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Abstract. We consider a reflexive module of rank one over a degenerate Weyl algebra

over a field of positive characteristic. We define an invariant which we call wrinkle of the

module and see that it is good enough to distinguish trivial module.

Introduction

Let k be a field. Let An,m(k) be a degenerate Weyl algebra with m central genera-

tors along with 2n generators which satisfy canonical commutation relations. We study

reflexive modules of rank one over An,m(k).
When n = 0, then A0,m is an ordinary polynomial algebra of m variables. Since the

polynomial algebra is a unique factorization domain, it is well known that such module

is always trivial in this case (see for example [7, Chapter VII, Section 3]).

In contrast, when n ≥ 1, there are (infinitely) many reflexive An,m(k)-modules of rank

one. For example, it is known that there are infinitely many A1,0-modules. They are

parametrized by “Calogero-Moser spaces” (see for example [5]).

In this paper, we concentrate on the case where the characteristic p of the base field k
is non-zero and give an invariant for each reflexive An,m-module W of rank one.

To that aim, we use the fact that the algebra An,m has a large subalgebra Z in its center

and that W is associated with a reflexive sheaf WX on X = Spec(Z) = A2n+m.

We then consider a reflexive extension WX̄ of the reflexive sheaf WX on X = A
2n+m to

the projective space X̄ = P2n+m. The extension WX̄ has some “wrinkles” at infinity, that

means, the locus in the hyperplane H at infinity where WX̄ is not locally free.

The extension of the algebra sheaf AX to X̄ is defined in Definition 2.3. The extension

of WX to X̄ is then is defined in Definition 3.7. The definition uses some properties of

“norms” on W which are stated in Subsection 3.1.

We prove in Theorem 4.1 that when dimX(= 2n + m) ≥ 3, the wrinkle gives an

invariant good enough to distinguish a trivial one. Namely, if the reflexive extension has

no “wrinkles” at infinity, then the module W is trivial. The proof depends on a result
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proved by Abe and Yoshinaga [1] which is a generalization of Horrocks’ theorem to the

reflexive sheaves.

We note that the only case where the condition 2n+m ≥ 3 is not satisfied (except for

the above-discussed case where n = 0) is the case n = 1, m = 0. In that case, the wrinkle

is void for any W because any reflexive sheaf on a regular scheme of dimension 2 is always

locally free [10]. Even then one may always achieve the condition by adding some extra

variables. We deal with such an example in Subsection 3.5

The idea of extending projective A-module to a “sheaf” on a “quantum projective

space” already appears in the literature (see [6] for example). Our approach here deals

objects over a field of non-zero characteristics. We may then obtain results on corre-

sponding objects over a field of characteristic zero by using a technique of ultrafilter as

discussed for example in [13] and [14]. The benefit of our approach is that we are able to

use usual theory and techniques of algebraic geometry directly rather than to develop the

“q-analogues” of them.

Let us describe the motivation of the present paper. There are two conjectures in

our mind. One is Dixmier’s conjecture which states that every endomorphism of Weyl

algebra is an automorphism. The other is the Jacobian problem which states that every

polynomial map of the affine space An with the constant Jacobian is actually invertible.

(There are several conjectures that are equivalent or deeply related to the above two

conjectures. See for example [8], [2].) The two conjectures are stably equivalent [15], [13],

[4]. Indeed, it is shown in [13, Proposition 7.1] that there exists a map

L : Endalg
C
(An(C)) ∋ ϕ 7→ fϕ ∈ End1(A

2n(C))

which associates an endomorphism of a Weyl algebra An(C) to a symplectic polynomial

map of A2n(C). The strategy for giving such map is to regard the field C and schemes on

it as a “ultra filter limit” of fields and schemes of characteristic p 6= 0.

It is fairly easy to see that the correspondence L is injective, for example by using [12,

Lemma 11]. We may ask if it is surjective, in other words, if every symplectic map f

of A2n(C) is liftable to an endomorphism ϕ of An(C) [3]. According to our strategy the

problem is equivalent to asking if the liftability is true if we replace the base field C by

a base field k of characteristic p and assume that degree of f is sufficiently smaller than

p. The liftability is then interpreted, by using a theory of connections, as a problem of

triviality of an An(k)-module W (f) defined by f [3], [16].

On the other hand, it is already known that elementary morphisms are liftable. Since

any automorphism of A2 is elementary, any automorphism of A2 is liftable. Thus we may

imagine in general that the triviality of W (f) somehow measures the obstruction of f to be

invertible. So we expect that the study of W (f) may give some clue to the two conjectures

mentioned above.
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1. Notations

Definition 1.1. Let k be a field. Let n,m be non-negative integers. A degenerate

Weyl algebra An,m(k) over k is a tensor product of ordinary Weyl algebra An(k) and an

ordinary polynomial algebra in m variables. In other words, An,m is an algebra over k
generated by 2n+m elements, which we call standard generators,

{γ1, γ2, . . . , γ2n, γ2n+1, γ2n+2, . . . , γ2n+m}

with γ2n+1, γ2n+2, . . . , γ2n+m being central and other γ’s satisfy the “canonical commuta-

tion relations”. Namely, they satisfy the equations

(CCR) [γi, γj](= γiγj − γjγi) = hij (1 ≤ i, j ≤ 2n+m),

where h is an anti-Hermitian (2n+m)× (2n+m) matrix of the form

(hij) =







0 −1n 0

1n 0 0

0 0 0m






.

Note that we include the case m = 0 where the degenerate Weyl algebra An,0(k) =

An(k) is in practice “non-degenerate”.

Definition 1.2. Let A = An,m(k) be the degenerate Weyl algebra over a field k of

characteristic p. We put

Z = k[tp1, tp2, . . . , tp2n, tp2n+1, . . . , t
p
2n+m],

C = k[tp1, tp2, . . . , tp2n, t2n+1, . . . , t2n+m],

S = k[t1, t2, . . . , t2n, t2n+1, . . . , t2n+m]

and identify C with the center of A by introducing the relations

tpj = γp
j (j = 1, 2, 3, . . . , 2n),

tj = γj (j = 2n+ 1, 2n+ 2, . . . , 2n+m).

We further put K = Q(Z), L = Q(S) the quotient fields of the above rings Z, S,

respectively.
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The subalgebra Z certainly depends on the choice of the standard generators {γj}. That

means, it is not invariant under algebra automorphisms of A. It seems possible that Z is

invariant under “small” automorphisms of A, that means, compositions of automorphisms

of low degrees.

We have a standard matrix representation

Φ0 : A → Mpn(S)

which is explained by using extra indeterminates x1, x2, . . . , xn as follows. We consider a

free S-module

V = S[x1, x2, . . . , xn]/(x
p
1, . . . , x

p
n).

Φ0 may then be written in the following manner:






















Φ0(γj) = tj + xj (j = 1, 2, . . . , n),

Φ0(γj) = tj +
∂

∂xj−n

(j = n+ 1, n+ 2, . . . , 2n),

Φ0(tj) = tj (j = 2n+ 1, 2n+ 2, . . . , 2n+m).

It is easy to verify that Φ0 is indeed a faithful representation of the k-algebra A. We may

describe the representation Φ0, as we have done in author’s papers [12, 13, 14, 15, 16], by

introducing matrices µ1, µ2, . . . , µn, ν1, ν2, . . . , νn ∈ Mpn(k) acting onkpn ∼= k[x1, x2, . . . , xn]/(x
p
1, x

p
2, . . . , x

p
n)

as µj = xj , νj = ∂/∂xj . Namely Φ0 may be written as follows.

(AB1)















Φ0(γj) = tj + µj (j = 1, 2, . . . , n),

Φ0(γj) = tj + νn−j (j = n+ 1, n+ 2, . . . , 2n),

Φ0(tj) = tj (j = 2n+ 1, 2n+ 2, . . . , 2n+m).

This description also shows that Φ0(γj) is asymptotically equal to a constant matrix tj

when we consider its behavior at infinity. The equation later generalizes to an equation

(AB) and becomes a key in the proof of Lemma 2.1.

We define the norm of an element s ∈ A by

NA(s) = det(Φ0(s))(∈ S).

Finally we employ the symbol

Np = {0, 1, 2, 3, . . . , p− 1}.

The author admits that the notation is a bit strange, but it may be helpful for writing

down some cumbersome index sets such as

N
n
p = {0, 1, 2, 3, . . . , p− 1}n

and so on.
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2. The sheaf AX̄ on a projective space X̄

2.1. The affine space X and its completion X̄ . We denote by X the (2n+m)-dimensional

affine space

X = Spec(Z) = Spec(k[tp1, tp2, . . . , tp2n+m])(
∼= A

2n+m).

We complete X to a projective space

X̄ = Proj(k[T p
0 , T

p
1 , . . . , T

p
2n+m])(

∼= P
2n+m),

where homogeneous coordinates {T p
j } are related to the affine coordinates {tpj} by

tj = Tj/T0 (j = 1, 2, 3, . . . , 2n+m).

We denote by H = ∂X the hyperplane at infinity. Namely, it is a closed subscheme of X̄

defined by a homogeneous ideal (T p
0 ):

H = VX̄(T
p
0 ) = Proj(k[T p

1 , . . . , T
p
2n+m]).

In what follows, the dagger sign (•†) denotes the “inverse Frobenius pull-back” relative

to k. Namely, we use the following notation.

X† = Spec(S) = Spec(k[t1, t2, . . . , t2n+m]),

X̄† = Proj(k[T0, T1, . . . , T2n+m]),

H† = VX̄†(T0) = Proj(k[T1, . . . , T2n+m]).

The following diagram is commutative and rows are exact.

0 −−−→ IH −−−→ OX̄ −−−→ OH −−−→ 0




y





y





y

0 −−−→ IH† −−−→ OX̄† −−−→ OH† −−−→ 0

We should make a clear distinction between IH and IH† . They are related by the equation

(I) IH · OX̄† = Ip
H† .

Later we encounter a similar situation at Proposition 2.8 (2).

2.2. Definition of the norm-based extension AX̄ . We denote by AX the sheaf of algebras

on X associated to the Z-algebra A. The norm map NA defines a morphism

NA : AX → OX†

of sheaves over X . In this subsection we define a sheaf AX̄ on X̄ which extends AX . We

do so by using the idea that elements of A are “asymptotically commutative at infinity”

so that the norm map tend to an algebra homomorphism as we approach to the infinity.

To see such behavior, we define ordH†(s) of an element s ∈ L as the order of s with

respect to the divisor H†. Also for any element a of A, let us denote by deg(a) the total
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degree of a with respect to the standard generators {γ1, . . . , γ2n, t2n+1, . . . , t2n+m}. They

are related in the following manner.

Lemma 2.1. Let s = ab−1(a, b ∈ A) be an element of A⊗Z K. Then we have

ordH†(NA(s)) = −pn(deg(a)− deg(b)).

Proof. Let us write a in terms of standard generators {γ} as

a =
∑

J

aJγ
J .

Then the matrix Φ0(a) is of the following form:

(AB) Φ0(a) =
∑

|J |=deg(a)

aJt
J + (lower order terms in {t} with matrix coefficients).

By taking the determinants of the both hand sides we thus see that ordH†(NA(a)) =

−pn(deg(a)) holds. The same argument is applied to the element b ∈ A. �

The equation (AB) above says that the matrix Φ0(a) associated to an element a ∈ A

is asymptotically equal to a scalar matrix valued function
∑

|J |=deg(a) aJt
J . Thus the

question of regularity of a section s of AX at infinity may be controlled by the norm

NA(s). To be more precise, we have the following lemma.

Lemma 2.2. Let U be an affine open subset of X̄ such that U∩H 6= ∅. For any non-zero

section s of AX(U ∩X), the following conditions are equivalent:

(1) NA(s) ∈ OX̄†(U).

(2) NA(s) is regular on the generic point of H†.

(3) ordH†(NA(s)) ≥ 0.

(4) There exist a, b ∈ A such that s = a/b with deg(a) ≤ deg(b).

(5) s is integral over the ring R = OX(U). That means, R[s] is an R-module of finite

type.

(6) Φ0(s) ∈ Mpn(OX̄†).

Proof. (1) =⇒ (2) and (2) ⇐⇒ (3) are trivial.

(2) =⇒ (1): NA(s) is regular on U except for a subscheme of codimension at least 2 in

U . Thus (1) follows from the fact that X̄ is a normal scheme.

(4) ⇐⇒ (3) is a consequence of Lemma 2.1.

(6) =⇒ (5): Cayley-Hamilton theorem.

(5) =⇒ (1): The eigen values of s are integral over OX̄(U).

(4) =⇒ (6) follows from an calculation similar to the one in the proof of Lemma 2.1.

We see that the element Φ0(s) is regular on U ∩X and at the generic point of H . Thus

we see that Φ0(s) is regular on U except at a subscheme of codimension at least 2. Since

U is a normal scheme, we conclude that Φ0(s) is regular on the whole U . �
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Definition 2.3. Let us define a sheaf AX̄ by putting

AX̄(U) = {f ∈ A⊗Z O(U ∩X); NA(f) ∈ OX†(U)}

for any open subset U of X̄. Note that the condition of the right-hand side may be

replaced by one (hence any) of the condition in Lemma 2.2. We call the sheaf AX̄ the

norm-based extension of A.

Proposition 2.4. The norm-based extension AX̄ of A has the following properties.

(1) We may extend Φ0 : A → Mpn(S) to a morphism of sheaves

Φ : AX̄ → Mpn(OX̄†)

in such a way that an equation

Φ(AX̄(U)) = {f ∈ Mpn(OX̄†(U)); f |U∩X ∈ A(U ∩X)}

holds for any open set U of X̄.

(2) The sheaf AX̄ is actually an OX̄-algebra. It may be regarded as an OX̄-subalgebra

of Mpn(OX̄†) via Φ.

(3) The norm map NA extends to a norm map

NA : AX̄ → OX̄† ,

which is equal to det(Φ(•)).

Proof. (1) is a direct consequence of Lemma 2.2. (2) follows easily from (1). (3) is

trivial. �

2.3. An ideal sheaf JH† of AX̄ . In this subsection, we define an ideal JH† of AX̄ which is

an analogue of the twisting sheaf of Serre.

Definition 2.5. For any c ∈ Z we define a presheaf Jc
H† on X̄ by

Jc
H†(U) = {s ∈ AX̄ ; ordH†(NA(s)) ≥ cpn}.

We can easily verify that the presheaf Jc
H† above is actually a sheaf and that it is an

AX̄ -bimodule.

Lemma 2.6. Following statements are true.

(1) For any c ∈ Z, Jc
H† is a locally free left AX̄-module of rank one.

(2) For any c1, c2 ∈ Z, we have

J
c1
H† ⊗AX̄

J
c2
H†

∼= J
c1+c2
H† .

Note that J
cj

H† (j = 1, 2) are AX̄-bimodules so that we may take tensor products of

them.

(3) For any c1, c2 ∈ Z such that c1 < c2, J
c1
H† is a subsheaf of Jc2

H†.
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Proof. On each open set {Tj 6= 0} of X̄, JH† is generated by γ−c
j .

�

There is another way of describing the ideal JH† . We define

ρH† : AX̄
Φ
→ Mpn(OX̄†)

restr
→ Mpn(OH†).

Then with local calculations as in the proof of Lemma 2.2 and with the equation (AB) in

the proof of Lemma 2.1, we see that the map ρH† actually sends each section to a diagonal

matrix. ρH† thus gives an surjective map ρ̄H† : AX̄ → OH† of sheaves.

Lemma 2.7. We have equalities

JH† = Ker(ρH†) = Ker(ρ̄H†).

Thus the sheaf JH† is a both-sided ideal of AX̄ with AX̄/JH†
∼= OH† .

Proof. This is a direct consequence of the homomorphism theorem. �

Proposition 2.8. We have

(1) Jk
H†/J

k+1
H†

∼= OH†(−k),

(2) J
p

H† = AX̄ ⊗OX
OX(−H).

Proof. (1) On each open set {Tj 6= 0} of X̄ , JH† is generated by γ−1
j .

(2) Follows from the equation (I). �

2.4. Decomposition of AX̄ into line bundles. Let us define a subsheaf LI of AX̄ by

LI(U) = {f ∈ AX̄(U); f |X∩U ∈ OX(X ∩ U) · γI}

Definition 2.9. For any index set J , let us denote by cp,J the least integer which is

not less than |J |/p. That means

cp,J =

⌈

|J |

p

⌉

.

Then we easily have the following lemma.

Lemma 2.10. We have

LI = O(−cp,JH)γJ .

Proof. Let U be an open set of X̄ . For any a ∈ OX(U), we have

NA(aγ
J) = NA(a)NA(γ

J) = ap
n

(tJ)p
n

.

Noting that ordH† tj = −1 for any j, we see that the condition ordH† NA(aγ
J ) ≥ 0 is

equivalent to the inequality ordH†(a) ≥ |J | which is then equivalent to the inequality

ordH(a) ≥ ⌈|J |/p⌉ = cp,J .

�
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Theorem 2.11. The sheaf AX̄ decomposes into a direct sum of invertible sheaves as

OX̄-modules. More precisely, we have

AX̄ =
⊕

I∈N2n+m
p

LI .

Proof. Let s be a section of AX̄ on a non-empty open set U of X̄ . Then s may be

written as a quotient

s =
a

z
(for some z ∈ Zn, and a ∈ An),

where a may be written as a sum

a =
∑

I∈N2n+m
p

aIγ
I (aI ∈ Zn).

Then we have

deg(a) = max
I∈N2n+m

p

(deg(aI) + |I|).

Therefore, the condition ordH†(NA(s)) ≥ 0 holds if and only if the inequality deg(aI) +

|I| ≥ deg(z) holds for for any I. In other words, the condition ordH†(NA(s)) ≥ 0 is

equivalent to the condition that ordH(aIγ
I/z) ≥ 0 holds for any I. The theorem follows

easily from this equivalence. �

Essentially by repeating the argument above, we can generalize the above theorem as

follows.

Proposition 2.12. For any c ∈ Z, we have a direct sum decomposition

Jc
H† =

⊕

J∈N2n+m
p

O(⌊
c− |J |

p
⌋)γJ

as OX̄-modules.

�

We note that the proposition is a non-commutative analogue of a result of Hartshorne

[9, Corollary 6.4] which, roughly speaking, states that a direct image of a line bundle on

a projective space by a Frobenius morphism is a direct sum of line bundles.

3. The norm-based extension sheaf WX̄

3.1. Norms on W . In this subsection, we review some facts on norms on a reflexive mod-

ules of rank one over the algebra A = An,m. Proofs are mostly easy and details will be

found in author’s paper [16].

We first state the following proposition on reflexivity.

Proposition 3.1. Let W be an A-module of rank one. The following conditions are

equivalent:
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(1) W is A-reflexive. Namely, the “evaluation map” gives an isomorphism

W ∼= HomA -rightmodule(HomA -leftmodule(W,A), A).

(2) W is A-torsion free and WX is normal on X.

(3) W is A-torsion free and Z-reflexive.

Proof. Almost identical with the proof of [16, Proposition 3.6] �

Definition 3.2. Let W be a reflexive A-module of rank one. A map N : W → S is a

norm on W if the following conditions are satisfied.

(1) N(ax) = NA(a)N(x) for any a ∈ A,w ∈ W .

(2) For any Zariski open subset U of X , a section s ∈ Γ(U,WX̄) generates WX if and

only if NW (s) is not zero on U †.

Lemma 3.3. A norm on W , if exists, is unique up to a constant multiple.

Proof. Let N,N ′ be two norms on W . Let V be the open subset of X where W is

locally free. Since W is reflexive and X is non-singular, X \ V is of codimension at least

3 in X [10, Corollary 1.4].

By the property (2), we see that there exists an invertible function f ∈ Γ(V †,O×
X†) such

that the equality N(x) = N ′(x)f holds. Since X \ V is of codimension at least 3 in X ,

we see that f extends uniquely to an invertible function f ∈ Γ(X†,O×
X†) = k×. Note that

X† is isomorphic to an affine space A2n+m. �

Lemma 3.4. Let J be a left ideal of A which is reflexive as an A-module. Then there

exists an norm on J . Namely,

NJ(•) = NA(•)/cJ

where

cJ = gcd({NA(χ);χ ∈ J}).

Proof. Almost identical with the proof of [16, Proposition 4.3]

�

Lemma 3.5. Every reflexive left A-module W of rank one is isomorphic to an left ideal

J of A.

Proof. Since W is A-reflexive, we see that HomA(W,A) has a non-trivial section s.

Then we may use s to embed W in A.

�

To sum up, we obtain the following proposition.

Proposition 3.6. For any left A-module W of rank one, there exists a norm NW :

W → S. It is unique up to a constant multiple.

�
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3.2. Definition of the norm-based extension WX̄ . We now generalize Definition 2.3. Let

W be a reflexive A-module of rank one.

Definition 3.7. Let us define a norm-based extension sheaf WX̄ of W as

WX̄(U) = {f ∈ W ⊗Z K; f |U∩X ∈ W ⊗Z O(U ∩X), NW (f) ∈ O(U)}.

We shall see that the sheaf WX̄ is actually an AX̄ -module.

Lemma 3.8. The sheaf WX̄ has the following properties.

(1) WX̄ is additive.

(2) WX̄ is a sheaf of AX̄-modules.

(3) WX̄ is reflexive as an OX̄-module.

Proof. (1) Let U ⊂ X̄ be an open set. If WX̄(U) = 0, then WX̄(U) is surely additive.

Otherwise, let w0 ∈ WX̄(U) be a non-zero section with the least valuation with respect

to the hyperplane divisor H . Then

NA(ww
−1
0 ) = NW (w)NW (w0)

−1

is regular at general points of H . Thus for any w1, w2 ∈ WX̄(U), there exists an open

subset V of U such that the following conditions hold.

(i) V ∩H 6= ∅.

(ii) NW (w1)NW (w0)
−1 ∈ OX†(V ).

(iii) NW (w2)NW (w0)
−1 ∈ OX†(V ).

Thus w1w
−1
0 , w2w

−1
0 are regular sections of AX̄ n V . By Lemma 2.2, we see that (w1 +

w2)w
−1
0 is also a section of AX̄(V ). So in particular,

NW (w1 + w2) = NA

(

(w1 + w2)w
−1
0

)

NW (w0) ∈ OX†(V ).

On the other hand, w1, w2 are regular sections on U ∩ A2n so NW (w1 + w2) is regular on

U \ H . That means, NW (w1 + w2) is regular except for a locus of codimension 2 in U .

Thus NW (w1 + w2) is in OX̄†(U). This implies w1 + w2 ∈ WX̄(U).

(2) It is easy to see that WX̄(U) admits multiplications by elements of AX̄(U). We thus

conclude that WX̄ is a sheaf of AX̄-modules. �

3.3. Reflexive extensions of W . Let us suppose we are given a reflexive A-module W

of rank one. Since W is a Z-module, we may consider a sheaf WX on X = Spec(Z)

associated to W . We have already shown that we have a reflexive extension WX̄ of the

sheaf WX to X̄ . In this subsection we prove that any other reflexive extension F of the

sheaf WX (to X̄) is isomorphic to a Serre twist of WX̄ . To do that, we first define a

number rF associated to F.
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Lemma 3.9. Let F be a reflexive AX̄-module of rank one. We put W = F(X). For any

open set U of X̄ such that U ∩H 6= ∅ and F|U is free, we put

rU = min{ordH† NW (s); s ∈ F(U)}.

Then we have the following.

(1) If s is a generating section of F on U as an AX-module, then ordH†(NW (s)) = rU .

(2) rU = rV if U ⊂ V and hence rU is independent of the choice of U .

Proof. (1) is obvious since we have (AX |U)s = F|U . (2) We choose a generating

section s of F on V and then compute rV and rU using (1). �

Definition 3.10. For a reflexive AX̄-module F of rank one, let us denote by rF the

number rU in Lemma 3.9 (which is independent of the choice of U).

Lemma 3.11. Let F be a reflexive AX̄-module of rank one. We put W = F(X). For

any open set V of X̄ such that U ∩ H 6= ∅ and for any section s ∈ F(V ∩ X), s is in

Image(F(V )
restr
→ F(V ∩X)) if and only if ordH†(NW (s)) ≥ rF.

Proof. We take an open subset U of V which satisfy the assumption of Lemma 3.9.

Then the only if part is obvious from the definition of rF.

Assume the last inequality. Using the local arguments as above, we see that s is regular

on an open subset U ′ of U where F is locally free. Since F is normal and the codimension

of U \ U ′ in U is at least 3 [10, Corollary 1.4], we see that s is regular on U . �

Proposition 3.12. Let F be a reflexive AX̄-module of rank one. We put W = F(X).

Then there exists an integer c such that an isomorphism

F ∼= WX̄ ⊗AX̄
Jc
H†

exists.

Proof. We may find an open subset U of X̄ such that (i) U ∩H 6= ∅, (ii) F|U , WX̄ |U is

AX̄ -free on U . Let us take local free generators s1 ∈ F(U), s2 ∈ WX̄(U) of these sheaves.

Then we see that there exists a rational section x ∈ A⊗Z Q(Z) such that xs1 = s2 holds.

Then by Lemma 2.1 we see that there exists an integer cF such that

rF = rWX̄
+ pncF

holds.

By extending the identity map on W we obtain an well-defined AX̄ -linear morphism

ϕ : WX̄ ⊗A J
cF
H† → F

of sheaves. By definition, ϕ is an isomorphism on X and on the generic point of H .

Thus ϕ is an isomorphism outside a locus of codimension at least 2 in X̄ . Since both

WX̄ ⊗A J
cF
H† and F are reflexive, and the base space X̄ is normal, we conclude that ϕ is

an isomorphism on the whole X̄ . �
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3.4. Wrinkles of W .

Proposition 3.13 ([10, Corollary 1.4]). If the base space X is regular, then a reflexive

sheaf on X is locally free except along a closed subset of codimension at least 3.

Lemma 3.14. WX̄/JH†WX̄ has no AX̄/JH†(∼= OH†)-torsion.

Proof. Let us assume that an section w of WX̄ satisfies

aw ∈ JH†WX̄(U) for some a /∈ JH† .

We may assume that U is small enough so that we may take a generating section r ∈

JH†(U) (which is typically one of the elements γ−1
1 , γ−1

2 , . . . , γ−1
2n+m). Then we may write

aw = rw1 for some w1 ∈ WX̄(U).

This equation gives rise to the relation on norms

NA(a)NW (w) = NA(r)NW (w1).

Thus NW (r−1w) = NA(a)
−1NW (W1) is regular at the generic point of H . On the other

hand, since r is a generating section of JH† , we see that r−1w is regular on U ∩X . By a

“codimension at least 2 argument”, we see that r−1w is regular on the whole U . Thus we

see that w = r · (r−1w) is in JH†WX̄(U), as required.

�

The double dual LW of WX̄/JH†WX̄ as an OH†-module is a reflexive OH†-module of

rank one and thus isomorphic to a line bundle of the form OH†(cW ) for some integer cW .

Namely, we have an inclusion

WX̄/JH†(WX̄) →֒ LW
∼= OH†(cW ).

We may then have a unique closed subscheme F of H† such that its ideal sheaf IF satisfies

the relation

WX̄/JH†(WX̄) ∼= IFOH†(cW ).

Definition 3.15. Let us call F the wrinkle of W and denote it as Wrinkle(W ). The

number cW is called the degree of norm-based extension of W .

Definition 3.16. For any AX̄ -module F, we use the following notation.

SingAX̄
(F) = {p ∈ X̄ ;F is not AX̄-locally free near p}.

SingOX̄
(F) = {p ∈ X̄ ;F is not OX̄ -locally free near p}.



14 YOSHIFUMI TSUCHIMOTO

We may introduce scheme structures on these spaces, but we do not go further and

content ourselves by noting that they are closed subset of X̄. It follows easily from

Theorem 2.11 that the inclusion

SingAX̄
(F) ⊂ Sing

OX̄
(F)

holds.

In what follows, for any scheme S, we denote by |S| the underlying space of S.

Lemma 3.17. Let W be a reflexive A-module of rank one. Then we have the following.

(1) Wrinkle(W ) is a closed subset of codimension at least 2 in H†.

(2) |Wrinkle(W )| = | SingAX̄
(W )| ∩H.

(3) More generally, for any reflexive extension F of WX , we have |Wrinkle(W )| =

| SingAX̄
(F)| ∩H.

Proof. (1) follows immediately from the definition of the wrinkle.

(2) Let us take a point p ∈ H† \Wrinkle(W ). By the definition of the wrinkle, we see

that there exists an open neighborhood U of p in X̄ and a section s of WX̄ defined on U

such that s generates (WX̄/JH†WX̄)|U . It is then easy to see by using Nakayama’s lemma

that s generates WX̄ as an AX̄ -module on a neighborhood of p in X̄ . It is even easier to

prove the converse inclusion. (3) follows from (2) and Proposition 3.12

�

3.5. An example. As an illustration of computations of wrinkles, we give an example.

Let us consider the case where n = 1, m = 1 and put A = A1,1. We denote the standard

generators of A by ξ, η, v instead of γ1, γ2, t3. The eigenvalue of ξ (resp. η) is denoted by

t (resp. u) instead of t1 (resp. t2).

For a positive integer l < p, let us put

J
(1,1)
l = A(ξη − l) + Aηl+1

and compute its wrinkle. The ideal sheaf J
(1,1)
l is obviously obtained by an adjunction of

a variable v to an ideal

J
(1,0)
l = A1,0(ξη − 1) + A1,0η

l+1

of an ordinary non-degenerate Weyl algebra A1,0 in two variables, which is also known as

the “first Weyl algebra”. Since any reflexive sheaf on a smooth scheme of dimension at

least 2 is locally free [10], the wrinkle of J
(1,0)
l is void. What follows in this subsection may

be viewed as an way to obtain an invariant of such objects. One may also use ordinary

Weyl algebra A2,0 ⊃ A1,0 in 4-variables, that is, “the second Weyl algebra, instead of the

somewhat unfamiliar degenerate Weyl algebra to obtain an invariant in a similar manner.

Lemma 3.18. J
(1,1)
l

∼= Aξl ∩ Aη as an A-module. More precisely, we have

J
(1,1)
l ξl = Aξl ∩ Aη.
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Proof. This is a well-known result. See for example [11]. For the sake of completeness,

we give here a proof as we shall use a similar method later in Lemma 3.22. We first note

that (ξη − l)ξl = ξlη is in Aη. It is also easy to see that ηl+1ξl ∈ Aη. So we surely have

J
(1,1)
l ξl ⊂ Aξl ∩ Aη.

To see the converse inclusion, we notice firstly that

ξa+1ηb+1 = (ξaηb)(ξη − l) + (terms of degree ≤ a+ b)

holds so that we see by an induction that any element χ ∈ A may be written as

χ = c(ξ, η, v) · (ξη − l) + a(v, ξ)ξ + b(v, η)

for some c(ξ, η, v) ∈ A, a(v, ξ) ∈ k〈v, ξ〉, b(v, η) ∈ k〈v, η〉. By expanding b(v, η) in terms

of η, we may further write

χ = c(ξ, η, v) · (ξη − l) + b1(v, η)η
l+1a(v, ξ)ξ + b0(v, η)

for some b0(v, η) ∈
∑l

j=0 k[v]ηj and b1(v, η) ∈ k〈v, η〉. Now assume χξl ∈ Aη. Then we

see immediately that an element a(v, ξ)ξl+1 + b0(v, η)ξ
l is in Aη. By writing down the

element as a k[v]-linear combination of {ξsηt}s,t∈N, we see that a and b0 should be zero.

�

Lemma 3.19. The norm N
(1,1)
Jl

of the module J
(1,1)
l is given by

N
J
(1,1)
l

(•) = NA(•)/NA(η).

Proof. Let us put J̃ = J
(1,1)
l ξl. By the lemma above, we see thatNA(ξ

l)|NA(χ) and NA(η)|NA(χ)

hold for any element χ ∈ W̃ . Thus tplup|NA(χ) for all χ ∈ W̃ = Wξl. Thus up|NA(χ)

for all χ ∈ W̃ . Since J
(1,1)
l has elements ξη − l, ηl+1 whose norms by NA are tpup, up(l+1),

respectively, we see that cW = up.

�

Lemma 3.20. We have the following.

(1) N
J
(1,1)
l

(ξη − l) = tp.

(2) N
J
(1,1)
l

(ηl+1) = upl.

(3) N
J
(1,1)
l

(ξη − l + cηp) = tp + cpup2−p − c for any c ∈ k.
Proof. (2) is immediate.

(ξη − l + cηp)p − (ξη − l + cηp) = ξpηp + cpηp
2

− cηp = tpup + cpup2 − cup

gives the minimal polynomial of (ξη − 1 + cηp). We may thus see that

NA(ξη − l + cηp) = tpup + cpup2 − cup

holds. This proves (3). (1) is a special case of (3). �

Corollary 3.21. J
(1,1)
l is AX-locally free on X.
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Proof. Norms N
J
(1,1)
l

(ξη − l), N
J
(1,1)
l

(ηl+1), N
J
(1,1)
l

(ξη − l + ηp) have no common zero

locus on X . Thus each of the elements ξη − l, ηl+1, ξη − l + ηp generates WX on an open

set where its norm is non-zero. �

To deal with the wrinkle of J
(1,1)
l , we need to consider a projective space X̄ which

completes X . Namely, we consider the homogeneous coordinate (T : U : V : T0) such

that T/T0 = t, U/T0 = u, V/T0 = v hold. X̄ is then equal to Proj(k[T, U, V, T0]). In

view of Corollary 3.21, we see

| Sing(WX̄)| ⊂ |H| = {T0 = 0}.

Furthermore, by viewing norms, we may easily verify that an element ξ−1(ξη − l) is an

AX̄ -base of WX̄ at {T 6= 0} and that an element η−lηl+1 is an AX̄ -base of WX̄ at {U 6= 0}.

So the only place we need to investigate the behavior of (J
(1,1)
l )X̄ is a neighborhood of

(T : U : V : T0) = (0 : 0 : 1 : 0). So we concentrate ourselves on an open set X̃ = {V 6= 0}.

Let us put

x = T/V, y = U/V, z = T0/V,

and let us put further

ξ̃ = v−1ξ, η̃ = v−1η, z = v−1.

Then the following lemma holds.

Lemma 3.22. Let us consider an affine open set X̃ = {V 6= 0} of X̄. Then we have

the following.

(1) (x, y, z) is a local coordinate of X̃†.

(2) ξ̃, η̃, z generate Ã = Γ(X̃, AX̄).

(3) z is in the center of Ã. [η̃, ξ̃] = z2.

(4) J̃ = Γ(X̃, (J
(1,1)
l )X̄) is isomorphic to Ãξ̃l ∩ Ãη̃ and is also isomorphic to Ã(ξ̃η̃ −

z2l) + Ãη̃l+1.

Proof. Statements (1), (2), (3) follow easily from direct computations. The statement

(4) is shown by a same method as was used in the proof of Lemma 3.18

�

Proposition 3.23. The wrinkle Wrinkle(J
(1,1)
l ) is equal to Spec(k[x, y]/(x, yl)). In

particular we see that the wrinkle is an invariant good enough to distinguish J
(1,1)
l for

l ∈ {1, 2, 3, . . . , p− 1}.

Proof. The inclusion map

J
(1,1)
l

∼=
(

Ã(ξ̃η̃ − z2l) + Ãη̃l+1
)

→֒ Ã

induces a map

f : J
(1,1)
l /zJ

(1,1)
l → L = η̃ · (AX̄/zAX̄)
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of AX̄/zAX̄(∼= OH†)-modules defined over X̃†. We see immediately that f is well defined

and may be regarded as a morphism of OH†-modules defined on H† ∩ X̃†. It is easy to

verify the following facts.

(1) The sheaf L is invertible on H† ∩ X̃†.

(2) f is injective.

(3) f is surjective except for a locus of codimension at least 2.

Thus we see that the double dual of J
(1,1)
l /zJ

(1,1)
l is equal to L. The proposition follows

easily from this. �

4. main theorem

If W is a trivial A-module, then its norm-based extension WX̄ is a trivial OX̄-module

so that the wrinkle Wrinkle(WX̄) is empty. When dim(X) ≥ 3, the converse is also true

as the following theorem states.

Theorem 4.1. Assume dim(X) ≥ 3. Let W be a reflexive A-module of rank one. If

W has no wrinkle, that means Wrinkle(W ) = ∅, then W is trivial.

Proof. Assume Wrinkle(W ) = ∅. Then by using Lemma 3.17 we see that the sheaf

WX̄ is locally free on an open neighborhood of H . So WX̄/JH†WX̄ is locally free over

AX̄/JH†
∼= OH† . In other words,

WX̄/JH†WX̄
∼= OH†(c) for some c.

Let us put F = Jc
H† ⊗A WX̄ so that we have F/JH†F ∼= OH† . Let us consider a filtration

of F:

(FF) FX̄ ⊃ JH†FX̄ ⊃ J2
H†FX̄ ⊃ J3

H†FX̄ ⊃ · · · ⊃ J
p

H†FX̄ .

The associated graded module looks like

Jk
H†F/J

k+1
H† F ∼= (Jk

H†/J
k+1
H† )⊗AX̄

F ∼= (Jk
H†/J

k+1
H† )⊗OX̄

F/JH†F ∼= OH†(−k).

We note that each module OH†(−k) is, being a line bundle on H†, a direct sum of line

bundles on H [9, Corollary 6.4]. Since H1(Pn;O(•)) = 0 for any line bundle O(•), all of

the extension groups involved in the filtration (FF) vanish. Thus we have

i∗H(F)
∼=

p−1
⊕

k=0

OH†(−k)

as bundles over H . That means, we regard each line bundle OX̄†(−kH†) on H† which

appears at the right-hand side as a direct sum of line bundles on H .

In particular, i∗H(F) is a direct sum of line bundles on H . This implies, via the theorem

of Abe-Yoshinaga “Reflexive Horrocks”[1], that the sheaf F is a direct sum of line bundles
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on the whole X̄ . In other words, we have an isomorphism

F ∼=

p−1
⊕

k=0

OX̄†((−k)H†)

of OX̄ -modules. In particular, there is a non-vanishing global section m0 ∈ Γ(X̄,F)

which is unique up to a constant multiple. m0 then restricts to a non-zero section of

F/JH†F ∼= OH† . Thus m0 is a generator of FX̄/JH†FX̄ . This means that m0 is a generator

of FX̄ on a neighborhood of H . So NW (m0) is not zero everywhere on X , since, otherwise,

the zero locus of NW (m0) intersects H nontrivially. We conclude that FX̄ is generated by

m0 over AX̄ . That means, FX̄ is a trivial AX̄ -module. �
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