
Zp, Qp, AND THE RING OF WITT VECTORS

No.7:
The ring of Witt vectors when A is a ring of characteristic p 6= 0.

Recall Λ(A) = 1+A[[T ]]T for a formal variable T . To clearly describe
the variable, we will denote it as Λ(T )(A). It is topological-algebraically
generated by {[a]T = 1 − aT ; a ∈ A}. the set of all Teichmüller lift of
the elements a ∈ A.

In summary, subsections 7.1-7.3 Tells:

• λ-ring can be defined by using Λ(A).
• For any ring A, Λ(A) itself gives an example of λ-ring.

But we do not use these sections this year.

7.1. Λ(A) as a λ-ring. The treatment in this subsection essentially fol-
lows https://encyclopediaofmath.org/wiki/Lambda-ring. (But a
caution is advised: some signatures are different from the article cited
above.)

Definition 7.1. (A, λT : A → ΛT (A)) is called a pre-λ-ring if

• A is a commutative ring.
• λT :A → Λ(T )(A) is an additive map.

Let us write λT (f) for f ∈ A as λT (f) = (
∑

j λ
j(f)T j)W . Then the

additivity of λT can be expressed as identities of {λj} of the following
form:

• λ0(f) = 1 (∀f ∈ A) .
• λ1(f) = f (∀f ∈ A).
• λn(f + g) =

∑
i+j=n λ

(f)λj(g) ∀f, g ∈ A.

(Note that λj is not a “j-th power of λ” in any sence.)

Definition 7.2. Let R = (R, λR
(T ) : R → ΛT (R)), S = (S, λS

(T ) :

S → ΛT (S)) be pre-lambda rings. Then a λ-ring homomorphism from
R to S is a ring homomorphism φ : R → such that the following
diagram commutes.

R
λR
(T )//

φ

��

Λ(T )(R)

Λ(T )(φ)

��
S

λS
(T )

// Λ(T )(S)

The map Λ(T )(φ) which appears above is defined as follows:

Λ(T )(φ)((
∑

ajT
j)W ) = (

∑
φ(aj)T

j)W ({aj}j ⊂ A)

(Yes, we regard Λ(T )(•) as a functor.)

We also note, as a consequence of the definition, that we have the
following formula for Teichmüller lifts:

Λ(T )(φ)([a]) = [φ(a)] (∀a ∈ A)
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7.2. Λ(A) as a pre-λ-ring. There exists an additive map λS : Λ(T )(A) →
Λ(S)Λ(T )(A) defined by

λS([a]T ) = [[a]T ]S (∀a ∈ A)

Proof. For α(T ) =
∏

i(1− ξiT ), we have∑
i

[[ξi]T ]U

=
∏
i

(1− [ξi]TU))W

=(
∑
n

∑
i1<i2<...in

[ξi1 . . . ξin ]T (−U)n)W

=(
∑
n

∑
i1<i2<...in

(1− ξi1 . . . ξinT )W (−U)n)W

=(
∑
n

(
∏

i1<i2<...in

(1− ξi1 . . . ξinT ))W (−U)n)W

=(
∑
n

(
∞∑
j=0

Lj,n(a)T
j)W (−U)n)W

So the required map is given by

(
∑
j

aj(T ))W 7→ (
∑
n

∞∑
j=0

(Lj,n(a)T
j)W (−U)n)W

□

7.3. λ-ring.

Definition 7.3. A pre-λ-ring A, λT : A → Λ(T )(A) is a λ-ring if
λT : A → Λ(T )(A) is a λ-homomorphism.

Proposition 7.4. For any commutative ring A, (Λ(A), λU : Λ(T )(A) →
Λ(U)Λ(T )(A) is a λ-ring.

Proof. To avoid some confusion, we use lower case letters for inde-
terminate variables. Moreover, to distinquish all the lambda’s around

here, we denote by
◦
λ the lambda operation on Λ(A):

◦
λ(t,u) : Λ(t)A 3 [a]t 7→ [[a]t]u ∈ Λ(u)Λ(t)A

where [a]t is the Teichmüller lift of a ∈ A in Λ(t)A. We need to verify
the commutativity of the following diagram:

Λ(u)(A)

◦
λ(t,u) //

◦
λ(v,u)

� �

Λ(t)(Λ(u)A)

Λ(t)(
◦
λ(v,u))

��
Λ(v)Λ(u)A ◦

λ(t,v)

// Λ(t)(Λ(v)Λ(u)A)
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which can be verified by a diagram chasing for generators [a]u(a ∈ A):

[a]u

◦
λ(t,u) //

◦
λ(v,u)

��

[[a]u]t

Λ(t)(
◦
λ(v,u))

��
[[a]u]v

λ(t,v)

// [[[a]u]v]t

□
——

7.4. Idempotents. We are going to decompose the ring of Witt vec-
tors Λ(A). Before doing that, we review facts on idempotents. Recall
that an element x of a ring is said to be idempotent if x2 = x.

Theorem 7.5. Let R be a commutative ring. Let e ∈ R be an
idempotent. Then:

(1) ẽ = 1 − e is also an idempotent. (We call it the complemen-
tary idempotent of e.)

(2) e, ẽ satisfies the following relations:

e2 = 1, ẽ2 = 1, eẽ = 0.

(3) R admits an direct product decomposition:

R = (Re)× (Rẽ)

Definition 7.6. For any ring R, we define a partial order on the
idempotents of if as follows:

e � f ⇐⇒ ef = f

It is easy to verify that the relation � is indeed a partial order. We
note also that, having defined the order on the idempotents, for any
given family {eλ} of idempotents we may refer to its “supremum” ∨eλ
and its“infimum” ∧eλ. (We are not saying that they always exist: they
may or may not exist. ) When the ring R is topologized, then we may
also discuss them by using limits,

7.5. Playing with idempotents in the ring of Witt vectors.

Definition 7.7. Let A be a commutative ring. For any a ∈ A, we
denote by [a] the element of Λ(A) defined as follows:

[a] = (1− aT )W

We call [a] the “Teichmüller lift” of a.

Lemma 7.8. Let A be a commutative ring. Then:

(1) Λ(A) is a commutative ring with the zero element [0] and the
unity [1].

(2) For any a, b ∈ A, we have

[a] · [b] = [ab]

□
Proposition 7.9. Let A be a commutative ring. If n is a positive

integer which is invertible in A, then n is invertible in Λ(A). To be
more precise, we have

1

n
· [1] =

(
(1− T )

1
n

)
W

=

(
(1 +

∞∑
j=1

(
1
n

j

)
(−T )j

)
W

.
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Proof. It is easy to find out, by using iterative approximation, an
element x of A[[T ]] such that

(1 + x)n = (1− T ).

Indeed, assume we already know that there exists

{b1, b2, . . . bk} ⊂ A

such that we have

(1 +
k∑

j=1

bjT
j)n ≡ (1− T ) mod T k+1.

(The elements {bj} can actually be computed by the binomial theorem,
but we don’t care.) Then there exists ak+1 ∈ A such that

(1 +
k∑

j=1

bjT
j)n ≡ (1− T ) + ak+1T

k+1 mod T k+2.

Now, let us put c = − 1
n
· ak+1. By our assumption, the element c is an

element of A. We compute:

(1 +
k∑

j=1

bjT
j + cT k+1)n

=(1 +
k∑

j=1

bjT
j)n + n(1 +

k∑
j=1

bjT
j)n−1 · cT k+1

≡(1 +
k∑

j=1

bjT
j)n + ncT k+1 ≡ 1− T k+1 mod T k+2

So we may proceed with induction. □
Definition 7.10. For any positive integer n which is invertible in a

commutative ring A, we define an element en as follows:

en =
1

n
· (1− T n)W .

Lemma 7.11. Let A be a commutative ring. Then for any positive
integer n which is invertible in A, we have:

(1) en is an idempotent.
(2)

en = (1− 1

n
T n + (higher order terms))W

(3) If n|m, with m invertible in A, then en ≥ em in the order of
idempotents.

Proof. if n|m, then we have

en · em = em.

□
It should be important to note that the range of the projection en is

easy to describe.

Proposition 7.12. Let n be an integer invertible in A. Then we
have en · Λ(A) = {(f)W |f ∈ 1 + T nA[[T n]]}
Proof. Easy. Compare with Lemma 7.14 below.

□
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Definition 7.13. Let A be any commutative ring. Let n be a pos-
itive integer. Let us define additive operators Vn, Fn on Λ(A) by the
following formula. (Vn is called Verschiebung map. Fn is called “Frobe-
nius”” map.)

Vn((f(T ))W ) = (f(T n))W .

Fn((f(T ))W )(= (
∏
ζ∈µn

f(ζT 1/n))W =
∑
ζ∈µn

(f(ζT 1/n))W ) = V −1
n ((1−T n)W ·(f(T ))W )

(The formulae in parentheses in the latter definition is a formal one. It
certainly makes sense when A is an algebra over C. Then the definition
descends to a formal law defined over Z so that Fn is defined for any ring
A.) In other words, Fn is actually defined to be the unique continuous
additive map which satisfies

Fn((1− aTm)) = d · (1− an
′
Tm′

)W

(n,m ∈ Z, d = gcd(n,m), l = lcm(n,m), n = n′d,m = m′d(n′,m′ ∈ Z))

See Proposition 6.3. for details of computations. )

Lemma 7.14. Let A be a ring. Then for any n which is not divisible
by p, Then for any n ∈ Z>0 which is invertible in A, the map

1

n
· Vn : Λ(A) → Λ(A)

is a “non-unital ring homomorphism”. Its image is equal to the range
of the idempotent en. That means,

Image(
1

n
· Vn) = en · Λ(A) = {

∑
j

(1− yjT
nj)W ; yj ∈ A (∀j)}.

In other words, 1
n
· Vn gives a usual(i.e. unital) isomorphism between

Λ(A) and en · Λ(A).

Proof. Vn is already shown to be additive. The following calcu-
lation shows that 1

n
· Vn preserves the multiplication: for any positive

integer a, b, let us write d = gcd(a, b), a = a′d, b = b′d(a′, b′ ∈ Z) with
l = lcm(a, b)(= a′b′d). Then for any element x, y ∈ A, by using Propo-
sition 6.3, we have:

(
1

n
· Vn((1− xT a)W )) · ( 1

n
· Vn((1− yT b)W ))

=(
1

n
· (1− xT an)W ) · ( 1

n
· (1− yT bn)W )

=
1

n2
· d
(
(1− xb′ya

′
T nl)

)
W

=
1

n
· Vn(((1− xT a)W · (1− yT b)W )

(We actually can save this computation by using “splitting method”+
functoriality+T -addic completion arguements)

We then notice that the image of the unit element [1] of the Witt
algebra is equal to 1

n
Vn([1]) = en and that 1

n
V (enf) = enf for any

f ∈ Λ(A). The rest is then obvious. □
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7.6. The ring of p-adic Witt vectors (when the characteristic
of the base ring A is p).

Lemma 7.15. Let p be a prime number. Let A be a commutative ring
of characteristic p. Then:

(1) We have

Fp((f(T ))W ) = ((f(T 1/p))p)W (∀f ∈ Λ(A)).

in particular, Fp is an algebra endomorphism of Λ(A) in this
case.

(2)

Vp(Fp((f)W ) = Fp(Vp((f)W )) = (f(T )p)W = p · (f(T ))W

By using a boolean-algebra-type argument, we have:

Proposition 7.16. Let p be a prime number. Let A be a commuta-
tive ring of characteristic p. We have a direct product expansion

Λ(A) =
∏

{n;p∤n}

en;pΛ(A)

where the idempotent en;p is defined by

en;p = en −
∨

{m;n|m,n<m,p∤m}

em

Of course we need to consider infimum of infinite idempotents. We
leave it to an exercise:

Exercise 7.1. Show that the supremum
∨

{m;n|m,n<m,p∤m}

em exists.

Hint: Put Sp = {q; prime, q 6= p}. then:

en −
∨

{m;n|m,n<m,p∤m}

em = en −
∨
q∈Sp

enq =
∧
q∈Sp

(en − enq)

= en
∧

{q;prime,q ̸=p}

(1− enq)

= en
∏
q∈Sp

(1− enq)

= en


1−

∑
q1∈Sp

(1− enq1) +
∑

q1,q2§p,q1<q2

(1− enq1enq2)

−
∑

q1,q2,q3§p,q1<q2<q3

(1− enq1enq2enq3) + . . .


The n = 1 case is the most important. We note that e1 = [1].

Proposition 7.17. Let p be a prime. Let A be an integral domain
of characteristic p.

Then e1;p defines a direct product decomposition

Λ(A) ∼= (e1,p · Λ(A))× (([1]− e1,p) · Λ(A)) .

We call the factor algebra e1;p · Λ(A) the ring Λ(p)(A) of p-adic
Witt vectors.

For any n > Z>0 \ pZ, our idempotent en,p can be described by e1;p
using the Verschiebung Vn:
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Proposition 7.18.
en;p = Vn(e1,p)

7.7. The ring of p-adic Witt vectors for general A. In the preced-
ing subsection we have described how the ring Λ(A) of universal Witt
vectors decomposes into a countable direct sum of the ring of p-adic
Witt vectors. In this subsection we show that the ring Λ(p)(A) can be
defined for any ring A (that means, without the assumption of A being
characteristic p).

Image(Vn) plays a role of substitute for Image en. It’s even better in
the sence that (1 − cT n)W ∈ Image(Vn) may not be a elemnt of the
form n(1− aT n)W for any a ∈ A. We have:

Proposition 7.19. In = Image(Vn) is an ideal of Λ(A).

Proof. Let us calculate a multiplication of additive generators (as
topological modules) of Λ(A) and In :

((1− aT k)W ) · Vn((1− bTm)W ) = ((1− aT k)W ) · ((1− bT nm)W )

= d(1− a∗b∗T l)W ∈ In

(d = gcd(k, nm), l = lcm(k, nm))

□
Definition 7.20. Let A be any commutative ring. Let p be a

prime number. Let us put Sp = {q; prime, q 6= p}. Let I(p) be
the (topological) closure of the ideal 〈∪q∈Sp Image(Vq)〉 generated by
∪q∈Sp Image(Vq).

Then we define
Λ(p)(A)

def
= Λ(A)/I(p)

Lemma 7.21.

AN 3 (x1, xp, xp2 , xp3 . . . ) 7→
∞∑
k=0

(1− xpkT
pk)W mod I(p) ∈ Λ(p)(A)

is a bijection.

Lemma 7.22. Let us define polynomials αj(X,Y ) ∈ Z[X,Y ] by the
following relation.

(1− xT )(1− yT ) =
∞∏
j=1

(1− αj(x, y)T
j).

Then we have the following rule for “carry operation”:

(1− xT n)W + (1− yT n)W =
∞∑
j=1

(1− αj(x, y)T
nj)W .

Definition 7.23. For any commutative ring A, elements of Λ(p)(A)
are called p-adic Witt vectors over A. The ring (Λ(p)(A),+, ·) is
called the ring of p-adic Witt vectors over A.


