$\mathbb{Z}_{p}, \mathbb{Q}_{p}$, AND THE RING OF WITT VECTORS

No.9:
The ring of Witt vectors when A is a ring of characteristic $p \neq 0$.
9.1. Idempotents. We are going to decompose the ring of Witt vectors $\mathcal{W}_{1}(A)$. Before doing that, we review facts on idempotents. Recall that an element x of a ring is said to be idempotent if $x^{2}=x$.

Theorem 9.1. Let R be a commutative ring. Let $e \in R$ be an idempotent. Then:
(1) $\tilde{e}=1-e$ is also an idempotent. (We call it the complementary idempotent of e.)
(2) e, e satisfies the following relations:

$$
e^{2}=1, \quad \tilde{e}^{2}=1, \quad e \tilde{e}=0
$$

(3) R admits an direct product decomposition:

$$
R=(R e) \times(R \tilde{e})
$$

Definition 9.2. For any ring R, we define a partial order on the idempotents of if as follows:

$$
e \succeq f \Longleftrightarrow e f=f
$$

It is easy to verify that the relation \succeq is indeed a partial order. We note also that, having defined the order on the idempotents, for any given family $\left\{e_{\lambda}\right\}$ of idempotents we may refer to its "supremum" $V e_{\lambda}$ and its "infimum" $\wedge e_{\lambda}$. (We are not saying that they always exist: they may or may not exist.) When the ring R is topologized, then we may also discuss them by using limits,

9.2. Playing with idempotents in the ring of Witt vectors.

Definition 9.3. Let A be a commutative ring. For any $a \in A$, we denote by $[a]$ the element of $\mathcal{W}_{1}(A)$ defined as follows:

$$
[a]=(1-a T)_{W}
$$

We call [a] the "Teichmüller lift" of a.
Lemma 9.4. Let A be a commutative ring. Then:
(1) $\mathcal{W}_{1}(A)$ is a commutative ring with the zero element $[0]$ and the unity [1].
(2) For any $a, b \in A$, we have

$$
[a] \cdot[b]=[a b]
$$

Proposition 9.5. Let A be a commutative ring. If n is a positive integer which is invertible in A, then n is invertible in $\mathcal{W}_{1}(A)$. To be more precise, we have

$$
\frac{1}{n} \cdot[1]=\left((1-T)^{\frac{1}{n}}\right)_{W}=\left(\left(1+\sum_{j=1}^{\infty}\binom{\frac{1}{n}}{j}(-T)^{j}\right)_{W} .\right.
$$

Proof. It is easy to find out, by using iterative approximation, an element x of $A[[T]]$ such that

$$
(1+x)^{n}=(1-T)
$$

It also follows from the next lemma.
Lemma 9.6. Let n be a positive integer. Let k be a non negative integer. Then we have always

$$
\binom{\frac{1}{n}}{k} \in \mathbb{Z}\left[\frac{1}{n}\right]
$$

Proof.

$$
\begin{aligned}
\binom{\frac{1}{n}}{k} & =\frac{\frac{1}{n}\left(\frac{1}{n}-1\right) \cdots\left(\frac{1}{n}-(k-1)\right)}{k!} \\
& =\frac{1}{n^{k}} \frac{(1(1-n)(1-2 n) \ldots(1-(k-1) n)}{k!}
\end{aligned}
$$

So the result follows from the next sublemma.
Sublemma 9.7. Let n be a positive integer. Let k be a non negative integer. Let $\left\{a_{j}\right\}_{j=1}^{k} \subset \mathbb{Z}$ be an arithmetic progression of common difference n. Then:
(1) For any positive integer m which is relatively prime to n, we have

$$
\#\left\{j ; m \mid a_{j}\right\} \geq\left\lfloor\frac{k}{m}\right\rfloor
$$

(2) For any prime p which does not divide n, let us define

$$
c_{k, p}=\sum_{i=1}^{\infty}\left\lfloor\frac{k}{p^{i}}\right\rfloor
$$

(which is evidently a finite sum in practice.) Then

$$
p^{c_{k, p}} \mid \prod_{j=1}^{k} a_{j}
$$

(3)

$$
p^{c_{k, p}} \mid k!, \quad p^{c_{k, p}+1} \nmid k!
$$

(4)

$$
\frac{\prod_{j=1}^{k} a_{j}}{k!} \in \mathbb{Z}_{(p)}
$$

Proof. (1) Let us put $t=\left\lfloor\frac{k}{m}\right\rfloor$. Then we divide the set of first $k t$-terms of the sequence $\left\{a_{j}\right\}$ into disjoint sets in the following way.

$$
\begin{aligned}
& S_{0}=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\} \\
& S_{1}=\left\{a_{m+1}, a_{m+2}, a_{m+m}\right\}, \\
& S_{2}=\left\{a_{2 m+1}, a_{2 m+2}, a_{2 m+m}\right\}, \\
& \ldots \\
& S_{t-1}=\left\{a_{(t-1) m+1}, a_{(t-1) m+2}, \ldots, a_{(t-1) m+m}\right\}
\end{aligned}
$$

Since m is coprime to n, we see that each of the S_{u} gives a complete representative of $\mathbb{Z} / n \mathbb{Z}$.
(2): Apply (1) to the cases where $m=p, p^{2}, p^{3}, \ldots$ and count the powers of p which appear in $\prod a_{j}$.
(3): Easy. (4) is a direct consequence of $(2),(3)$.

Definition 9.8. For any positive integer n which is invertible in a commutative ring A, we define an element e_{n} as follows:

$$
e_{n}=\frac{1}{n} \cdot\left(1-T^{n}\right)_{W}
$$

Lemma 9.9. Let A be a commutative ring. Then for any positive integer n which is invertible in A, we have:
(1) e_{n} is an idempotent.
(2)

$$
e_{n}=\left(1-\frac{1}{n} T^{n}+(\text { higher order terms })\right)_{W}
$$

(3) If $n \mid m$, with m invertible in A, then $e_{n} \geq e_{m}$ in the order of idempotents.

Proof. if $n \mid m$, then we have

$$
e_{n} \cdot e_{m}=e_{m}
$$

It should be important to note that the range of the projection e_{n} is easy to describe.

Proposition 9.10. Let n be an integer invertible in $A . e_{n} \cdot \mathcal{W}_{1}(A)=$ $\left\{(f)_{W} \mid f \in 1+T^{n} A\left[\left[T^{n}\right]\right]\right\}$

Proof. Easy. Compare with Lemma 9.20 below.
9.3. The ring of p-adic Witt vectors (when the characteristic of the base ring A is p). Before proceeding further, let me illustrate the idea. Proposition 9.5 tells us an existence of a set $\left\{e_{n} ; n \in \mathbb{Z}_{>0}, p \nmid n\right\}$ of idempotents in $\mathcal{W}_{1}(A)$ such that its order structure is somewhat like the one found on the set $\left\{n \mathbb{N} ; n \in \mathbb{Z}_{>0}, p \nmid n\right\}$. Knowing that the idempotents correspond to decompositions of $\mathcal{W}_{1}(A)$, we may ask:

Problem 9.11. What is the partition of $\mathbb{Z}_{>0}$ generated by the subsets $\left\{n \mathbb{N} ; n \in \mathbb{Z}_{>0}\right\}$?

To answer this problem, it would probably be better to find out, for given positive number n which is coprime to p, what the set

$$
S_{n ; p}=n \mathbb{N} \backslash\left(\bigcup_{\substack{n|m \\ n<m \\ p| m}} m \mathbb{N}\right)
$$

should be. The answer is given by a fact which we know very well: every positive integer may uniquely be written as

$$
p^{s} k \quad\left(s \in \mathbb{Z}_{\geq 0}, \quad k \in \mathbb{Z}_{>0}, \quad \operatorname{gcd}(p, k)=1\right)
$$

Knowing that, we see that the set $S_{n ; p}$ as above is equal to

$$
\left\{p^{s} n ; s \in \mathbb{Z}_{\geq 0}\right\}
$$

The answer to the problem is now given as follows:

$$
\mathbb{Z}_{>0}=\coprod_{p \nmid n}\left\{p^{s} n ; s \in \mathbb{Z}_{\geq 0}\right\} .
$$

The same story applies to the ring $\mathcal{W}_{1}(A)$ of universal Witt vectors for a ring A of characteristic p. We should have a direct product expansion

$$
\mathcal{W}_{1}(A)=\prod_{p \nmid n} e_{n ; p} \mathcal{W}_{1}(A)
$$

where the idempotent $e_{n ; p}$ is defined by

$$
e_{n ; p}=e_{n}-\bigvee_{\substack{n \mid m \\ n<m \\ p \nmid m}} e_{m}
$$

Of course we need to consider infimum of infinite idempotents. We leave it to an exercise:

Exercise 9.1. Show that the supremum

$$
\bigvee_{\substack{n \mid m \\ n<m \\ p \nmid m}} e_{m}=e_{n}-\prod_{\substack{n \mid m \\ n<m \\ p \nmid m}}\left(e_{n}-e_{m}\right)
$$

exists. In other words, show that the right hand side converges.
Proposition 9.12. Let p be a prime. Let A be an integral domain of characteristic p. Let us define an idempotent f of $\mathcal{W}_{1}(A)$ as follows.

$$
f=\bigvee_{\substack{n>1 \\ p \nmid n}} e_{n}\left(=[1]-\prod_{\substack{p \nmid n \\ n>1}}\left([1]-e_{n}\right)\right)
$$

Then f defines a direct product decomposition

$$
\mathcal{W}_{1}(A) \cong\left(f \cdot \mathcal{W}_{1}(A)\right) \times\left(([1]-f) \cdot \mathcal{W}_{1}(A)\right) .
$$

We call the factor algebra $([1]-f) \cdot \mathcal{W}_{1}(A)$ the ring $\mathcal{W}^{(p)}(A)$ of p-adic Witt vectors.

The following proposition tells us the importance of the ring of p-adic Witt vectors.

Proposition 9.13. Let p be a prime. Let A be a commutative ring of characteristic p. For each positive integer k which is not divisible by p, let us define an idempotent f_{k} of $\mathcal{W}_{1}(A)$ as follows.

$$
f_{k}=\bigvee_{\substack{p \nmid n \\ n>1}} e_{k n}\left(=e_{k}-\prod_{\substack{p \nmid n \\ n>1}}\left(e_{k}-e_{k n}\right)\right)
$$

Then f_{k} defines a direct product decomposition

$$
e_{k} \mathcal{W}_{1}(A) \cong\left(f_{k} \cdot \mathcal{W}_{1}(A)\right) \times\left(\left(e_{k}-f_{k}\right) \cdot \mathcal{W}_{1}(A)\right) .
$$

Furthermore, the factor algebra $\left(e_{k}-f_{k}\right) \cdot \mathcal{W}_{1}(A)$ is isomorphic to the ring $\mathcal{W}^{(p)}(A)$ of p-adic Witt vectors. Thus we have a direct product decomposition

$$
\mathcal{W}_{1}(A) \cong \mathcal{W}^{(p)}(A)^{\mathbb{N}} .
$$

9.4. The ring of p-adic Witt vectors for general A. In the preceding subsection we have described how the ring $\mathcal{W}_{1}(A)$ of universal Witt vectors decomposes into a countable direct sum of the ring of p-adic Witt vectors. In this subsection we show that the ring $W^{(p)}(A)$ can be defined for any ring A (that means, without the assumption of A being characteristic p).

We need some tools.

Definition 9.14. Let A be any commutative ring. Let n be a positive integer. Let us define additive operators V_{n}, F_{n} on $\mathcal{W}_{1}(A)$ by the following formula.

$$
\begin{gathered}
V_{n}\left((f(T))_{W}\right)=\left(f\left(T^{n}\right)\right)_{W} . \\
F_{n}\left((f(T))_{W}\right)=\left(\prod_{\zeta \in \mu_{n}} f\left(\zeta T^{1 / n}\right)\right)_{W}
\end{gathered}
$$

(The latter definition is a formal one. It certainly makes sense when A is an algebra over \mathbb{C}. Then the definition descends to a formal law defined over \mathbb{Z} so that F_{n} is defined for any ring A. In other words, F_{n} is actually defined to be the unique continuous additive map which satisfies

$$
F_{n}\left(\left(1-a T^{l}\right)_{)}=\left(\left(1-a^{m / l} T^{m / n}\right)^{l n / m}\right)_{W} \quad(m=\operatorname{lcm}(n, l)) .\right.
$$

)
Lemma 9.15. Let p be a prime number. Let A be a commutative ring of characteristic p. Then:
(1) We have

$$
F_{p}(f(T))=\left(f\left(T^{1 / p}\right)\right)^{p} \quad\left(\forall f \in \mathcal{W}_{1}(A)\right)
$$

in particular, F_{p} is an algebra endomorphism of $\mathcal{W}_{1}(A)$ in this case.
(2)

$$
V_{p}\left(F_{p}\left((f)_{W}\right)=F_{p}\left(V_{p}\left((f)_{W}\right)\right)=\left(f(T)^{p}\right)_{W}=p \cdot(f(T))_{W}\right.
$$

Definition 9.16. Let A be any commutative ring. Let p be a prime number. We denote by

$$
\mathcal{W}^{(p)}(A)=A^{\mathbb{N}} .
$$

and define

$$
\pi_{p}: \mathcal{W}_{1}(A) \rightarrow \mathcal{W}^{(p)}(A)
$$

by

$$
\pi_{p}\left(\sum_{j=1}^{\infty}\left(1-x_{j} T^{j}\right)\right)=\left(x_{1}, x_{p}, x_{p^{2}}, x_{p^{3}} \ldots\right) .
$$

Lemma 9.17. Let us define polynomials $\alpha_{j}(X, Y) \in \mathbb{Z}[X, Y]$ by the following relation.

$$
(1-x T)(1-y T)=\prod_{j=1}^{\infty}\left(1-\alpha_{j}(x, y) T^{j}\right)
$$

Then we have the following rule for "carry operation":

$$
\left(1-x T^{n}\right)_{W}+\left(1-y T^{n}\right)_{W}=\sum_{j=1}^{\infty}\left(1-\alpha_{j}(x, y) T^{j n}\right)
$$

Proposition 9.18. There exist unique binary operators + and \cdot on $\mathcal{W}^{(p)}(A)$ such that the following diagrams commute.

Proof. Using the rule as in the previous lemma, we see that addition descends to an addition of $\mathcal{W}^{(p)}(A)$. It is easier to see that the multiplication also descends.

Definition 9.19. For any commutative ring A, elements of $W^{(p)}(A)$ are called p-adic Witt vectors over A. The $\operatorname{ring}\left(W^{(p)}(A),+, \cdot\right)$ is called the ring of p-adic Witt vectors over A.

LEMMA 9.20. Let p be a prime number. Let A be a ring of characteristic p. Then for any n which is not divisible by p, the map

$$
\frac{1}{n} \cdot V_{n}: \mathcal{W}_{1}(A) \rightarrow \mathcal{W}_{1}(A)
$$

is a "non-unital ring homomorphism". Its image is equal to the range of the idempotent e_{n}. That means,

$$
\operatorname{Image}\left(\frac{1}{n} \cdot V_{n}\right)=e_{n} \cdot \mathcal{W}_{1}(A)=\left\{\sum_{j}\left(1-y_{j} T^{n j}\right)_{W} ; y_{j} \in A\right\}
$$

Proof. V_{n} is already shown to be additive. The following calculation shows that $\frac{1}{n} \cdot V_{n}$ preserves the multiplication: for any positive integer a, b with lcm m and for any element $x, y \in A$, we have:

$$
\begin{aligned}
& \left(\frac{1}{n} \cdot V_{n}\left(\left(1-x T^{a}\right)_{W}\right)\right) \cdot\left(\frac{1}{n} \cdot V_{n}\left(\left(1-y T^{b}\right)_{W}\right)\right) \\
= & \left(\frac{1}{n} \cdot\left(1-x T^{a n}\right)_{W}\right) \cdot\left(\frac{1}{n} \cdot\left(1-y T^{b n}\right)_{W}\right) \\
= & \frac{1}{n^{2}} \cdot \frac{a n \cdot b n}{n m}\left(\left(1-x^{m / a} y^{m / b} T^{n m}\right)^{d}\right)_{W} \\
= & \frac{1}{n} \cdot V_{n}\left(\left(\left(1-x T^{a}\right)_{W} \cdot\left(1-y T^{b}\right)_{W}\right)\right.
\end{aligned}
$$

We then notice that the image of the unit element [1] of the Witt algebra is equal to $\frac{1}{n} V_{n}([1])=e_{n}$ and that $\frac{1}{n} V\left(e_{n} f\right)=e_{n} f$ for any $f \in \mathcal{W}_{1}(A)$. The rest is then obvious.

In preparing from No. 7 to No. 10 of this lecture, the following reference (especially its appendix) has been useful:
http://www.math.upenn.edu/~chai/course_notes/cartier_12_2004.pdf

