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1. Introduction

In this paper we consider two constructions in non commutative

schemes. One is a gluing of two categories at a common localization

and the other is a crossed product. The latter, of course, is the more

important topic here. Crossed products are originally de�ned and ex-

tensively used in the theory of operator algebras [1]. They not only give

examples of important classes of operator algebras, but many algebras

are studied by decomposing them into certain crossed products. We

believe that the crossed products also play equally an important role

in the theory of non commutative schemes. As an example, we de�ne

in this paper a skew projective line associated to an automorphism of a

category. This gives an example of \non commutative deformation" of

a scheme. We hope many other deformations are realized in a similar

way.

Our approach here is based on a de�nition of non commutative

schemes given in a paper [3] of Rosenberg, where schemes are pre-

sented by \the category of quasi-coherent sheaves on them". One of

the advantages of using his framework is that we may construct crossed

product globally, (that is, without \cutting a scheme into a�ne pieces

and glue them together again.") This enables us to obtain a good

perspective, which makes it easier to develop our theory.

The structure of the paper is as follows: in Section 2, we review

some of the basic de�nitions and results in the paper [3] of Rosenberg,

in Section 3, we show how to glue two categories in a special case where

the intersection is a localization of the two, in Section 4, we de�ne a

crossed product, and in Section 5, we give as an example of the previous

construction a skew projective line associated to an automorphism of

a category.

The author would like to thank Professor Tetsushi Ogoma and

Professor Yutaka Hemmi for useful discussions on this topic.
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2. A review of Rosenberg's definition of schemes.

In this section we give a brief review of de�nition of schemes de-

scribed in [3]. The reader is encouraged to read the original paper for

a detail.

De�nition 2.1. [3] Let C

1

; C

2

be abelian categories. A morphism f

from C

1

to C

2

(in the sense of Rosenberg) is an isomorphness class of

right exact additive functors from C

2

to C

1

. A representative of the

class is called an inverse image functor. And if we made a choice of

one such, we denote it by f

�

. f is said to be continuous if the inverse

image functor f

�

has a right adjoint (called a direct image functor f

�

of f).

Notice: In [3], the concept of morphism is (probably) de�ned for a

larger class of categories. For the sake of simplicity we concentrate

ourselves on abelian categories. Note also that in this case the right-

exactness of f

�

is readily veri�ed if we have a right adjoint f

�

of f

�

.

We shall mainly consider continuous morphisms in this paper.

Example . Let X

1

;X

2

be schemes in the usual (commutative) sense.

Let Qcoh(X

i

) be the category of quasi-coherent O

X

i

-modules (i = 1; 2).

Then for any morphism f : X

1

! X

2

in the usual sense gives a

continuous morphism

^

f : Qcoh(X

1

) ! Qcoh(X

2

) (in the sense of

Rosenberg) with the usual inverse image and direct image functors:

~

f

�

= f

�

;

~

f

�

= f

�

.

For any homomorphism � : A ! B of rings, one has a morphism

~

� : (B-mod) ! (A-mod) associated to �. When the algebras A;B are

commutative, this example may be regarded as a special case of the

example above.

Lemma 2.1. Let k be a ring, R

1

; R

2

be k-algebras. Let �

i

: (R

i

-mod)!

(k-mod) be structure morphisms (that is, morphism de�ned by the

structure homomorphisms k ! R

i

) (i = 1; 2). We de�ne an equiv-

alence of homomorphisms from R

1

to R

2

by saying that two homomor-

phisms �;  : R

1

! R

2

are equivalent if and only if there exists an in-

vertible element u of R

2

such that u�u

�1

=  . Then there is a bijection

between the set of equivalence classes Hom

k

(R

1

; R

2

)= � of k-algebra

homomorphism and the set of morphisms f : (R

2

-mod) ! (R

1

-mod)

which satis�es f � �

1

= �

2

.

Note:

1. The \structure morphism" in the above lemma is necessary since

we cannot distinguish between Morita-equivalent rings otherwise.

2. For general schemes, a morphism in the sense of Rosenberg does

not necessarily come from a usual morphism of schemes. In fact, for
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any proper noetherian scheme X over C and for any coherent sheaf G

on X, there exists an morphism f : (C-mod) ! Qcoh(X) such that

f

�

(V ) = V 


C

G, f

�

(F) = (Hom

X

(F;G))

�

(a suitable \topological dual"

of Hom

X

(F;G)).

De�nition 2.2. [3] A morphism f (in the sense of Rosenberg) between

categories is said to be 
at if the inverse image functor f

�

is exact. f is

called a 
at localization if f is 
at and has a fully faithful direct image

functor.

Example . A morphism (B-mod) ! (A-mod) associated to a ring ho-

momorphism � : A! B is a 
at localization if and only if � is (left-)
at

and the multiplication map B 


A

B ! B gives an isomorphism. In

particular, if the algebras A;B are commutative, any localization in

the usual sense yields a 
at localization of the corresponding category.

De�nition 2.3. [3] A continuous morphism f (in the sense of Rosen-

berg) between categories is said to be almost a�ne if the direct image

functor f

�

is exact and faithful. f is said to be a�ne if f

�

is faithful

and has a right adjoint.

There is a nice description of an almost a�ne morphism which uses

a concept of monad. Recall that a monad F = (F; �

(F )

; �

(F )

) on a

category C is a functor F : C ! C with a natural transformations

�

(F )

: F

2

! F (\multiplication") and �

(F )

: id ! F (\unity") which

satis�es certain axioms (\associativity" and \\unity" being unity")[2].

We denote by (F -mod) the category of F -modules (F -algebra in the

language of Mac Lane[2]). By de�nition, an F -module is a pair (M;�)

of an objectM of the category C and an arrow � : FM !M (\action")

which satis�es \axioms of action".

Lemma 2.2. [3] Let C

2

be an abelian category. For any right-exact

monad F on C

2

, we have a morphism f : (F -mod)! C

2

. A continuous

morphism f : C

1

! C

2

is almost a�ne if and only if C

1

is equivalent

over C

2

to (F -mod) for some right-exact monad F on C

2

.

Example . Let A be an algebra and B an A-algebra. Then a functor

F : C = (A-mod)! C given by tensor products F (M) = B 


A

M is a

monad. The category (F -mod) is isomorphic to the category (B-mod)

of B-modules. The morphism f : (F -mod)! C in this case is identi�ed

with the morphism associated to the structure morphism A! B.

In many situations, we may deal a monad in an analogous way as

the example above. For instance, the following lemma holds.

Lemma 2.3. Let C be an abelian category. Let F;G be monads on

C. Let � : F ! G be a morphism of monads [2]. Then there exists a
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morphism (in the sense of Rosenberg) such that its direct- and inverse

image functors are given as follows.

f

�

(y; �) = (y; � � �

y

)

f

�

(x; �) = (Gx=h(�

(G)

x

� �� �

x

)Fxi

G

; �

(G)

)

where the symbol hmi

G

denotes a \G-submodule of (Gx; �

(G)

) generated

by a sub object m of Gx". That is,

hmi

G

= Image(�

(G)

�G� : Gm! Gx) (� : m! Gx is the inclusion)

A quasi-scheme (in the sense of Rosenberg) is de�ned to be an abelian

category which is \locally almost a�ne".

De�nition 2.4. [3] A set of 
at localizations ff

i

: C

i

! Cg is said to

be a Zariski cover of C if any arrow s of C such that f

�

i

(s) is invertible

for all i is invertible. A continuous morphism f : A! C is said to be a

quasi-scheme over C if there exists a Zariski cover fu

i

: A

i

! Ag such

that f � u

i

is almost a�ne for each i.

3. Gluing two categories at a common flat localization.

In this section we show that we may \glue" two categories at a

common 
at localization.

Lemma 3.1. Let U; V;W be abelian categories. Let i : W ! U , j :

W ! V be 
at localizations. We de�ne X by

X = f(M;N; �)jM 2 Ob(U); N 2 Ob(V ); � : i

�

M

�

=

j

�

Ng

� : U � V ! X

�

�

(M;N; �) = (M;N)

�

�

((M;N)) = (M � i

�

j

�

N;N�j

�

i

�

M;�

M;N

)

where �

M;N

is de�ned as follows

i

�

(M � i

�

j

�

N)

'

! i �M � i

�

i

�

j

�

N

'

! i

�

M � j

�

N (* i:localization)

'

! j

�

j

�

i

�

M � j

�

N (* j:localization)

'

! j

�

(j

�

i

�

M �N)

'

! j

�

(N � j

�

i

�

M):

Then the following statements hold.

1. X is an abelian category

2. � is a continuous morphism
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3. Restrictions �j

U

; �j

V

of � are 
at localization.

4. � is a covering.

5. If the categories U; V;W are almost a�ne schemes over an abelian

category Z, and if the morphisms i; j are morphisms over Z (that

is, if they commute with \structure morphisms"), then X is a

scheme over Z.

Proof.

1.: Clear.

2.: We need to show that �

�

is an adjoint of �

�

. For any objects

(M;N; �) 2 Ob(X), (M

1

; N

1

) 2 Ob(U � V ), we have an isomorphism

Hom

U�V

(�

�

(M;N; �); (M

1

; N

1

))

�

=

Hom

U�V

((M;N); (M

1

; N

1

))

�

=

Hom

U

(M;M

1

)� Hom

V

(N;N

1

):

On the other hand, we have

Hom

X

((M;N; �); �

�

(M

1

; N

1

)))

=Hom

X

((M;N; �); (M

1

� i

�

j

�

N

1

; N

1

� j

�

i

�

M

1

; �

M

1

;N

1

))

=

8

>

<

>

:

(�; �; 
; �);

� 2 Hom(M;M

1

); � 2 Hom(M; i

�

j

�

N

1

)


 2 Hom(N;N

1

); � 2 Hom(N; j

�

i

�

M

1

)

j

�


 � � = i

�

�; i

�

� � �

�1

= j

�

� (�)

9

>

=

>

;

:

The condition (�) above (and the fact that i; j are localizations) implies

that the arrows �; � are determined uniquely by the arrows �; 
. We

thus have a natural isomorphism

Hom

U�V

(�

�

(M;N; �); (M

1

; N

1

)))

�

=

Hom

X

((M;N; �); �

�

(M

1

; N

1

))):

3.:It is clear to see that �

�

is exact. That is, � is 
at. For any object

M of U , we have,

�

�

1

�

1�

(M) = �

�

1

((M; j

�

i

�

M;�

M;0

)) =M:

This implies that �

1

is a localization.

4.,5.: Clear.

4. crossed product

In this section we deal with one of the most useful kind of construc-

tion of non commutative geometry, namely a crossed product. The

theory of crossed product is developed and used as one of the basic

tools in the theory of operator algebras [1]

We �rst need to de�ne an \action" of a unital semi group on a cate-

gory. It turns out that, along with the expected set ff

s

g of morphisms,

we need a cocycle of natural isomorphisms.
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De�nition 4.1. Let S be a semi group with the unity e. Let C be an

abelian category. We say an action (f; �) of S on C is given if we are

given the following data 1.,2. which satisfy conditions 3.,4.,5.,6.

1. A continuous morphism (in the sense of Rosenberg) f

s

: C ! C

for each element s of S.

2. A natural isomorphism �

s;t

: f

s�

f

t�

! f

st�

for each pair s; t of

elements of S,

3. f

e

= id. f

e�

= id.

4. �

st;u

� (�

s;t

f

u�

) = �

s;tu

� (f

s�

�

t;u

) for 8s; t; u 2 S.

5. �

e;s

= id; �

s;e

= id for 8s 2 S.

6. f

s�

has a right adjoint (hence is exact and commutes with induc-

tive limits) for 8s 2 S.

Note that the condition 6. above is satis�ed if each morphism f

s

is a�ne (in particular, if each f

s

is invertible.) Note also that the

de�nition above uses direct image functors and tells nothing explicitly

about inverse image functors. If however the semi group S is in fact a

group, then we may choose f

�

s

as f

s

�1

�

with adjunction given by �

s;s

�1

so that we may obtain a similar relation as above for the inverse image

functors.

De�nition 4.2. Two actions (f; �); (

�

f; ��) of a unital semi-group S on

an abelian category C are said to be equivalent if there exists an natural

isomorphism �

s

: f

s�

!

�

f

s�

for each s 2 S such that the following

identity hold.

��

s;t

= �

st

� �

s;t

� (�

s

�

f

t�

� f

s�

�

t

)

�1

(s; t 2 S)

Example . Assume a unital semi group S acts on a scheme (X;O

X

) in

the usual sense. Then S acts on Qcoh(X).

The following easy fact is used to prove the next lemma.

Sublemma 4.1. Let C

1

; C

2

;C

3

be categories. Let F

1

; G

1

: C

1

! C

2

F

2

; G

2

: C

2

! C

3

be functors and Let �

1

: F

1

! G

1

, �

2

: F

2

! G

2

be

natural morphisms of functors. Then we have an identity

�

2

G

1

� F

2

�

1

= G

2

�

1

� �

2

F

1

:

Lemma 4.1. Let h : C! C be a continuous morphism in the sense of

Rosenberg. If h

�

is a category equivalence, then there exists an action

(f; �) of Z on C such that f

1

= h.

Proof. We choose h

�

and then take h

�

as its adjoint. We take

adjunctions

h

�

h

�

�

! id; id

�

! h

�

h

�
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and note that, since h is invertible, �; � are isomorphisms. We put

f

n�

=

8

>

<

>

:

(h

�

)

n

(n > 0)

id (n = 0)

(h

�

)

�n

(n < 0)

and de�ne �

n;m

by \canceling h

�

and h

�

by using adjunctions �; �".

Then the triangular identities [2] for the adjunctions �; � tell us that

the relation 5. of De�nition 4.1 holds for s; t; u = 1;�1; 1. General

cases of relation 5. of De�nition 4.1 may be veri�ed by using this

special case and Sublemma 4.1 It is then easy to verify the rest of the

properties in the De�nition 4.1.

De�nition 4.3. The action (f; �) of Z on C constructed in the proof

of the above lemma is called the action generated by the automorphism

h.

De�nition 4.4. Let (f; �) be an action of a semi group with the unity

e on an abelian category C. Then we de�ne the crossed product (SnC)

of C by S as follows

Ob(S n C) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(M;�);

M 2 ObC

� = f�

s

g

s2S

�

s

2 Hom(f

s�

M;M)

�

st

� �

s;t

= �

s

� (f

s�

�

t

) (8s; 8t 2 S)

�

e

= id

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

Hom((M;�); (N;�)) = f� 2 Hom(M;N)j���

g

= �

g

�f

g�

� for 8g 2 Sg

It is easy to see that equivalent actions yield the same crossed prod-

uct.

Example . Let S be a semi group with the unity e, A be a ring. Suppose

we have an anti-action � of S on A. That means, we have an semi

group anti-homomorphism � : S ! End

ring

(A;A) which preserves the

unity. Then S acts on C = (A-mod). The crossed product S n C is

isomorphic to the category (S n A-mod) of S n A-modules, where the

crossed product SnA is a ring generated by elements of A and symbols

fX

s

g

s2S

with the following relations and the original summation and

multiplication rules for A.

X

s

1

X

s

2

= X

s

1

s

2

; fX

s

= X

s

�(s)(f ) (s; s

1

; s

2

2 S; f 2 A)

Note that the commutation relation above gives a direct sum decom-

position

S n A = �

s2S

X

s

A
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as a right A-module.

Remark. The de�nition of the crossed product S n C (as a category

over C) indeed depend on the choice of �, as the following example

indicates.

Example . Take C = (R-mod); S = Z=2Z, f

s�

= id(s =

�

0;

�

1), �

�a;

�

b

=

(�1)

ab

id. Then an object of the crossed product S n C is given by a

pair (M;T ) of an R-vector space M with an automorphism T of M

whose square equals to �1. There is no object (M; T ) of S n C with

one dimensional M . (Compare this with the case where � is trivial.)

Proposition 4.1. Let S;C; (f; �) as in de�nition 4.4. Assume further-

more that C is closed under taking direct sums of #S elements. Then

we may de�ne a monad F in the following way.

F = �

s2S

f

s�

�

(F )

: F

2

M = �

s;t

f

s�

f

t�

M

��

s;t

! �

s;t

f

st�

M

st=u

! �f

u�

M = FM

�

(F )

:M = f

e�

M

s=e

! �

s2S

f

s�

M

Then we have the following isomorphism of categories over C.

S n C

�

=

(F -mod)

In particular, the crossed product SnC is an almost a�ne scheme over

the base category C.

Lemma 4.2. Let S

1

; S

2

be unital semi groups. Let C be an abelian

category with direct sums of arbitrary many objects. Let � : S

1

! S

2

be a homomorphism which preserves the unity. Assume there exists an

action (f; �) of S

2

on C. Then

1. There exists an action (

�

f; ��) of S

1

on C, where

�

f; �� are de�ned as

follows.

�

f

s

1

= f

�(s

1

)

; ��

s

1

;s

2

= �

�(s

1

);�(s

2

)

2. There exists an almost a�ne morphism

~

� : S

2

n C! S

1

n C such

that

~

�

�

((M;�)) = (M;� � �).

Lemma 4.3. Let h : C

1

! C

2

be an morphism between two abelian

categories C

1

; C

2

. Let (f

(i)

; �

(i)

) be actions of a group G on C

i

(i = 1; 2).

If h commutes with G action, that means, if there exists a natural

isomorphism

�

s

: f

(2)

s�

� h

�

'

! h

�

� f

(1)

s�

for each element s of S such that equation

(h

�

�

(1)

s;t

) � (�

s

f

(1)

t�

) � (f

(2)

s�

�

t

) = �

st

� (�

(2)

s;t

h

�

)
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holds for each s; t 2 G, then for any unital subsemigroup S of G, there

exists a morphism Snh : Sn C

1

! Sn C

2

whose direct image functor

is given as follows.

(S n h)

�

(M;�) = (h

�

(M); h

�

(�))

If the morphism h is a 
at localization, then so is S n h

Corollary 4.1. Let C be a quasi-scheme over an abelian category C

0

.

Assume that there is given an action of a group G on the category C.

If there exists a Zariski covering fC

i

! Cg such that each C

i

is \G-

invariant", that is, if there exist actions of G on C

i

which commute

with the covering map, then for any unital subsemigroup S of G, SnC

is a quasi-scheme over C

0

.

Lemma 4.4. Let S be a semi group with unity e. Let C be an abelian

category with direct sums of #S-elements. Assume there exists an ac-

tion (f; �) of S on C. If s 2 S is invertible (that is, 9s

�1

2 S such that

s

�1

s = ss

�1

= e), then we have the following

1. Each functor f

s�

: C ! C is an equivalence of categories. In par-

ticular, for any pairM;N of objects of C, we have an isomorphism

Hom(M;N )

�

=

Hom(f

s�

M; f

s�

N):

2. For any object (M;�) of S n C, we have

(a) �

s

: invertible.

(b) �

s

�1

;s

= �

s

�1
� f

s

�1

�

�

s

(c) �

s;s

�1
= �

s

� f

s�

�

s

�1

(d) �

s

�1
= �

s

�1

;s

� (f

s

�1

�

�

s

)

�1

= �

s

�1

;s

� f

s

�1

�

(�

�1

s

)

Lemma 4.5. Let (f; �) be an action on an abelian category C. As-

sume the category C has countable direct sums. Let � : N ! Z be the

inclusion, where N = f0; 1; 2; : : : g is the set of natural numbers. Then

the morphism

~

� : Z n C! Nn C

de�ned as in Lemma 4.2 is a 
at localization. (That is,

~

� is 
at and

the functor

~

�

�

is fully faithful.)

Proof. We �rst show that

~

�

�

is fully faithful. For objects (M;�); (N;�)

of (Z n C), we have

Hom(

~

�

�

(M;�);

~

�

�

(N; �)) = Hom((M;�j

N

; (N;�j

N

))

= f� 2 Hom(M;N );� � �

n

= �

n

� (f

n�

�) for 8n 2 Ng

Applying f

�n�

to the last line above, we see that an arrow � (\an

N-homomorphism") above satis�es the following equation.

f

�n�

� � f

�n�

�

n

= f

�n�

�

n

� f

�n�

f

n�

�
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Then by using the equation f

�n�

f

n�

� = �

�1

�n;nN

����

�n;nM

and Lemma

4.4, we see that the arrow � is a \Z-homomorphism". That is, � �

�

n

= �

n

� (f

n�

�) for 8n 2 Z. This implies that there exists an natural

isomorphism

Hom(

~

�

�

(M;�);

~

�

�

(N; �))

�

=

Hom((M;�); (N;�)):

To prove the 
atness of

~

�, we we use Lemma 2.3 and see that the

inverse image functor

~

�

�

is given by an inductive limit

~

�

�

(M;�) = (lim

�!

k

f

�k�

M; ~�)

for a suitable choice of \connecting homomorphisms" and \a Z-action"

~�.

5. Skew projective line over a category.

As an application of previous two constructions, we de�ne a \skew

projective line" on a category. It is an projective line \skewed" by an

automorphism of C.

Proposition 5.1. Let C be an abelian category with direct sums of

countable objects. Let h : C! C be a morphism in the sense of Rosen-

berg which is invertible. Consider an action of Z on C generated by h

(De�nition 4.3 ). Then we may de�ne a \skew projective line" P(h)

associated to h as follows

P(h) = (Nn C) [

ZnC

((�N)n C)

it is a quasi scheme on C. If C is a quasi scheme over a base scheme C

0

and there exists a h-invariant Zariski cover of C, then P(h) is a quasi

scheme over C

0

.

Proof. We note that there are 
at localizations Z n C ! �N n C

(Lemma 4.5). The existence of the union is proved in Lemma 3.1. The

last statement of the proposition follows from Corollary 4.1

It is easy to verify that if C = (O

X

-mod) and h : C ! C is an

identity then the skew projective line P(h) is \isomorphic to" P

1

�X

That means,

P(h)

�

=

Qcoh(P

1

�X)

Example . Let E be a torus de�ned overC. For eachC-valued point t of

E, we have an automorphism h

(t)

: E ! E of E de�ned by translation.

The skew projective line P(h

(t)

) associated to h(t) is a quasi scheme

over C. We thus have a \one-parameter family" fP(h

(t)

)g

t2E(C)

of quasi

schemes with P(h

(0)

) = Qcoh(P

1

� E).
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