CONGRUENT ZETA FUNCTIONS. NO. 08

YOSHIFUMI TSUCHIMOTO

elliptic curves

There is diverse deep theories on elliptic curves.
Let k be a field of characteristic $p \neq 0,2,3$. We consider a curve E in $\mathbb{P}(k)$ of the following type:

$$
y^{2}=x^{3}+a x+b \quad\left(a, b \in k, 4 a^{3}+27 b^{2} \neq 0\right) .
$$

(The equation, of course, is written in terms of inhomogeneous coordinates. In homogeneous coordinates, the equation is rewritten as:

$$
\left.Y^{2}=X^{3}+a X Z^{2}+b Z^{3} .\right)
$$

Such a curve is called an elliptic curve. It is well known (but we do not prove in this lecture) that

Theorem 8.1. The set $E(k)$ of k-valued points of the elliptic curve E carries a structure of an abelian group. The addition is so defined that

$$
P+Q+R=0 \Longleftrightarrow \text { the points } P, Q, R \text { are colinear. }
$$

We would like to calculate congruent zeta function of E.
For the moment, we shall be content to prove:
Proposition 8.2. Let p be and odd prime. Let us fix $\lambda \in \mathbb{F}_{p}$ and consider an elliptic curve $E: y^{2}=x(x-1)(x-\lambda)$. Then
$\# E\left(\mathbb{F}_{p}\right)=\left(\right.$ the coefficient of $x^{\frac{p-1}{2}}$ in the polynomial expansion of $\left.[(x-1)(x-\lambda)]^{\frac{p-1}{2}}\right)$ +1 (\# of point at infinity)

$$
=-(-1)^{\frac{p-1}{2}} \sum_{r=0}^{(p-1) / 2}\binom{\frac{p-1}{2}}{r}^{2} \lambda^{r}+1(\text { modulo } p)
$$

See [1] for more detail and a further story.
The following proposition is a special case of the Weil conjecture. (It is actually a precursor of the conjecture)

Proposition 8.3 (Weil). Let E be an elliptic curve over \mathbb{F}_{q}. Then we have

$$
Z\left(E / \mathbb{F}_{q}, T\right)=\frac{1-d_{E} T+q T^{2}}{(1-T)(1-q T)}
$$

where d_{E} is an integer which satisfies $\left|d_{E}\right| \leq 2 \sqrt{q}$.
Note that for each E we have only one unknown integer d_{E} to determine the Zeta function. So it is enough to compute $\# E\left(\mathbb{F}_{q}\right)$ to compute the Zeta function of E. (When $q=p$ then one may use Proposition 8.2 to do that.)

$$
\# E\left(\mathbb{F}_{q}\right)=1+q-d_{E} .
$$

Exercise 8.1. compute the congruent zeta function $Z(E, T)$ for an elliptic curve $E: y^{2}=x(x-1)(x+1)$.

References

[1] C. H. Clemens, A scrapbook of complex curve theory, Graduate Sdudies in Mathematics, vol. 55, American Mathematical Society, 1980.

