AFFINE GROUP SCHEMES

YOSHIFUMI TSUCHIMOTO

DEFINITION 2.1. A category \mathcal{C} is a collection of the following data

- (1) A collection $Ob(\mathcal{C})$ of **objects** of \mathcal{C} .
- (2) For each pair of objects $X, Y \in Ob(\mathcal{C})$, a set

 $\operatorname{Hom}_{\mathfrak{C}}(X,Y)$

of morphisms.

(3) For each triple of objects $X, Y, Z \in Ob(\mathcal{C})$, a map("composition (rule)")

$$\operatorname{Hom}_{\mathfrak{C}}(X,Y) \times \operatorname{Hom}_{\mathfrak{C}}(Y,Z) \to \operatorname{Hom}_{\mathfrak{C}}(X,Z)$$

satisfying the following axioms

- (1) $\operatorname{Hom}(X, Y) \cap \operatorname{Hom}(Z, W) = \emptyset$ unless (X, Y) = (Z, W).
- (2) (Existence of an identity) For any $X \in Ob(\mathcal{C})$, there exists an element $id_X \in Hom(X, X)$ such that

$$\operatorname{id}_X \circ f = f, \quad g \circ \operatorname{id}_X = g$$

holds for any $f \in \text{Hom}(S, X), g \in \text{Hom}(X, T) \ (\forall S, T \in \text{Ob}(\mathcal{C})).$

(3) (Associativity) For any objects $X, Y, Z, W \in Ob(\mathcal{C})$, and for any morphisms $f \in Hom(X, Y), g \in Hom(Y, Z), h \in Hom(Z, W)$, we have

$$(f \circ g) \circ h = f \circ (g \circ h).$$

DEFINITION 2.2. A functor F from a category C_1 to a category C_2 is a collection of the following data

- (1) a map sending each object $X \in Ob(\mathcal{C}_1)$ to an object $F(X) \in Ob(\mathcal{C}_2)$
- (2) a map sending each morphism $f : X \to Y$ in $\operatorname{Hom}_{\mathcal{C}_1}(X, Y)$ to a morphism $F(f) : F(X) \to F(Y)$

satisfying the following axioms.

- (1) F preserves composition: $F(g \circ f) = F(g) \circ F(f)$ whenever the left-hand side is well-defined,
- (2) F preserves identity morphisms: for each object $X \in Ob(\mathcal{C}_1)$, $F(\mathrm{id}_X) = \mathrm{id}_{F(X)}$.

DEFINITION 2.3. An affine group scheme is a representable functor $F: (rings) \rightarrow (groups).$

(Recall that a functor $F: (rings) \rightarrow (groups)$ is said to be representable if there exists a ring A such that

$$F(R) = \operatorname{Hom}(A, R)$$

).)

Examples $GL_2()$, $SL_2()$, $GL_n()$, $SL_n()$ are affine group schemes.

DEFINITION 2.4. A homomorphism of affine groups chemes is a natural map $\varphi : G \to H$ for which each $\varphi_R : G(R) \to H(R)$ is a homomorphism.

YOSHIFUMI TSUCHIMOTO

DEFINITION 2.5. Let $\psi : H' \to G$ be a homomorphism. If the corresponding algebra hom $B' \to A$ is surjective, we call ψ a closed embedding.

DEFINITION 2.6. Assume A: a Hopf algebra. Then I is a Hopf ideal of A if A/I is a Hopf algebra such that the quotient map $A \to A/I$ corresponds to a closed embedding.