## $\mathbb{Z}_{p}, \mathbb{Q}_{p}$, AND THE RING OF WITT VECTORS

No.10:

$$
\text { The ring of } p \text {-adic Witt vectors revisited }
$$

Lemma 10.1. Let $A$ be a commutative ring. Then:
(1) For any $a, b \in A$, we have

$$
[a] \cdot[b]=[a b]
$$

(2) If $a \in A$ satisfies $a^{q}=a$ for some positive integer $q$, then we have

$$
[a]^{q}=[a] .
$$

(3) Let $q$ be a positive integer. If $b \in A$ satisfies

$$
\forall n \in \mathbb{Z}_{>0} \exists b_{n} \in A \text { such that } b_{n}^{q^{n}}=b,
$$

then we have

$$
\forall n \in \mathbb{Z}_{>0} \exists c_{n} \in \mathcal{W}_{1}(A) \text { such that } c_{n}^{q^{n}}=[b] .
$$

Recall that the ring of $p$-adic Witt vectors is a quotient of the ring of universal Witt vectors. We have therefore a projection $\varpi: \mathcal{W}_{1}(A) \rightarrow$ $\mathcal{W}^{(p)}(A)$. But in the following we intentionally omit to write $\varpi$.

Proposition 10.2. Let $p$ be a prime number. Let $A$ be a ring of characteristic. Then:
(1) Every element of $\mathcal{W}^{(p)}(A)$ is written uniquely as

$$
\sum_{j=0}^{\infty} V_{p}^{j}\left(\left[x_{j}\right]\right) \quad\left(x_{j} \in A\right)
$$

(2) For any $x, y \in A$, we have

$$
V_{p}^{n}([x]) \cdot V_{p}^{m}([y])=V_{p}^{n+m}\left(\left[x^{p^{m}} y^{p^{n}}\right]\right) .
$$

(3) A map

$$
\varphi: \mathcal{W}^{(p)}(A) \ni \sum_{j=0}^{\infty} V_{p}^{n}\left(\left[x_{j}\right]\right) \mapsto x_{0} \in A
$$

is a ring homomorphism from $\left(\mathcal{W}^{(p)},+, \cdot\right)$ to $(A,+, \times)$.
(4) $\operatorname{Ker}(\varphi)=\operatorname{Image}\left(V_{p}\right)$.
(5) An element $x \in \mathcal{W}^{(p)}$ is invertible in $\mathcal{W}^{(p)}$ if and only if $\varphi(x)$ is invertible in $A$.

Corollary 10.3. If $k$ is a field of characteristic $p \neq 0$, then $\mathcal{W}^{(p)}$ is a local ring with the residue field $k$. If furthermore the field $k$ is perfect (that means, every element of $k$ has a p-th root in $k$ ), then every non-zero element of $\mathcal{W}^{(p)}$ may be writen as

$$
p^{k} \cdot x \quad\left(k \in \mathbb{N}, x \in\left(\mathcal{W}^{(p)}\right)^{\cdot}(\text { i.e. } x: \text { invertible })\right)
$$

Since any integral domain can be embedded into a perfect field, we deduce the following

Corollary 10.4. Let $A$ be an integral domain of characteristic $p \neq$ 0 . Then $\mathcal{W}^{(p)}(A)$ is an integral domain of characteristic 0 .

Proof. $\mathcal{W}^{(p)}(\iota)$ is always an injection when $\iota$ is.

