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1. Introduction

The purpose of this paper is to show an existence of a Grothendieck
topology on a subcategory of the opposite category of non commutative
algebras. To define a Grothendieck topology is to define a way to
“glue” objects, which will make it possible to define a non-commutative
geometric object which might be called non commutative scheme.

The term “non commutative scheme” already appears in [5] in a
slight different context, in which a non commutative scheme is defined
as a ringed space. Our categorical approach provides another look at
non commutative algebraic geometry. It in particular requires (and
therefore offers some motivation for) a study on free products. In
either way, non commutative algebraic geometry seems to play the
same role in non commutative geometry (developed for example by
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Conne ([2][3])) as algebraic geometry plays in commutative geometry.
It will provide for example singularity theories, homological methods,
and also some concrete examples of non commutative manifolds.

Our point of view in this paper is as follows.

(1) We basically want to regard the opposite of the category (alge-
bra) of (unital associative) algebras as a geometric object.

(2) We define a class of homomorphisms which we call “bi-flat epi-
morphisms” They play a role which localizations play in the
commutative case.

(3) We notice that a “base extension” of a good homomorphism
may be bad (Counter example 6.1). Therefore we propose we
pass to a subcategory C and consider only those “continuous
maps” there. (Note that this does not mean we give up consid-
ering “discontinuous maps”. See below.) Then we show that C
has a Grothendieck topology (Main theorem 9.7).

(4) We show that certain class of homomorphisms (which we call
bi-faithful “flaky” homomorphisms in this paper) have descent
property. This implies that the set of “affine object valued
maps”, continuous or not, form a sheaf on the site C (Main
theorem 9.8) .

We may make an analogy between this situation and a definition of
measurable maps on a topological manifold. Although “gluing maps”
should be continuous, we may consider any measurable maps on a
manifold.

To make the idea more rigorous, let us begin with a review of the
definition of Grothendieck topology. It is a generalization of the notion
of “coverings” in the category of topological spaces.

Definition 1.1. (We essentially repeat the words used in [7]) We say
a Grothendieck topology on a category C is given if we are given a set
Cov of families {Ui → U ; i ∈ I} of maps in C (called coverings) which
satisfies the following axioms

(GT 1) If φ is an isomorphism then {φ} ∈ Cov.
(GT 2) If {Ui → U} ∈ Cov and {Vij → Ui} ∈ Cov for each i then the

family {Vij} obtained by composition is in Cov.
(GT 3) If {Ui → U} ∈ Cov and V → U is arbitrary morphism of C,

then the fiber product Ui×UV exists and {Ui×UV → V } ∈ Cov.

A category equipped with a Grothendieck topology is called a site.

For example, the category (Top) of topological spaces with “open
coverings” in the usual sense forms a site. A basic idea of non com-
mutative geometry is to regard each non commutative algebra A as a
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“function ring” over a geometric object Geo(A). A category of all such
objects would be the opposite (algebra)opp of the category of algebras.
For the reason (2) above we pass to a subcategory C of (algebra)opp .
Our first main result then states

Theorem 9.7 A subcategory C of (non commutative algebras)opp

has a Grothendieck topology.
This result makes us possible to “glue” certain functors. It is ex-

plained in terms of sheaves on a site.

Definition 1.2. (We follow [7] again.) A sheaf of sets on a site is a
contravariant functor C → (Sets) such that for any covering U → X of
an object X in the category C we have an exact sequence of sets

F (X) → F (U)→→F (U ×X U).

This mechanism may be regarded as a generalization of gluing lemma
for continuous maps on a topological space: Continuous maps defined
on a open covering give rise to a continuous map defined on the original
space if they coincide on intersections. We associate each object Geo(A)
of C with “Geo(A)-valued maps” functor

F (Geo(B)) = Homalgebra(A;B).

Our second main result states
Theorem 9.8 For any algebra A, “Geo(A)-valued maps” form a

sheaf on the site C.
Thus we may glue these “affine objects” together as a sheaf to make

a “non commutative scheme”.
Technically speaking, there are basically two points we emphasize in

this paper. One is to employ “bi-flat epimorphism” (Definition 6.1) as
a non-commutative version of “localization”. (It is worthwhile to men-
tion that “left-flat epimorphisms” play an important role in [5] and is
refered to as “perfect homomorphism” there.) The other is to employ
free product (or its mollified version (Definition 9.2)), rather than ten-
sor product (employed for example in [9]), as an object corresponding
to a product in the geometric sense.

As the result of this paper may be regarded as a step to define non
commutative algebraic geometry, the author attempted to keep this
paper self contained.

Most part of the contents of this paper is obtained when the au-
thor took part in the program “operator algebras and its applications”
held in Fields Institute. The author wishes to express his feeling of
thanks to all the participants and the staffs there. They inspired him,
showed him good references, and prepared him a good room for study.
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He also thanks Masaki Maruyama, Akira Ishii and Kōta Yoshioka for
discussions on algebraic geometry.

2. Non commutative polynomial algebras

All the rings and homomorphisms which appear in this paper are assumed to be unital.
We fix a ground ring R (not necessarily commutative). It does not seem
there exist a standard notation for non commutative polynomial alge-
bras. We employ in this paper the following notation

Definition 2.1. Let A be a R-algebra. Then the algebra generated
freely by A and indeterminates {Xλ}λ∈Λ, modulo conditions

cXλ = Xλc (for all c ∈ R, λ ∈ Λ)

is called “the polynomial algebra over A with coefficient ring R and
indeterminates {Xλ}” and is denoted as

A[R{Xλ;λ ∈ Λ}].

As in the commutative case, there is a natural grading on the poly-
nomial algebra.

A[R{Xλ;λ ∈ Λ}] =
⊕

d

(A[R{Xλ;λ ∈ Λ}])d =
⊕

d

{homogeneous polynomials of degree d}.

We have the following expression for a polynomial algebra with one
indeterminate.

Lemma 2.1. There is an isomorphism

A[RX] ∼=

∞
⊕

i=0

(A⊗R A⊗R A⊗R . . .⊗R A) =
∞

⊕

i=0

(A⊗R(i+1))

as graded algebras, where the multiplication of the right hand side is
defined by

(a0⊗a1⊗a2⊗. . .⊗ai)×(b0⊗b1⊗b2⊗. . .⊗bj) = a0⊗a1⊗a2⊗. . .⊗(ai×b0)⊗b1⊗b2⊗. . .⊗bj

Proof. In fact, the isomorphism is obtained by replacing the inde-
terminate X by tensor sign “⊗”. Namely,

a0Xa1X . . .Xan 7→ a0 ⊗ a1 ⊗ . . .⊗ an.

�

We use the following lemma, which guarantees us an existence of
certain odd derivations.
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Lemma 2.2. Let F be an odd element of P = A[RX]. That means,

F ∈
⊕

n:odd

Pn.

Then there exists a unique odd derivation δF on P such that

δF (X) = F, δF (a) = 0 for all a ∈ A.

(Recall that a odd derivation on P is an additive map δ such that the
condition

δ(FG) = δ(F )G+ (−1)kFδ(G)

holds for any F ∈ Pn, G ∈ P . )

3. Hochschild cohomology

We recall here briefly a definition of the Hochschild cohomology. Our
definition coincides with the one given in [8], and is slightly different
to that given in [1]. The two definitions coincide if the ground ring R
is a commutative field, which is one of the most important cases. Let
I•(A) be a complex defined as

In(A) = (A[RX])n+1 (n ≥ 0)

with the odd differential δ obtained as the restriction of the differential
δX (δF with F = X) given in Lemma 2.2. Then we define

Definition 3.1. The Hochschild cohomology of a R-algebra A with
coefficient in a A-bimodule M is the Z(R)(= the center of R)-module

Hn(A;M) = Hn(Hom•
A- bimod(I

•(A),M)).

Note that our complex I• here coincides with the complex β(A,A)
given in [8]. We have the following expressions for the zeroth and first
Hochschild cohomology groups.

H0(A;M) ∼= MA = {m ∈M ; am = ma for all a ∈ A}

H1(A;M) ∼= Der(A;M)/Inn(A;M) =
{A→M ; R-derivation}

{A→ M ; Inner R-derivation}

We recall another notion which we will use later. The “forgetful” func-
tor

� : (A- bimod) → (R- bimod)

has a left adjoint F defined by

F (M) = A⊗RM ⊗R A,
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So we have a resolvent pair in the sense of [8], denoted R(A- bimod, R- bimod).
The Hochschild cohomology groups may be expressed as relative ex-
tension groups as follows.

H i(A;M) = ExtiR(A- bimod,R- bimod)(A;M)

See [8] for details.

4. Free products

The free product, or amalgamation, plays the role of the co-fiber-
product in the category of non commutative algebras. We remind the
reader that in this paper we always assume our rings and morphisms
are all unital. Accordingly, “free products” in this paper means unital
ones. We recall the definition for the purpose of later references.

Definition 4.1. Let B,C be A-algebras. Then the free product B∗AC
of B and C over A is the A-algebra together with two “canonical” A-
homomorphisms

ι1 : B → B ∗A C

ι2 : C → B ∗A C

such that, for any other A-algebra D with two A-homomorphisms

ϕ1 : B → D

ϕ2 : C → D,

there exists a unique A-homomorphism, denoted (ϕ1, ϕ2) from B ∗A C
to D such that we have

(ϕ1, ϕ2) ◦ ιi = ϕi (i = 1, 2).

A good deal of problems occur when dealing with free products since
the free products, unlike tensor products, do not behave bilinearly with
respect to B,C. To improve this, we will introduce a mollified free
product for special class of algebras (Definition 9.2). We end this sec-
tion by stating the following easy lemma relating tensor product and
free product in a case when B = C.

Lemma 4.1. A module homomorphism

B ⊗A B → B ∗A B

mapping b1 ⊗ b2 to ι1(b1)ι2(b2) is injective, and the image is a direct
summand of B ∗A B.
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Proof. Put

I∆ = ker(B ∗A B
(id,id)
→ B),

M∆ = ker(B ⊗A B
multiplication

→ B).

Then we have

(1) (B ∗A B)/I∆ ∼= B ⊗A B/M∆
∼= B.

(2) BothA-bimodules I∆/I
2
∆ and M∆ serves as the non-commutative

Kähler differentials of B over A. (Hence they are isomorphic.)

Thus we conclude

(B ∗A B)/I2
∆
∼= B ⊗A B.

�

5. faithfully flatness

In this section we review basic facts about faithfully flatness. All
results may be proved in analogous ways to the commutative case. We
first recall the definition of flatness.

Definition 5.1. Let A be an R-algebra. An A-algebra C is called left-
flat (respectively, right-flat) over A if the functor C⊗A (respectively,
⊗AC) is an exact functor. It is called bi-flat if it is left- and right-flat.

Lemma 5.1. Let C be a left-flat A-algebra. Then the followings are
equivalent.

(1) For any non-zero left A-module M , we have

C ⊗AM 6= 0.

(2) For any sequence

0 → L→ M → N → 0

of left A-module, if a sequence

0 → C ⊗A L→ C ⊗AM → C ⊗A N → 0

obtained by tensoring C to the original sequence from the left is
exact, then the original sequence is also exact.

(3) For any A-module M , A module homomorphism

M ∋ m 7→ 1 ⊗m ∈ C ⊗AM

is injective.
(4) For any left ideal I of A we have

B ⊗A (A/I) 6= 0



8 YOSHIFUMI TSUCHIMOTO

Definition 5.2. If one (hence all) of the conditions in Lemma 5.1
holds, we call C an algebra left-faithfully flat over A, and the structure
homomorphism A → C is called left-faithfully flat homomorphism.
Right-faithfully flatness is defined in a similar manner. An algebra
or a homomorphism is called bi-faithfully flat if it is left- and right-
faithfully flat.

Lemma 5.2. Left faithfully flat morphisms are injective.

6. Bi-flat epimorphisms

In this section we introduce bi-flat epimorphisms, which will be a
central notion in this paper. This notion is essentially known to spe-
cialists. In fact, in [5] one sees that left-flat epimorphisms play an
important role in the theory developed there. Here we examine their
behaviour with respect to free product.

We use the term “epimorphism” in the category theoretical sense.
We first note the following lemma.

Lemma 6.1. For a homomorphism ϕ : A → B, the followings are
equivalent

(1) We have an isomorphism B ⊗A B ∼= B of B-bimodules via the
product map b1 ⊗ b2 7→ b1b2.

(2) We have an isomorphism B ∗A B ∼= B of algebras via the codi-
agonal map (id, id)

(3) ϕ is a (category theoretically) epimorphism. That means, for
any A-algebra C, an A-homomorphism from B to C, if there
exists one, is unique.

Proof. That (2) implies (1) follows from Lemma 4.1. To prove the
converse implication, we note that canonical maps ι1, ι2 : B → B ∗A B
factors through B ⊗A B → B ∗A B, so that we have in fact ι1 = ι2.
The equivalence of (2) and (3) follows from the universality of free
products. �

Definition 6.1. If one (hence all) of the conditions in Lemma 6.1 is
satisfied, the homomorphism ϕ is called an epimorphism. It is called
a bi-flat epimorphism (BE) if it is an epimorphism and is bi-flat. If
the homomorphism ϕ referring to is clear, we simply say, by abuse of
language, that B is BE over A.

Note that epimorphisms need not be surjective maps in the set theo-
retic sense. We distinguish in this paper the term “epimorphism” from
the term “surjective map”. The former is used in the categorical sense
as above while the latter is used in the set-theoretical sense.
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Bi-flat epimorphisms play similar role in a theory of non commutative
algebras as localization does in the theory of commutative algebras.

Examples .

(1) Identity maps are bi-flat epimorphisms.
(2) Every localization of a commutative algebras in the usual sense

is a bi-flat epimorphism.

Definition 6.2. Let A be an algebra and S be a subset of A. Then
the localization AS of A with respect to S is defined as follows.

AS = A[R{Xs; s ∈ S}]/Xss = sXs = 1

We also refer to the natural map A→ AS as localization.

Remark 6.1. A localization AS by a set S = {s} consisting of a single
element is a “base extension” of a flat homomorphism

R[RX] → R[RX, 1/X]

by a homomorphism

R[RX] → A : X 7→ s.

That means,

AS ∼= A ∗R[RX] R[RX, 1/X].

Lemma 6.2. Any localization A → AS of an algebra is an epimor-
phism.

Proof. Any element in AS⊗AAS is a linear combination of elements
which look like

t⊗ a0s
−1
1 a1 . . . s

−1
n an,

where t ∈ AS, ai ∈ A, si ∈ S. But we have a computation

t⊗ a0s
−1
1 a1 . . . s

−1
n an

=ta0 ⊗ s−1
1 a1 . . . s

−1
n an

=ta0s
−1
1 s1 ⊗ s−1

1 a1 . . . s
−1
n an

=ta0s
−1
1 ⊗ a1 . . . s

−1
n an

= . . .

=ta0s
−1
1 a1 . . . s

−1
n an ⊗ 1,

which shows that a splitting ⊗1 : AS → AS⊗AAS of the multiplication
map AS ⊗A AS → AS is surjective. �

We note that localizations of non commutative algebras need not be
bi-flat, as the following counter example indicates.
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Counter Example 6.1. Let

A = R[Rx, t]/tx = (x+ 1)t, S = {x}.

Then A→ AS = Ax is not bi-flat. In fact, if we let

M =
⊕

n∈N

Cen

N =
⊕

n∈N\{0}

Cen

be direct sum of one dimensional vector spaces and define action of A
on M obtained by

x(en) = −nen, t(en) = en+1,

then N is stable under this action. But we easily see the followings.

(1) Ax ⊗AM = 0,
(2) Ax ⊗A N = N 6= 0.

This shows that Ax is not left-flat. In particular, in view of Remark
6.1 we see that a “base extension” of a flat homomorphism may not be
flat.

However, we have the following result of M. Kashiwara. ([6])

Lemma 6.3. If a subset S of an algebra A satisfies the following prop-
erties, then the localization AS is left-flat over A.

(1) The set S is closed under multiplication and contains 1.
(2) For any elements a ∈ A and s ∈ S, there exist elements b ∈ A,

t ∈ S such that we have

ta = bs.

(3) If furthermore in the above situation a is an element of S, then
we may choose b, t as above with b ∈ S

(4) If a ∈ A, s ∈ S satisfies as = 0, then there exists an element
t ∈ S such that ta = 0.

We have an analogous sufficient condition for right flatness.

Proof. For any A-module M , we have under the conditions of the
lemma, an description of localization

AS = S−1M = S ×M/ ∼,

where the equivalence relation ∼ is defined as follows

(a,m) ∼ (b, n)⇔∃s, t ∈ S; sb = ta, sn = tm.

�
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The author does not know if compositions of localizations are always
localization again. But we have the following lemma.

Lemma 6.4. A composition of two bi-flat epimorphisms A→ B, B →
C is also a bi-flat epimorphism.

The proof is obvious. �

Thus the class of all algebras with bi-flat epimorphisms forms a sub-
category of the category of algebras. We will later see that free products
serves as coproducts in this category too.

Lemma 6.5. Let A → B be an epimorphism. Then for any B-left
module M1 and right B-module M2, we have

M2 ⊗AM1
∼= M2 ⊗B M1

Proof.

M2⊗AM1
∼= (M2⊗BB)⊗A(B⊗BM1) ∼= M2⊗B(B⊗AB)⊗BM1

∼= M2⊗BM1

�

Corollary 6.6. Let ψ : B → C be a homomorphism, and ϕ : A → B
be an epimorphism. Assume that C is left (respectively, right)-flat over
A. Then C is also left (respectively, right)-flat over B. In particular,
if both ϕ and ψ ◦ ϕ are bi-flat epimorphisms, then so is ψ.

Proof. The first claim follows easily from the Lemma. Flatness of
ψ follows from the first claim. That ψ is an epimorphism is verified as
follows.

C ⊗B C ∼= C ⊗A C ∼= C.

�

Lemma 6.7. Let A be an algebra, B,C two A-algebras which are BE
over A. Then the free product B ∗A C is also BE over A. Thus it is
also BE over B and over C.

Proof. Using Lemma 6.1, we obtain an isomorphism

(B ∗A C) ∗A (B ∗A C) ∼= (B ∗A B) ∗A (C ∗A C) ∼= B ∗A C.

Thus we see that B ∗A C is also BE over A. To prove the flatness, we
use an explicit description for the free product using tensor products.
Namely, we have the following lemma, which tells us that the free
product in our case is actually an inductive limit of bi-flat modules,
and hence is also flat. The last line of the statement is deduced from
the rest of the lemma by using Corollary 6.6. �
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Lemma 6.8. Under the assumption of Lemma 6.7, we have an induc-
tive limit expression of the free product

B ∗A C ∼= lim
−→

(B ⊗A C)⊗An.

The connecting map for the inductive limit in the right hand side is
given by

M⊗An ∋ m 7→ m⊗ u ∈M⊗An ⊗AM,

where we put M = (B ⊗A C), and the element u of M is given by

u = 1B ⊗ 1C .

Proof. We note that for any two elements b1, b2 in B, we have

b1 ⊗ 1C ⊗ b2 = b1b2 ⊗ 1C ⊗ 1B,

where both hand sides are considered as elements of B⊗A C ⊗AB. To
see this, we observe that we have a well-defined map

B ⊗A B → B ⊗A C ⊗A B

defined by

b1 ⊗ b2 7→ b1 ⊗ 1C ⊗ b2,

and recall that B ⊗A B ∼= B. Using this identity (and an analogous
one with B and C interchanged), we observe firstly

x⊗ u = u⊗ x in M ⊗AM

for any x in M . Then secondly we see that the canonical identification
map

M⊗Am ⊗AM
⊗An →M⊗A(m+n)

gives a bilinear map compatible with the inductive system, which gives
rise to a bilinear product

(lim
−→
n

M⊗
A
n) ⊗

A
(lim
−→
n

M⊗
A
n) → lim

−→
n

M⊗
A
n

on the inductive limit. Thirdly we may verify that this product is
associative, with the unit element u. We finally note that this algebra
admits an obvious canonical homomorphism from both B and C, and
that it has the universal property of the free product. �

Proposition 6.9. The free product B ∗A C serves as the coproduct of
B,C in the category of non commutative R-algebras with bi-flat epi-
morphisms.
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Proof. We have already proved in Lemma 6.7 that all maps appear-
ing in the following commutative diagram are bi-flat epimorphisms.

A −−−→ B




y





y

C −−−→ B ∗A C

.

Now let D be an A-algebra which is BE over A with A-homomorphisms
α : B → D and β : C → D. (The homomorphism α, β are automati-
cally bi-flat epimorphisms, in view of Corollary 6.6.) We need to prove
that the map (α, β) is a bi-flat epimorphism. But this also follows from
Lemma 6.6. �

7. Geometry of the set of left ideals

In this section we observe how the set of left ideals of an algebra
behaves with respect to bi-flat epimorphisms.

We employ the following notations

Spl(A) = {left ideal of A},(7.1)

Spr(A) = {right ideal of A}.(7.2)

Furthermore, for any homomorphism ϕ : A→ B between algebras, we
define “the associate maps”

Spl(ϕ) : Spl(B) → Spl(A), Spr(ϕ) : Spr(B) → Spr(A)

defined by

Spl(ϕ)(J) = ϕ−1(J), Spr(ϕ)(J) = ϕ−1(J).

It is easy to see the following.

Lemma 7.1. A left ideal I of A is an image of Spl(ϕ) if and only if
an identity

(7.3) ϕ−1(B � ϕ(I)) = I.

holds.

We may use these spaces of ideals to see whether a homomorphism
is faithfully flat. Namely, the following lemma holds.

Lemma 7.2. Let ϕ : A → B be a left-flat homomorphism. Then the
followings are equivalent.

(1) ϕ is left-faithfully flat.
(2) The associate map Spl(ϕ) : Spl(B) → Spl(A) is surjective.
(3) The associate map Spl(ϕ) : Spl(B) → Spl(A) maps surjectively

on the set of maximal ideals in A.
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Proof. This follows easily from Lemma 5.1. �

Lemma 7.3. If a homomorphism ϕ : A→ B is a bi-flat epimorphism,
then the induced map Spl(ϕ) is injective. To be more precise, we have
an equality

J = B � ϕ(ϕ−1(J))

for any element J of Spl(B).

Proof. We have an exact sequence

0 → A/ϕ−1(J) → B/J.

Tensoring B over A from the left of this sequence, we obtain the fol-
lowing exact sequence.

0 → B/Bϕ(ϕ−1(J)) → B/J.

(Note that B ⊗AM ∼= M for any left B-module M) �

Our next task is to investigate behaviors of Spl(ϕ). The result will
be summarized in Proposition 7.6.

Lemma 7.4. Let ϕ : A → B,ψ : A → C be bi-flat epimorphisms.
Then we have

Spl(B) ∩ Spl(C) = Spl(B ∗A C),

where both hand sides are considered as subsets of Spl(A).

Proof. Since we already know in Lemma 6.9, that the all maps
appearing in a commutative diagram

A −−−→ B




y





y

C −−−→ B ∗A C

.

are bi-flat epimorphisms, we deduce we have an inclusion

Spl(B ∗A C) ⊂ Spl(B) ∩ Spl(C).

To prove the converse inclusion, we take I ∈ Spl(A) which belongs to
Spl(B) ∩ Spl(C). That means, we have equalities

ϕ−1(Bϕ(I)) = I = ψ−1(Cψ(I)),

or, equivalently, the following sequences are exact.

0 →A/I → B/Bϕ(I)(7.4)

0 →A/I → C/Cψ(I)(7.5)



A GROTHENDIECK TOPOLOGY 15

We derive from the exact sequence 7.4, using the fact that C is bi-flat
over A, another exact sequence

0 → C ⊗A (A/I) → C ⊗A (B/Bϕ(I)).

But the algebra C ⊗A (A/I) ∼= C/Cψ(I) contains A/I inside (7.5), so
that we have

0 → A/I → C ⊗A (B/Bϕ(I))(∼= C ⊗A B ⊗A (A/I)) :exact.

Tensoring B to the above sequence and continuing the above argument,
we have

0 → A/I → B ⊗A C ⊗A B ⊗A (A/I) :exact.

Continuing the argument again and again we finally conclude that a
sequence

0 → A/I → lim
−→

(C ⊗A B)⊗An ⊗A A/I

is exact. Now the lemma follows from the lemma 6.8. �

Lemma 7.5. Let ϕ : A→ B be a bi-flat epimorphism. If the associate
map Spl(ϕ) : Spl(B) → Spl(A) is surjective (hence bijective according
to Lemma 7.3), then ϕ is an isomorphism.

Proof. Since {0A} ∈ Spl(A) is in the image of Spl(ϕ), we easily see
that the homomorphism ϕ is injective. On the other hand, we have

B ⊗A (B/ϕ(A)) ∼= B/Bϕ(A) = 0,

which implies B/ϕ(A) = 0, since ϕ is faithfully flat (Lemma 5.1 (4) ,
equation (7.3)). Thus the homomorphism ϕ is surjective. �

Using Lemma 7.2, we may rephrase the above lemma as “a bi-flat
epimorphism is left-faithful if and only if it is an isomorphism”.

Proposition 7.6. A map

{algebra which is BE over A }/ ∼=

→{subset of Spl(A)}

determined by
B 7→ Spl(B),

where the right hand side is considered as a subset of Spl(A) on the
ground of the previous lemma, is injective. Furthermore, this injection
has the following properties.

(1) Free products correspond to intersections via this injection.
(2) “There exists an A-homomorphism B → C” ⇔ Spl(C) ⊂ Spl(B).

(Note that the A-homomorphism B → C in Claim (2) above is unique
(Lemma 6.1)
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Proof. Claim (1) is the content of Lemma 7.4. The “ =⇒ ” part of
Claim (2) is clear. To prove the converse of the implication, we apply
claim (1) to the algebra B ∗A C and see that the canonical homomor-
phism C → B ∗A C satisfies the assumption of the previous lemma
and is therefore an isomorphism. We thus obtain an A-homomorphism
B → C by using the canonical homomorphisms as follows.

B → B ∗A C ∼= C.

This completes the proof �

8. F-étale map

Bi-flat epimorphisms satisfy some homological properties. To clarify
this, we generalize in this section the notion of formally étale morphisms
to the non commutative case.

Definition 8.1. Let A,B be two algebras, F a family of B-modules.
A homomorphism ϕ : A → B is called F -étale, if the associated map
for Hochschild cohomology

H i(ϕ) : H i(B;M) → H i(A;M)

gives an isomorphism for any member M of F and for any i.

The choice of appropriate F for defining “genuine” étale maps seems
to require some considerations. In this paper, we will employ the fol-
lowing important classes of modules as F .

Fa = {all B-bimodules}(8.1)

Fc = {M ; am = ma for all m ∈M , and for all a ∈ Z(B)}(8.2)

(Here we denote by Z(•) the set of central elements of the algebra.)
It follows readily from the definition that ϕ is Fa-étale if and only if
it is F -étale for any class F of B-modules. If the homomorphism ϕ is
bi-flat, we have the following lemma.

Lemma 8.1. A bi-flat homomorphism ϕ : A → B is F-étale if and
only if the homomorphism

ExtiR(B- bimod,R- bimod)(B,N) → ExtiR(B- bimod,R-bimod)(B ⊗A B,N)

between relative extension groups induced by the multiplication map

B ⊗A B → B

is bijective for any element N ∈ F

The proof is standard and is left to the reader.
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Remark 8.1. If the algebras A,B are commutative and the homomor-
phism ϕ is formally étale in the usual sense, then ϕ is Fc-étale. In fact,
the class Fc in this case is the class of “usual B-modules”, that is B-
bimodules for which the left multiplication and the right multiplication
coincide. Then we may use the well-known fact that “the diagonal” B
is a direct summand of the algebra B ⊗A B as an algebra.

Lemma 8.2. Bi-flat epimorphisms are F-étale for any F .

Proof. This is a direct consequence of Lemma 8.1. �

Corollary 8.3. Let ϕ be a Fc-étale homomorphism. Then ϕ maps cen-
tral elements to central elements. In particular, bi-flat epimorphisms
maps central elements to central elements.

Proof. We put i = 0,M = B in the definition of an F -étale map
and obtain an equation

BA = BB(= Z(B) (the center of B)).

On the other hand, ϕ obviously maps central elements of A to elements
in BA. This completes the proof �

A motivation for defining F -étale homomorphisms comes from the
(infinitesimal) deformation theory of non commutative algebras ([4]).
Let ǫ be a dual number (ǫ2 = 0) which commutes with everything.
Recall that an infinitesimal deformation of an algebra A over a ring R
is by definition given by introducing a R[ǫ]-algebra structure on a R[ǫ]-
bimodule A[ǫ] which reduces to the original algebra when we let ǫ = 0.
More explicitly speaking, the algebra structure is given by introducing
a multiplication law

(8.3) mǫ(f + ǫg, h+ ǫk) = fh+ ǫ(fk + gh+ ϕ(f, g)),

where ϕ : A × A → A is a biadditive homomorphism which satisfies
the following conditions.

ϕ(cf, g) = cϕ(f, g), ϕ(fc, g) = ϕ(f, cg), ϕ(f, gc) = ϕ(f, g)c (f, g ∈ A, c ∈ R)

fϕ(g, h)− ϕ(fg, h) + ϕ(f, gh) − ϕ(f, g)h = 0 (f, g, h ∈ A) (cocycle condition)

We will refer to the deformed algebra with the multiplication law 8.3 as
Aϕ. We say that two such infinitesimal deformations given by cocycles
ϕ, ψ are equivalent if and only if there exists a R[ǫ]-isomorphism

Aϕ → Aψ

which reduces to the identity when we let ǫ = 0. The reader may easily
verify that the equivalence classes of infinitesimal deformations are the
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same thing as extensions of A by A, and are thus parametrized by the
cohomology group

H2(A;A).

We may also define deformation of a homomorphism as a homomor-
phism between deformed algebras which reduces to the homomorphism
between the original algebras.

An étale homomorphism behaves neatly with infinitesimal deforma-
tions, as the following lemma shows.

Lemma 8.4. Assume ι : A→ B be a {B}-étale homomorphism. Then
for all infinitesimal deformation ϕ of A, there exists an infinitesimal
deformation ψ of B and an infinitesimal deformation ι̃ of ι such that
the following diagram commutes.

Aϕ
ι̃

−−−→ Bψ

ǫ→0





y





y

ǫ→0

A
ι

−−−→ B

Furthermore, ι̃ is unique up to a conjugacy by an infinitesimal defor-
mation ˜idB of identity on B.

Proof. Existence is essentially ensured by an existence of a map
H2(A;A) → H2(B;B) defined as

H2(A;A)
H2(A;ι)
→ H2(A;B)

H2(ι;B)
∼= H2(B;B),

where H2(A; ι) and H2(ι;B) are additive maps associated to ι in the
obvious way. We leave the rest to the reader. �

9. The category C

Definition 9.1. A homomorphism ϕ : A → B is called flaky homo-
morphism if it is a direct sum of bi-flat epimorphisms. Namely, we
have a direct sum decomposition of B

B = ⊕n
i=1Bi

into finite components {Bi} such that each component ϕi of ϕ (with
respect to this decomposition) is a bi-flat epimorphism.

Lemma 9.1. Flaky homomorphisms are Fc-étale. (Hence they map
central elements to central elements.

Proof. An easy homological argument shows that a direct sum of
Fc-étale maps is also Fc-étale. The result now follows from this fact
and Lemma 8.2. �
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Lemma 9.2. A composition of two flaky homomorphisms are also
flaky.

Proof. Since a direct sum decomposition of an algebra corresponds
to a central idempotent, the result easily follows from the previous
lemma. �

The category C is defined as a subcategory of (Non commutative algebras)opp

as follows.

Object(C) = {R-algebras}

Morphism(C) = {opposite of flaky homomorphisms}

To indicate that an algebra A is regarded as an object of C, we employ
the notation Geo(A). A morphism Geo(B) → Geo(A) thus corresponds
to a flaky homomorphism A→ B.

This category has fiber products. To see this, we first introduce
“mollified free products”.

Definition 9.2. Let A be R-algebra, B,C two A-algebras. The molli-
fied free product of B,C over A is defined as follows.

B
◦
∗A C = (B ∗A C)/〈[Z(B), C], [B,Z(C)]〉.

We note first the following lemma.

Lemma 9.3. If two homomorphism ϕ : A → B,ψ : A→ C are bi-flat

epimorphisms, then the mollified free product B
◦
∗AC coincides with the

free product B ∗A C.

Proof. This follows from the fact that B ∗A C is BE over B,C
(Lemma 6.7), and that bi-flat epimorphisms map central elements to
central elements (Corollary 8.3). �

Then we have the following result.

Lemma 9.4. The category C has fiber products. They are given by
mollified free products. That is,

Geo(B) ×Geo(A) Geo(C) = Geo(B
◦
∗A C).

Furthermore, if we have a decomposition

B =

n
⊕

i=1

Bi,

C =
m

⊕

j=1

Cj
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such that the homomorphisms ϕ, ψ decompose as a sum of bi-flat epi-
morphisms with respect to these, then we have

B
◦
∗A C ∼=

⊕

i,j

Bi ∗A Cj.

Proof. Let A → B,A → C be two flaky homomorphisms. Given
two flaky A-homomorphisms α : B → D, β : C → D, we have a
well-defined homomorphism

B ∗A C → D,

since we have a universality for free products. But since α, β are flaky,
images α(Z(B)), β(Z(C)) of the centers are contained in the center
Z(D) of D. We thus have a homomorphism

B
◦
∗A C → D.

It remains to prove that homomorphisms

B → B
◦
∗A C, C → B

◦
∗A C, B

◦
∗A C → D

are all flaky. We reduce this problem to Lemmas 6.7 and 9.3 by dividing
each algebras with central idempotents. �

Corollary 9.5. If a homomorphism A → B is flaky, then a module
homomorphism

B ⊗A B ∋ b1 ⊗ b2 7→ ι1(b1)ι2(b2) ∈ B
◦
∗A B

is injective. (Here homomorphisms ι1, ι2 are natural ones from B to

B
◦
∗A B.)

Proof. This is a consequence of the above Lemma and the Lemma
4.1. �

Lemma 9.6. Let ϕ : A→ B, ψ : A→ C be two flaky homomorphisms.
If ϕ is left-faithfully flat, then the “base extension”

C → B
◦
∗A C

is also left-faithfully flat.

Proof. Using Lemma 9.4 we may assume that the homomorphism
ψ is a bi-flat epimorphism. Let

B =

n
⊕

i=1

Bi
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be a direct sum decomposition with respect to which the homomor-
phism φ decomposes into a sum of bi-flat epimorphisms. Take a maxi-
mal ideal J of C. Since Spl(φ) is surjective, one may find ideals {Ji}

n
i=1

of Bi such that

(9.1) φ−1(

n
⊕

i=1

Ji)(= ∩i(φ
−1(Ji)) = ψ−1(J)

holds. Using the flatness of ψ, we deduce from the above equation the
following.

Cψ(∩i(φ
−1(Ji))) = Cψ(ψ−1(J)) = J(Lemma 7.3)

Using the maximality of J , we conclude that there exist i0 such that

(9.2) J = Cψ(φ−1(Ji0))

holds. Equations 9.1, 9.2 implies in particular, an equality

ψ−1(J) = φ−1(Ji0),

which shows that J is an element of the set Spl(Bi0)∩Spl(C)(⊂ Spl(A)).
�

We now state the main theorem of this paper.

Theorem 9.7. The category C admits a Grothendieck topology. A
covering map is given by a finite set of homomorphisms

{Geo(ϕi) : Geo(Bi) → Geo(A); i = 1, . . . , n}

such that,

(1) Each homomorphism ϕi is flaky,
(2) The homomorphism A→ ⊕Bi obtained from ϕi ’s is bi-faithful.

Proof. (GT1) of Definition 1.1 is obvious. (GT2) results from
Lemma 9.2 and a fact that a composition of faithful homomorphisms
are faithful. (GT3) is a result of Lemma 9.6.

This is an easy consequence of Lemma 9.4. �

Theorem 9.8. For any algebra S over the ground ring R, the functor

A 7→ HomR-algebra(A, S)

is a sheaf over the site C. In other words, the sequence

A→ B
ι1→
→
ι2

B
◦
∗A B

is exact. (That is, A is the difference kernel of ι1, ι2.)
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Proof. The proof is essentially identical with the commutative case.
(We already know in Lemma 5.2 that the homomorphism A → B is
injective.) For the proof of the exactness of the above sequence, it is
enough to prove the exactness of

(9.3) A→ B→
→B ⊗A B,

since B ⊗A B is injectively contained in B
◦
∗A B (Corollary 9.5). To

prove the exactness of 9.3, we may tensorize the sequence with B over
A and consider the exactness of

B → B ⊗A B
→
→B ⊗A B ⊗A B.

It is then easy to see that, as in commutative case, this sequence has
actually splitting, and hence is exact (The reader may consult for exam-
ple Proposition 2.18 of [10] for the precise arguments in commutative
case). �
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