily commutative) ring. Let M
be a right A-module. Let N be a left A-module. Then for any module
X, there is a bijective additive correspondence between the following
two objects.

(1) An A-balanced bilinear map M x N — X
(2) An additive map M @4 N — X
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1.1. additional structures on tensor products.

LEMMA 1.4. Let A be a (not necessarily commutative) ring. Let M
be a right A-module. Let N be a left A-module. If M carries a structure
of an A-algebra, then the tensor product M x4, N carries a structure
of M-module in the following manner.

r.(y®n) = (zy)@n (x,y € M,n € N)

For G = GL,, of G = SL,, , the multiplication map G x G — G, the
unit: {e} — G, the inverse G — G are natural maps. The correspond-
ing ring k|G| satisfies a certain set of axioms.

1.2. bialgebras.

DEFINITION 1.5. Let K be a field. (B, m,n, A, ¢) is a bialgebra over
K if it has the following properties:
(1) B is a vector space over K;
(2) There are K-linear maps (multiplication) m : B ® B — B
(equivalent to K-multilinear map m : B x B — B) and (unit)
n: K — B, such that (B, m,n) is a unital associative algebra.
(3) There are K-linear maps (comultiplication) A : B - B — B
and (counit) € : B — K, such that (B,A,¢) is a (counital
coassociative) coalgebra.
(4) The pair (m, A) satisifies the following compatibility condition.
A(m(f, 9))) = (mem)((1eT@1)A(f)A(g)) (where 7(by®by) =
by ® by.

DEFINITION 1.6. A Hopf algebra (B,m,n, A€, S) is a bialgebra
(B,m,n,A,e) with a K-linear map S : B — B (‘antipode’) which
satisfy the following condition.

m(S®1)A =ne=m(l®S5)A

For bialgebras, we denote the product m(f,g) as fg. Furthermore,
the coproduct A(f) is a value of the sum of a type A(f) = >, f(il)f(iz),
which we simply denote as f(1) f(2) (“sumless version of Sweedler’s no-
tation”).

EXAMPLE 1.7. GLy(K). B = K|z, y, z,w, (zy—2w) V] = K[z,y, z, w|ry—
zw # 0].

Alz)=z@r+y®z2 Aly) =z@y+20w,
Az)=zzr+w®z, Aw)=z0Yy+w w.
S(z) = w(zw —yz)~'  etc.
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