
Zp, Qp, AND THE RING OF WITT VECTORS

No.9:
The ring of Witt vectors when A is a ring of characteristic p 6= 0.

9.1. Idempotents. We are going to decompose the ring of Witt vec-
tors W1(A). Before doing that, we review facts on idempotents. Recall
that an element x of a ring is said to be idempotent if x2 = x.

Theorem 9.1. Let R be a commutative ring. Let e ∈ R be an
idempotent. Then:

(1) ẽ = 1 − e is also an idempotent. (We call it the complemen-
tary idempotent of e.)

(2) e, ẽ satisfies the following relations:

e2 = 1, ẽ2 = 1, eẽ = 0.

(3) R admits an direct product decomposition:

R = (Re)× (Rẽ)

Definition 9.2. For any ring R, we define a partial order on the
idempotents of if as follows:

e � f ⇐⇒ ef = f

It is easy to verify that the relation � is indeed a partial order. We
note also that, having defined the order on the idempotents, for any
given family {eλ} of idempotents we may refer to its “supremum” ∨eλ
and its“infimum” ∧eλ. (We are not saying that they always exist: they
may or may not exist. ) When the ring R is topologized, then we may
also discuss them by using limits,

9.2. Playing with idempotents in the ring of Witt vectors.

Definition 9.3. Let A be a commutative ring. For any a ∈ A, we
denote by [a] the element of W1(A) defined as follows:

[a] = (1− aT )W

We call [a] the “Teichmüller lift” of a.

Lemma 9.4. Let A be a commutative ring. Then:

(1) W1(A) is a commutative ring with the zero element [0] and the
unity [1].

(2) For any a, b ∈ A, we have

[a] · [b] = [ab]

�

Proposition 9.5. Let A be a commutative ring. If n is a positive
integer which is invertible in A, then n is invertible in W1(A). To be
more precise, we have

1

n
· [1] =

(

(1− T )
1

n

)

W
=

(

(1 +

∞
∑

j=1

(

1
n

j

)

(−T )j

)

W

.
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Proof. It is easy to find out, by using iterative approximation, an
element x of A[[T ]] such that

(1 + x)n = (1− T ).

It also follows from the next lemma. �

Lemma 9.6. Let n be a positive integer. Let k be a non negative
integer. Then we have always

(

1
n

k

)

∈ Z

[

1

n

]

.

Proof.
(

1
n

k

)

=
1
n
( 1
n
− 1) · · · ( 1

n
− (k − 1))

k!

=
1

nk

(1(1− n)(1− 2n) . . . (1− (k − 1)n)

k!
So the result follows from the next sublemma. �

Sublemma 9.7. Let n be a positive integer. Let k be a non nega-
tive integer. Let {aj}

k
j=1 ⊂ Z be an arithmetic progression of common

difference n. Then:

(1) For any positive integer m which is relatively prime to n, we
have

#{j; m|aj } ≥

⌊

k

m

⌋

(2) For any prime p which does not divide n, let us define

ck,p =

∞
∑

i=1

⌊
k

pi
⌋

(which is evidently a finite sum in practice.) Then

pck,p|

k
∏

j=1

aj

(3)
pck,p|k!, pck,p+1 ∤ k!

(4)
∏k

j=1 aj

k!
∈ Z(p)

Proof. (1) Let us put t = ⌊ k
m
⌋. Then we divide the set of first

kt-terms of the sequence {aj} into disjoint sets in the following way.

S0 = {a1, a2, . . . , am},

S1 = {am+1, am+2, am+m},

S2 = {a2m+1, a2m+2, a2m+m},

. . .

St−1 = {a(t−1)m+1, a(t−1)m+2, . . . , a(t−1)m+m}

Since m is coprime to n, we see that each of the Su gives a complete
representative of Z/nZ.
(2): Apply (1) to the cases where m = p, p2, p3, . . . and count the

powers of p which appear in
∏

aj .
(3): Easy. (4) is a direct consequence of (2),(3). �
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Definition 9.8. For any positive integer n which is invertible in a
commutative ring A, we define an element en as follows:

en =
1

n
· (1− T n)W .

Lemma 9.9. Let A be a commutative ring. Then for any positive
integer n which is invertible in A, we have:

(1) en is an idempotent.
(2)

en = (1−
1

n
T n + (higher order terms))W

(3) If n|m, with m invertible in A, then en ≥ em in the order of
idempotents.

Proof. if n|m, then we have

en · em = em.

�

It should be important to note that the range of the projection en is
easy to describe.

Proposition 9.10. Let n be an integer invertible in A. en ·W1(A) =
{(f)W |f ∈ 1 + T nA[[T n]]}

Proof. Easy. Compare with Lemma 9.20 below.
�

9.3. The ring of p-adic Witt vectors (when the characteristic of
the base ring A is p). Before proceeding further, let me illustrate the
idea. Proposition 9.5 tells us an existence of a set {en;n ∈ Z>0, p ∤ n}
of idempotents in W1(A) such that its order structure is somewhat
like the one found on the set {nN;n ∈ Z>0, p ∤ n}. Knowing that the
idempotents correspond to decompositions of W1(A), we may ask:

Problem 9.11. What is the partition of Z>0 generated by the sub-
sets {nN;n ∈ Z>0}?

To answer this problem, it would probably be better to find out, for
given positive number n which is coprime to p, what the set

Sn;p = nN \ (
⋃

n|m
n<m
p|m

mN)

should be. The answer is given by a fact which we know very well:
every positive integer may uniquely be written as

psk (s ∈ Z≥0, k ∈ Z>0, gcd(p, k) = 1),

Knowing that, we see that the set Sn;p as above is equal to

{psn; s ∈ Z≥0}.

The answer to the problem is now given as follows:

Z>0 =
∐

p∤n

{psn; s ∈ Z≥0}.
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The same story applies to the ring W1(A) of universal Witt vec-
tors for a ring A of characteristic p. We should have a direct product
expansion

W1(A) =
∏

p∤n

en;pW1(A)

where the idempotent en;p is defined by

en;p = en −
∨

n|m
n<m
p∤m

em

Of course we need to consider infimum of infinite idempotents. We
leave it to an exercise:

Exercise 9.1. Show that the supremum
∨

n|m
n<m
p∤m

em = en −
∏

n|m
n<m
p∤m

(en − em)

exists. In other words, show that the right hand side converges.

Proposition 9.12. Let p be a prime. Let A be an integral domain
of characteristic p. Let us define an idempotent f of W1(A) as follows.

f =
∨

n>1
p∤n

en(= [1]−
∏

p∤n
n>1

([1]− en))

Then f defines a direct product decomposition

W1(A) ∼= (f ·W1(A))× (([1]− f) ·W1(A)) .

We call the factor algebra ([1] − f) · W1(A) the ring W
(p)(A) of

p-adic Witt vectors.
The following proposition tells us the importance of the ring of p-adic

Witt vectors.

Proposition 9.13. Let p be a prime. Let A be a commutative ring
of characteristic p. For each positive integer k which is not divisible by
p, let us define an idempotent fk of W1(A) as follows.

fk =
∨

p∤n
n>1

ekn(= ek −
∏

p∤n
n>1

(ek − ekn))

Then fk defines a direct product decomposition

ekW1(A) ∼= (fk ·W1(A))× ((ek − fk) ·W1(A)) .

Furthermore, the factor algebra (ek − fk) ·W1(A) is isomorphic to the
ring W

(p)(A) of p-adic Witt vectors. Thus we have a direct product
decomposition

W1(A) ∼= W
(p)(A)N.

9.4. The ring of p-adic Witt vectors for general A. In the pre-
ceding subsection we have described how the ring W1(A) of universal
Witt vectors decomposes into a countable direct sum of the ring of
p-adic Witt vectors. In this subsection we show that the ring W (p)(A)
can be defined for any ring A (that means, without the assumption of
A being characteristic p).
We need some tools.
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Definition 9.14. Let A be any commutative ring. Let n be a pos-
itive integer. Let us define additive operators Vn, Fn on W1(A) by the
following formula.

Vn((f(T ))W ) = (f(T n))W .

Fn((f(T ))W ) = (
∏

ζ∈µn

f(ζT 1/n))W

(The latter definition is a formal one. It certainly makes sense when
A is an algebra over C. Then the definition descends to a formal law
defined over Z so that Fn is defined for any ring A. In other words,
Fn is actually defined to be the unique continuous additive map which
satisfies

Fn((1− aT l)) = ((1− am/lTm/n)ln/m)W (m = lcm(n, l)).

)

Lemma 9.15. Let p be a prime number. Let A be a commutative ring
of characteristic p. Then:

(1) We have

Fp(f(T )) = (f(T 1/p))p (∀f ∈ W1(A)).

in particular, Fp is an algebra endomorphism of W1(A) in this
case.

(2)

Vp(Fp((f)W ) = Fp(Vp((f)W )) = (f(T )p)W = p · (f(T ))W

Definition 9.16. Let A be any commutative ring. Let p be a prime
number. We denote by

W
(p)(A) = AN.

and define

πp : W1(A) → W
(p)(A)

by

πp

(

∞
∑

j=1

(1− xjT
j)

)

= (x1, xp, xp2, xp3 . . . ).

Lemma 9.17. Let us define polynomials αj(X, Y ) ∈ Z[X, Y ] by the
following relation.

(1− xT )(1− yT ) =

∞
∏

j=1

(1− αj(x, y)T
j).

Then we have the following rule for “carry operation”:

(1− xT n)W + (1− yT n)W =
∞
∑

j=1

(1− αj(x, y)T
jn).

Proposition 9.18. There exist unique binary operators + and · on
W

(p)(A) such that the following diagrams commute.

W1(A)×W1(A)
+

−−−→ W1(A)

πp





y

πp





y

W
(p)(A)×W

(p)(A)
+

−−−→ W
(p)(A)
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W1(A)×W1(A)
·

−−−→ W1(A)

πp





y

πp





y

W
(p)(A)×W

(p)(A)
·

−−−→ W
(p)(A)

Proof. Using the rule as in the previous lemma, we see that ad-
dition descends to an addition of W(p)(A). It is easier to see that the
multiplication also descends.

�

Definition 9.19. For any commutative ring A, elements of W (p)(A)
are called p-adic Witt vectors over A. The ring (W (p)(A),+, ·) is
called the ring of p-adic Witt vectors over A.

Lemma 9.20. Let p be a prime number. Let A be a ring of charac-
teristic p. Then for any n which is not divisible by p, the map

1

n
· Vn : W1(A) → W1(A)

is a “non-unital ring homomorphism”. Its image is equal to the range
of the idempotent en. That means,

Image(
1

n
· Vn) = en ·W1(A) = {

∑

j

(1− yjT
nj)W ; yj ∈ A}.

Proof. Vn is already shown to be additive. The following calcu-
lation shows that 1

n
· Vn preserves the multiplication: for any positive

integer a, b with lcm m and for any element x, y ∈ A, we have:

(
1

n
· Vn((1− xT a)W )) · (

1

n
· Vn((1− yT b)W ))

=(
1

n
· (1− xT an)W ) · (

1

n
· (1− yT bn)W )

=
1

n2
·
an · bn

nm

(

(1− xm/aym/bT nm)d
)

W

=
1

n
· Vn(((1− xT a)W · (1− yT b)W )

We then notice that the image of the unit element [1] of the Witt
algebra is equal to 1

n
Vn([1]) = en and that 1

n
V (enf) = enf for any

f ∈ W1(A). The rest is then obvious. �

In preparing from No.7 to No.10 of this lecture, the following reference
(especially its appendix) has been useful:

http://www.math.upenn.edu/~chai/course_notes/cartier_12_2004.pdf


