\mathbb{Z}_p , \mathbb{Q}_p , AND THE RING OF WITT VECTORS

YOSHIFUMI TSUCHIMOTO

No.03: \mathbb{Z}_p as a projective limit of $\{\mathbb{Z}/p^k\mathbb{Z}\}$

Definition 3.1. An ordered set Λ is said to be **directed** if for all $i, j \in \Lambda$ there exists $k \in \Lambda$ such that $i \leq k$ and $j \leq k$.

DEFINITION 3.2. Let Λ be a directed set. Let $\{X_{\lambda}\}_{{\lambda}\in\Lambda}$ be a family of topological rings. Assume we are given for each pair of elements $(\lambda,\mu) \in \Lambda^2$ such that $\lambda \geq \mu$, a continuous homomorphisms

$$\phi_{\mu\lambda}: X_{\lambda} \to X_{\mu}.$$

We say that such a system $(\{X_{\lambda}\}, \{\phi_{\mu\lambda}\})$ is a **projective system** of topological rings if it satisfies the following axioms.

- (1) $\phi_{\nu\mu}\phi_{\mu\lambda} = \phi_{\nu\lambda} \quad (\forall \lambda, \forall \mu \forall \nu \text{ such that } \lambda \geq \mu \geq \nu).$ (2) $\phi_{\lambda\lambda} = \mathrm{id} \quad (\forall \lambda \in \Lambda).$

DEFINITION 3.3. Let $\mathfrak{X} = (\{X_{\lambda}\}, \{\phi_{\mu\lambda}\})$ be a projective system of topological rings. Then we say that a **projective limit** $(X, \{\phi_{\lambda}\})$ of \mathfrak{X} is given if

- (1) X is a topological ring.
- (2) $\phi_{\lambda}: X \to X_{\lambda}$ is a continuous homomorphism.
- (3) $\phi_{\mu\lambda} \circ \phi_{\lambda} = \phi_{\mu}$ for $\forall \mu, \lambda$ such that $\lambda \geq \mu$.) (4) $(X, \{\phi_{\lambda}\})$ is a universal object among objects which satisfy (1)-

The "universal" here means the following: If (Y, ψ_{λ}) satisfies

- (1) Y is a topological ring.
- (2) $\psi_{\lambda}: Y \to X_{\lambda}$ is a continuous homomorphism.
- (3) $\phi_{\mu\lambda} \circ \psi_{\lambda} = \psi_{\mu}$ for $\forall \mu, \lambda$ such that $\lambda \geq \mu$.)

Then there exists a unique continuous homomorphism

$$\Phi: Y \to X$$

such that

$$\psi_{\lambda} = \phi_{\lambda} \circ \Phi(\forall \lambda \in \Lambda).$$

Proposition 3.4. For any projective system of topological rings, a projective limit of the system exists. It is unique up to a unique isomorphism. (Hence we may call it the projective limit of the system.)

YOSHIFUMI TSUCHIMOTO

DEFINITION 3.5. For any projective system $(X, \{\phi_{\lambda}\})$ of topological rings, We denote the projective limit of it by

$$\varprojlim_{\lambda} X_{\lambda}$$
.

Note: projective limits of systems of topological spaces, rings, groups, modules, and so on, are defined in a similar manner.

THEOREM 3.6.

$$\mathbb{Z}_p \cong \varprojlim_{k \to \infty} (\mathbb{Z}/p^k \mathbb{Z})$$

as a topological ring.

COROLLARY 3.7. \mathbb{Z}_p is a compact space.

Note: There are several ways to prove the result of the above corollary. For example, the ring \mathbb{Z} with the metric d_p is easily shown to be totally bounded.

Proposition 3.8. Each element of \mathbb{Z}_p is expressed uniquely as

$$[0.a_1a_2a_3a_4\ldots]_p$$
 $(a_i \in \{0,1,\ldots,p-1\}\ (i=1,2,3,\ldots)).$

EXERCISE 3.1. Is -4 = 1 - 5 invertible in \mathbb{Z}_5 ? (Hint: use formal expansion

$$(1-x)^{-1} = 1 + x + x^2 + \dots$$

is it possible to write down a correct proof to see that the result is true?)