AFFINGE GROUP SCHEMES 12

DEFINITION 0.1. A flag of subspaces in $V = \mathbb{k}^n$ is a sequence $\{0 \subsetneq V_1 \subsetneq V_2 \subsetneq \cdots \subsetneq V_n = V\}$

The set of all flags of subspaces in V is parametrized by a variety $Flag(\mathbb{k}^n)$ called **the flag variety of** V.

DEFINITION 0.2. For $g = (\mathbb{v}_1, \mathbb{v}_2, \dots, \mathbb{v}_n) \in M_n(\mathbb{k})$, We define its associated flag as

 $\operatorname{flag}(g) = \{ 0 \subsetneq \langle \mathbb{V}_1 \rangle \subsetneq \langle \mathbb{V}_1, \mathbb{V}_2 \rangle \subsetneq \cdots \subsetneq \langle \mathbb{V}_1, \mathbb{V}_2, \dots, \mathbb{V}_n \rangle = V \}$

 $\operatorname{GL}_n(\mathbb{k})$ acts on $\operatorname{Flag}(\mathbb{k}^n)$:

$$A.\operatorname{flag}(g) = \operatorname{flag}(Ag).$$

PROPOSITION 0.3. Let us denote by B the set of upper triangular matices. Then:

 $\operatorname{Flag}(\mathbb{k}^n) \cong \operatorname{GL}_n(\mathbb{k})/B$

PROPOSITION 0.4. $\operatorname{GL}_n(\Bbbk) = \coprod_{w \in \mathfrak{S}_n} BwB$