多変数の微分積分 NO.1 要約

今日のテーマ(多変数関数)

本講義では多変数の関数の扱い方、とくに極限と微分について講述する。教科書には 二変数関数を中心に書かれているが、考え方は変数が増えても同じである。

定義 1.1. 一般に、正の整数 n に対して、

$$\mathbb{R}^{n} = \{(a_{1}, a_{2}, \dots, a_{n}); a_{1}, a_{2}, \dots, a_{n} \in \mathbb{R}\}\$$

を、(実) n 次元空間と呼ぶ。(2 次元空間のことを平面、3 次元空間のことを単に空間と呼ぶ。) \mathbb{R}^n の元を(親しみをこめて) **点**とよぶ。

高次元の空間について、非日常的だと思う人もいるかも知れないが、そうではない。それらは変数の空間として大事な意味を持つ。変数を多くもつ関数などというのはいくらでも出会うだろう。

定義 1.2. n を一つ固定する。このとき、

- (1) 二点 $P=(a_1,a_2,\ldots,a_n), Q=(b_1,b_2,\ldots,b_n)\in\mathbb{R}^n$ にたいして、 その距離を $d(P,Q)=\sqrt{\sum_{j=1}^n(a_j-b_j)^2}$ で定義する。
- (2) \mathbb{R}^n の点 $P=(a_1,a_2,\ldots,a_n)$ を中心とする半径 $r\in\mathbb{R}_{>0}$ の開球とは、

$$B_r(P) = \{ x \in \mathbb{R}^n; d(x, a) < r \}$$

のことをいう。n=1, n=2 のときの開球のことをそれぞれ開区間, 開円板ともいう。

一般に、 \mathbb{R}^n 全体で関数が定義されていることは少なく、 \mathbb{R}^n の部分集合 X のみで定義される場合がほとんどである。ところが極限、微分を論じる時には、考えている集合 X の「ハジッコ」での話がややこしい場合がある。そこで、ハジッコがない集合には特別な名前をつけて、それを愛用するのである。

命題 1.3. d は距離の公理をみたす。すなわち、

- (1) $d(P,Q) \ge 0$ $rac{a}{b}$, $d(P,Q) = 0 \Leftrightarrow P = Q$.
- (2) d(P,Q) = d(Q,P).
- (3) 任意の $P,Q,R \in \mathbb{R}^n$ にたいして、

$$d(P,Q) + d(Q,R) > d(P,R)$$

が成り立つ。(三角不等式)

上の命題の証明には内積の概念を用いるのが便利である。

補題 1.4. $u,v \in \mathbb{R}^n$ にたいして、それらの内積を $\langle u,v \rangle = \sum_j u_j v_j$ で定義する。このとき、

- (1) $\langle u, v \rangle$ は u, v について双線型である。
- $(2)\langle u,u\rangle$ は非負の実数である。その平方根を ||u|| と書く。
- $(3) |\langle u, v \rangle| \le ||u|| \cdot ||v||, ||u + v|| \le ||u|| + ||v||.$
- (4) d(P,Q) = ||P Q||.

定義 1.5. \mathbb{R}^n の部分集合 U が **開集合**であるとは U の任意の点 $P \in U$ にたいして、 ある正の実数 r が存在して、 $B_r(x) \subset U$ であるときにいう。一行で書くと:

$$U : \text{open} \Leftrightarrow (\forall x \in U \exists r \in \mathbb{R}_{>0} (B_r(x) \subset U)).$$

またもや \forall と \exists がでてきた。この講義でも大事になるので使い方をマスターして頂きたい。とくに、xとrの登場の順番を気にして欲しい。

定義 1.6. \mathbb{R}^n の点列 $\{P_i; j=1,2,3,\dots\}$ が点 Q に収束するとは、

$$\lim_{j \to 0} d(P_j, Q) = 0$$

のときにいう。 $\{P_i\}$ が Q に収束するとき、

$$P_i \to Q \quad (j \to \infty)$$

とか、 $\lim_{j\to\infty} P_j = Q$ と書く。

つまり点列の極限を数 (距離) の極限に帰着させているのである。数の極限は ϵ -N 法を用いて定義されることを思い出しておくこと。

補題 1.7. 点列の収束は、その各成分が収束することと同値である。

定義 1.8. \mathbb{R}^n の部分集合 K が**閉集合**であるとは、「K に属する点からなる点列 $\{P_j\}_{j=1}^\infty$ が \mathbb{R}^n の点 P に収束するなら、必ず P も K に属する」ときに言う。

定義 1.9. \mathbb{R}^n の部分集合 D が 領域 であるとは、 D 内の任意の二点 P,Q が D 内の折れ線で結べるときに言う。

定義 1.10. \mathbb{R}^n の部分集合 S が **有界** であるとは、ある $P \in \mathbb{R}^n$ とある正の実数 R があって、 S が $B_R(P)$ のなかにすっぽりと部分集合として含まれてしまうときに言う。

補題 1.11. \mathbb{R}^n の部分集合 S に対して、次の二条件は同値である。

- (1) S は閉集合である。
- (2) S の \mathbb{R}^n での補集合 $\mathbb{C}S$ は開集合である。

例 1.1. \mathbb{R}^n において、

- (1) \mathbb{R}^n 自体は開集合であり、閉集合でもある。
- (2) 開球は開集合であるが、閉集合ではない。
- (3) $P \in \mathbb{R}^n$ と r > 0 とにたいして、閉球

$$\overline{B_r}(P) = \{ Q \in \mathbb{R}^n; d(P, Q) \le r \}$$

は閉集合であるが、開集合ではない。

例 1.2. (1) 半開区間 (0,1] は \mathbb{R} の開集合でも、閉集合でもない。 (2) $[0,1] \times (0,1)$ は \mathbb{R}^2 の開集合でも、閉集合でもない。

下の例のように、「開集合」「閉集合」は「どの集合のなかで考えるか」が大切である

例 1.3. \mathbb{R}^2 の " \mathbf{x} 軸" ($\{(x,0); x \in \mathbb{R}\}$) を \mathbb{R} と同一視する。このとき (0,1) は \mathbb{R} の開集合であるが、 \mathbb{R}^2 の開集合ではない。

定義 1.12. 写像 (関数) $f: X \to Y$ が与えられているとき、X のことを f の定義域 (もしくは始集合), Y のことを f の終集合、f(X) のことを f の値域とよぶのであった。 $X \times Y$ の部分集合

$$\Gamma_f = \{(x, f(x)) | x \in X\}$$

のことを f の**グラフ**とよぶ。

問題 1.1. 平面 \mathbb{R}^2 の部分集合 $\{(0,0)\}$ (一点からなる集合) は開集合ではないことを示しなさい。