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REFLEXIVE MODULES OF RANK ONE OVER WEYL

ALGEBRAS OF NON-ZERO CHARACTERISTICS

YOSHIFUMI TSUCHIMOTO

Abstract. Much of the properties of a Weyl algebra An over a base field of
non-zero characteristic are explained in terms of connections and curvatures
on a vector bundle on an affine space X = A2n. In particular, it is known that
an algebra endomorphism ϕ of An gives rise to a symplectic endomorphism f

of X with a gauge transformation g. In this paper we study converse problem
of finding ϕ from an arbitrary symplectic endomorphism f of X = A2n. It
is shown that given such f , we may construct a projective left An-module
(which corresponds to “the sheaf of local gauge transformations”) such that
its triviality is equivalent to the existence of the “lift” ϕ. Some properties of
such a module will be discussed using the theory of reflexive sheaves.

1. Introduction

Let A = An(k) be a Weyl algebra over a field k of characteristic p 6= 0. The
author has already shown ([12]) that each endomorphism of A with a degree ≤ p−1

2

gives rise to a “shadow” symplectic endomorphism of A2n. The procedure there is
further sorted out in [13]. It turned out that the key differential equation obtained
in [12] is actually related to integrability of the sheaf of intertwiners. In this paper
we continue the argument developed there and see in Proposition 2.5 that for each
symplectic endomorphism f of A2n of degree ≤ p−1

2 , there exists a projective left

A-module W (f) of rank 1 such that its triviality is equivalent to the existence of a
lift of f to an endomorphism of A.

Then a question arises whether the module W (f) is always trivial. To answer it,
we need to give examples of projective An-modules of rank 1. Such modules are
studied by J. T. Stafford (See, for example, [8],[9]) and other people. A notable re-
sult is a classification of A1(C)-modules [3]. We may then ask (Problem 2.7): if such
a module is homotopic to trivial module, then is it trivial? Our definition of homo-
topy of An-modules Wt is that it can be considered as an An+1 = An〈ξn+1, ηn+1〉-
module with an identification ξn+1 = t. (See Definition 2.8 for precise definition.)

We then broaden our outlook and deal with reflexive A-modules. It is known
that reflexive A-modules of rank 1 is an intersection of two principal ideals of A.
(We give an alternative proof of the result(Theorem 5.4) to keep us somewhat
self-contained). Thus we may easily find examples of reflexive modules.

We proceed to see if they are projective. Arguments on norms developed in
section 4, along with the arguments in connections, curvatures, and p-curvatures
Theorem 2.4 are in action here.

As an illustration of our theory, we give in section 6 an example of a locally
free A2-module which gives a homotopy between a non trivial A1-left module and
a trivial one. This gives a negative answer to the problem 2.7.
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2. Preliminaries and notations.

In this section we give some preliminaries on Weyl algebras. Details are found
for example in Author’s paper [13],[12],[11].

Definition 2.1. Let n be a positive integer. A Weyl algebra An(k) over a
commutative ring k is an algebra over k generated by 2n elements {γ1, γ2, . . . , γ2n}
with the “canonical commutation relations”

(CCR) [γi, γj ](= γiγj − γjγi) = hij (1 ≤ i, j ≤ 2n),

where h is a non-degenerate anti-Hermitian 2n× 2n matrix of the following form:

(hij) =

(

0 −1n
1n 0

)

.

It may sometimes be convenient to give an alias to each of the generators:

ξ1 = γ1, ξ2 = γ2, ξ3 = γ3, . . . , ξn = γn,

η1 = γn+1, η2 = γn+2, η3 = γn+3, . . . , ηn = γ2n.

The relation (CCR) then reads:

[ηj , ξi] =

{

1 if i = j.

0 otherwise.

[ξi, ξj ] = 0, [ηi, ηj ] = 0.

In what follows we will denote by k a perfect field of characteristic p 6= 0. We
will then denote by A = An = An(k) the Weyl algebra, and by R = Z(A) its
center 1. It is easy to see that R is equal to the polynomial algebra in 2n-variables
γp
1 , . . . , γ

p
2n.

2.1. A note on a Frobenius map. Before explaining further, we give some note
on a Frobenius map and fix some notations. Let Y = Spec(k) be a base scheme,
X = Spec(R) = Spec(k[γp

1 , . . . , γ
p
2n]) be an affine space over it. In a paper of Illusie

[6], there is given a definition of relative Frobenius map (in a more general setting–
we make use of a very special case of his). The definition may be summarized in
the following diagram.

X ←−−−− X(p) = F ∗
Y X

FX/Y
←−−−− X





y





y





y

Y
FY←−−−− Y Y

Since we have assumed k to be a perfect field, the Frobenius map FY : Y → Y is
invertible. So we may pull back the right square of the diagram above by F−1

Y and
obtain the following commutative diagram.

X
FX/Y
←−−−− (F−1

Y )∗X = X(1/p)





y





y

Y Y

1Please pay attention. Unlike the preceding papers of the author, we use the letter R instead
of the letter Z to denote the center of A.
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where FX/Y = (F−1
Y )∗(FX/Y ). On the other hand, FX/Y gives rise to a bijection

between the base spacesX andX(p). Thus we see that FX/Y gives rise to a bijection

|FX/Y | : |X
(1/p)| → |X |

between the base spaces. We will therefore identify these two spaces and regard
quasi coherent sheaves on X and X(1/p) as sheaves on the same base space |X |.
The structure sheaf of X(1/p) will then be denoted as O(1/p). The structure sheaf O
on X may be identified with a subsheaf of O(1/p) via the pullback homomorphism

F
∗

X/Y .
To going to and fro between modules and sheaves, we employ the following

convention.

Convention 2.2. We denote by AX the sheaf A ⊗R O on X . More generally, for
any R-module M and for any open set U of X , we denote by MU the sheaf A⊗ROU

on U .

2.2. An connection ∇A associated with the Weyl algebra A. We denote

by R(1/p) the affine coordinate ring O
(1/p)
X (X) of X(1/p). The ring R(1/p) is an

polynomial in 2n generators T1, . . . , T2n where Tj = (γp
j )

1/p.
We have a matrix representation

Φ0 : A→Mpn(R(1/p))

such that each Φ0(γj) is decomposed into a sum

(2.2.1) γj = Tj + µj

of its (unique) eigen value and a nilpotent part µj . (One of the ways to describe the
matrices {µj} is to use their “differential representation” on V = k[x1, x2, . . . , xn]/(x

p
1, x

p
2, . . . , x

p
n).

Namely,

µj .f = xjf, µn+j .f =
∂

∂xj
f (j = 1, 2, . . . , n).)

It is easy to see that the representation Φ0 gives rise to an isomorphism

A⊗R R(1/p) ∼= Mpn(R(1/p)).

of R(1/p) algebras. We also note that there is a connection ∇A on Mpn(R(1/p))
whose curvature and p-curvature are zero such that the set of the parallel sections

Mpn(R(1/p))∇
A

is equal to Φ0(A). In precise, ∇A is defined by using a matrix valued function

(2.2.2) F =

2n
∑

i,j=1

h̄ijµjTi

(where h̄ij is the ij-component of the inverse matrix h̄ of h.) as follows.

∇A = d+ ad(dF ).

2.3. A connection argument. In this subsection we review a general result
(Lemma 2.3) on connections and prove a basic theorem (Theorem 2.4) which de-
scribes left module of rank 1 over the Weyl algebra A. To somewhat ease notations,
we will denote by Np the set of non negative integers which is less than p. Namely,

Np = {0, 1, 2, . . . , p− 1}.
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Lemma 2.3. Let k be a commutative ring of characteristic p. Let S be a com-
mutative k-algebra. We assume that S contains elements {t1, t2, . . . , td} such that
Ω1

S/k is freely generated by {dt1, dt2, . . . , dtd} over S. Let M be an S-module. Let

∇ : M → Ω1
S/k ⊗S M

be a connection on M . Then the following conditions are equivalent.

(1) M is generated by parallel sections.
(2) The curvature and the p-curvature of ∇ are both zero.
(3) M =

∑

J∈Nd
p
tJM∇.

Proof. (1) =⇒ (2): Curvatures and p-curvatures are tensors. Condition (1)
implies that they vanish on generators on M . So they are zero.
(3) =⇒ (1): trivial.
(2) =⇒ (3): is a result of Taylor expansion formula. Namely, for any element
m ∈M , we have

(TE) m =
∑

J∈Nd
p

1

J !
mJ t

J

where the coefficients are computed in the following manner.

(TEC) mJ =





∑

I∈Nd
p

1

I!
(−t)I(∇t)

I+Jm



 ∈M∇.

The uniqueness of such expansion follows in a similar manner as the uniqueness of
the usual Taylor expansion of C∞-functions.

�

Theorem 2.4. Let W be a left A-module of rank 1. Then the following conditions
are equivalent

(1) W is a projective A-module.
(2) There exists a left A-module W ′ such that W ⊕W ′ is A-free.
(3) W is R-projective.
(4) W is R-locally free.
(5) W ⊗R R(1/p) ∼= Mpn(R(1/p)) as an A⊗R R(1/p) ∼= Mpn(R(1/p))-module.

(6) ⊕I∈N2n
p
T IW ∼= Mpn(R(1/p)) as A-module.

(7) There exists an A-linear connection ∇ on Mpn(R(1/p)) such that
(a) curv(∇) = 0
(b) p- curv(∇) = 0
(c) W = Mpn(R(1/p))∇.

(8) ⊕I∈N2n
p
µIW ∼= Mpn(R(1/p)) as A-module.

Proof. (1) ⇐⇒ (2): follows from a general result on projective modules.
(2) =⇒ (3): A is a free R-module.
(3) =⇒ (4): is also an elementary result of commutative algebra.
(4) =⇒ (5): W (1/p) = W ⊗R R(1/p) is a left A ⊗R R(1/p) ∼= Mpn(R(1/p))
module of rank 1. By using an argument on elementary matrices {eij}, we see

that W (1/p) is isomorphic to a tensor product of the standard “vector represen-
tation” of Mpn(R(1/p)) and e11W

(1/p). Now, e11W
(1/p) is a direct summand of

R(1/p)-projective module W (1/p). So e11W
(1/p) is locally free. By a theorem

of Quillen-Suslin (also known as “Serre conjecture”), we see that e11W
(1/p) is a

free R(1/p)-module of rank pn. Thus W (1/p) is isomorphic to Mpn(R(1/p)) as an

A⊗R R(1/p) ∼= Mpn(R(1/p))-module.

(5) =⇒ (6): R(1/p) ∼= ⊕I∈N2n
p
RT I .
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(6) =⇒ (2): Mpn(R(1/p)) is free A-module.
(6) ⇐⇒ (7): follows from the previous lemma.
(6) =⇒ (8):

Mpn(R(1/p)) =
∑

I

T IW =
∑

I

(γ − µ)IW ⊂
∑

I

µIW

So a map

⊕I∈N2n
p
W ∋ (wI) 7→ µIwI ∈Mpn(R(1/p))

is surjective. By comparing rank, we see that the map is generically injective. Since
W has no torsion, we conclude that the map is surjective. (8) =⇒ (2): trivial.

�

2.4. Endomorphisms of Weyl algebras. For a given antisymmetric matrix h,
let us define a symplectic form ωh on A2n as follows.

ωh =
∑

i<j

hijdTidTj .

Let f : (A2n, ωh)→ (A2n, ωh) be a symplectic endomorphism of degree d ≤ p−1
2 .

Then by using F defined in 2.2.2 we define a connection ∇gauge on Mpn(R(1/p)) as
follows

∇gauge = d+ λ(dF )− ̺(d(f∗F )).

We define W (f) to be the set of parallel sections. That means,

W (f) = Mpn(R(1/p))∇
gauge

.

Proposition 2.5. Under the assumption as above, we have:

(1) The curvature and the p-curvature of ∇gauge are both equal to 0.
(2) ∇gauge is An-linear.
(3) W (f) is projective An-module of rank 1.
(4) If W (f) is trivial as an An-module, then f is liftable to an endomorphism

of An.

Proof. (1): See the computation in [13, Proposition 2.3].
(2):An is the set of parallel section with respect to

∇ = d+ ad(dF ).

It is easy to see that ∇ and ∇gauge are compatible. That means,

∇gauge(am) = ∇(a)m+ a∇gaugem

holds for any sections a,m ∈Mpn(OX). Then we see immediately that the connec-
tion ∇gauge is An-linear.
(3): is a consequence of Theorem 2.4.
(4): Let G be the generating section of W (f). Then by reversing the order of the
arguments done in [13] we see that a correspondence

a→ Gf∗(Φ(a))G−1

defines an endomorphism of the Weyl algebra An. �

In view of the proposition above, we may ask:

Problem 2.6. [2] Given a symplectic endomorphism f with total degree ≤ p−1
2 ,

is W (f) always free?
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2.5. Definition of homotopy. Let f be a symplectic endomorphism f of (A2n, ω)
where the symplectic form is given by

ω =
∑

i,j

hijdTiTj

It is known (for example in [7],[4]) that f is “homotopic” to identity.
One may ask:

Problem 2.7. Let W be a An-module of rank 1 which is homotopic to identity. Is
W always free?

For a definition of “homotopy” of An-modules, we employ the following.

Definition 2.8. Let us consider An = k〈ξ1, ξ2, . . . , ξn, η1, η2, . . . , ηn〉 as a subal-
gebra of An+1 = k〈ξ1, ξ2, . . . , ξn, ξn+1, η1, η2, . . . , ηn, ηn+1〉. Let us put t = ξn+1.
Then projective left An-modules I0, I1 are said to be homotopic if there exists
an An[t]-module J̃ such that

(1) (An[t]/(t))⊗An[t] J̃
∼= I0 as an An-module.

(2) (An[t]/(t− 1))⊗An[t] J̃
∼= I1 as an An-module.

(3) An+1⊗An[t] J̃ is an An+1-module of rank 1 which is locally free as a Rn+1-
module.

The condition (3) above asserts that J̃ behaves nicely with respect to the ad-
ditional variable t = ξn+1. We shall show in the next section that the An-module
W (f) associated to any symplectic endomorphism f of degree d ≤ p−1

2 is actually
homotopic to the trivial An-module in the above sense. It turns out in section 6
that with our definition of homotopy, the answer to the second problem is No, even
for the case where n = 1.

2.6. Every W (f) is homotopic to identity (if deg(f) is small). In this sub-
section we prove the following proposition.

Proposition 2.9. Let f be a symplectic endomorphism f of (A2n, ω) where the
symplectic form is given by

ω =
∑

i,j

hijdTiTj .

We assume that the degree d of f is d ≤ p−1
2 . Then W (f) is homotopic to the trivial

An-module.

As we have said it is known that f is “homotopic” to identity. Let us recall
the idea. By composing an affine coordinate change we may assume f(0) = 0 and
f ′(0) = id. In other words, we assume that the Taylor expansion of f at the origin
0 is written as

f(x) = x+ higher order terms.

Then we define

ft(x) = f(tx)/t.

We may easily see that ft(x) is actually a polynomial in x, t and that ft is symplectic
whenever we specialize t to an element of k.

We now proceed and use the homotopy map ft as a component of a symplectic

endomorphism f̂ of A2n×A2 (by adding the homotopy variable t and another extra
variable u). To do that, we need an easy version of “Poincaré’s lemma”:

Lemma 2.10. Let p be an odd prime. Let k be a field of characteristic p. Let α be
a regular 1-form on an affine space Am = Spec(k[T1, T2, T3, . . . , Tm]). We assume:

(1) dα = 0.
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(2) α = αjdTj with deg(αj) < p− 1 (∀j).

Then there exists a regular function a on Am such that da = α.

Proof. The result is an immediate consequence of the exact sequence [6, 2.1.11]
which states that a closed form is exact if and only if it belongs to the kernel of the
Cartier operator. Indeed, the form α surely belongs to the kernel since it satisfies
the condition (2) above. To make ourselves somewhat self-contained, let us re-prove
our special case. For each x ∈ Am, let us consider a “line”

ℓx : A1 ∋ t→ tx ∈ A
m

and define

a(x) =

∫ 1

0

ℓ∗xα.

It is easy to see that the integral a exists and satisfies the required condition da =
α. �

Convention 2.11. Before stating the next lemma, we explain some notational
conventions. We would like to consider an affine space A2n and its product A2n×A2

with a plane. The exterior derivative d on A2n × A2 then breaks into a sum

d = d1 + d2

where the d1 (respectively, d2) is the exterior derivative with respect to the first
2n (respectively, last 2) variables. We have the following relations of the exterior
derivatives

(2.6.1) ds = d1s+ d2s = d1s+ s′dt+
∂s

∂u
du (s′

def
=

∂s

∂t
.)

for any form s on A2n × A2.

Lemma 2.12. Let p be an odd prime. Let ft : A
2n → A

2n be a regular family of
symplectic maps such that deg(ft) ≤

p−1
2 . That means, we assume that there exists

a polynomial map

f̃ : A2n × A
1 → A

2n

such that ft(x) = f̃(x, t) holds and each of ft preserves the symplectic form ω.

Then there exists a polynomial a(x, t) on A2n × A1 such that a map f̂ defined by

(2.6.2) f̂ : A2n × A
2 ∋ f(x, t, u) 7→ (ft(x), t, u + a(x, t)) ∈ A

2n × A
2

is symplectic with respect to the symplectic form ω̂ = ω + dtdu.

Proof. We first consider A2n as the base space and consider differentials and forms
on it. Let us define an 1-form

ρ =
∑

i<j

hijTidTj .

Then we have
ω = dρ.

Since each of ft preserves the symplectic form, we have

dρ = ω = f∗
t ω = f∗

t dρ = df∗
t ρ.

By differentiating by t, we have

(2.6.3) d((f∗
t ρ)

′) = 0.

Then by the Poincaré’s lemma (Lemma 2.10 above), we deduce that there exists a
function a = a(x, t) such that

da = −(f∗
t ρ)

′

holds.
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Let us now turn our attention to the space A2n × A2 and employ it as the base

space instead of A2n. Let us define a map f̂ by using the function a obtained as
above and the equation 2.6.2 given in the statement of the lemma. By using the
projection π1 : A2n × A2 → A2n to the first 2n variables, we may reinterpret the
equation above as an equation

(2.6.4) d1a = −(f̂∗π∗
1ρ)

′

of 1-forms on A2n × A2. We then have

f̂∗ω̂ = f̂∗(dtdu + π∗
1dρ)

=dt(du + da) + f̂∗π∗
1dρ (the definition of f̂)

=dt(du + da) + d(f̂∗π∗
1ρ) (functoriality of d)

=dt(du + da) + (f̂∗π∗
1ρ)

′dt+ d1(f̂
∗π∗

1ρ) (by 2.6.1)

=dt(du + d1a+ a′dt)− dt(d1a) + d1(f̂
∗π∗

1ρ) (by 2.6.4)

=dtdu + d1ω (ft preserves ω)

=ω̂

That means, the map f̂ is symplectic.
�

Let us now apply the argument carried out in subsection 2.4 to the extended

symplectic map f̂ . Aside from the existing variables (matrices) {µj}2nj=1 which
appears in the equation 2.2.1 in 2n variables, we introduce extra variables ν0, µ0

which commute with other existing variables and satisfy

[ν0, µ0] = 1, νp0 = 0, µp
0 = 0.

We put

F̂ = π∗
1F − tν0 + uµ0

where F is given by the equation 2.2.2 in the original 2n variables. Namely,

F =

2n
∑

i,j=1

h̄ijµjTi.

Let us denote by ∇(f̂) the connection ∇gauge associated to the extended symplectic

map f̂ . In concrete terms, we have

∇(f̂) = d+ λ(dF̂ )− ̺(df̂∗F̂ )

=d+ λ(π∗
1dF − ν0dt+ µ0du)− ̺(f̂∗π∗

1dF − ν0dt+ µ0(du+ da0))

=d1 + dt + du + λ(d1(π
∗
1F )− ν0dt+ µ0du)

− ̺(d1(f̂
∗π∗

1F ) + (f̂∗π∗
1F )′dt− ν0dt+ µ0(du + da0)).

Let us consider the space

J (f) = k[T, t, u, µ, µ0, ν0]
∇(f̂)

of parallel elements with respect to our connection ∇(f̂). (To simplify the notation,
we denote by µ the 2n variables µ1, µ2, . . . µ2n.) Using it we construct an module

J̃ (f) as in Definition 2.8. To somewhat simplify the calculation, we use a (truncated)
exponential function

exp(x) =

p−1
∑

j=0

1

j!
xj
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and consider the following conjugation of ∇(f̂).

∇[f̂ ] =exp(−t ad ν0)∇
(f̂) exp(t ad ν0)

=d1 + λ(d1π
∗
1F )− ̺(d1(f̂

∗π∗
1F ) + ǫ0(d1a0)

+ ∂t − ̺((f̂∗π∗
1F )′ + ǫ0a

′
0)dt

+ ∂u + ad(ǫ0)du

where we put

ǫ0 = µ0 − t− µp−1
0 tp.

The variable ǫ0 satisfies the following relations.

ǫp0 = 0,
∂

∂t
ǫ0 = −1.

The module J (f) is then linearly isomorphic to the set J [f ] of parallel elements with

respect to ∇[f̂ ] via the multiplication by exp(t ad ν0). In what follows, we will work

on this conjugated space. Let us decompose the conjugated connection ∇[f̂ ] with
respect to the decomposition A2n+2 = A2n × A1 × A1.

∇
[f̂ ]
d/dT =d1 + λ(d1π

∗
1F )− ̺(d1(f̂

∗π∗
1F ) + ǫ0(d1a0)

∇
[f̂ ]
d/dt =∂t − ̺((f̂∗π∗

1F )′ + ǫ0a
′
0)dt

∇
[f̂ ]
d/du =∂u + ad(ǫ0)du

Since the curvature of ∇(f̂) is equal to zero, the curvature of ∇[f̂ ] is also equal to
zero. We may thus consider above three connections separately. Namely, we have

J [f ] = k[T, t, u, µ, µ0, ν0]
∇[f̂]

=

(

(k[T, t, u, µ, µ0, ν0]
∇

[f̂ ]

d/du)∇
[f̂ ]

d/dt

)∇
[f̂]

d/dT

.

We may easily integrate the equation of parallelism with respect to u and see that

k[T, t, u, µ, µ0, ν0]
∇[f̂ ]

= k[u+ ν0]⊗k J̃
[f ]

holds where we have put

J̃ [f ] = k[T, t, µ, ǫ0]
∇[f̂]

= {x ∈ k[T, t, µ, ǫ0];∇
[f̂ ]
d/dT (x) = 0,∇

[f̂]
d/dt(x) = 0}.

We show that the module J̃ [f ] plays (after multiplied back with exp(−t ad ν0)) a

role of J̃ in the Definition 2.8. Using Lemma 2.3 we may immediately verify the
condition 3 of the definition. To verify the condition 1,2 of the definition, let us
integrate with respect to t. We use the equation (TEC) which appears in the Taylor
expansion in the proof of Lemma 2.3 and consider the following linear operator.

Lx =

p−1
∑

k=0

1

k!
ǫk0(∇

[f̂ ]
∂
∂t

)kx.

We introduce a new variable

τ = t+ ǫ0

which commutes with every element of k[T, t, µ, ǫ0] and with the derivation ∂
∂t .

Using the nilpotency of ǫ0 we see that the linear operator L gives an k-linear
isomorphism

k[T, τ, µ] ∼= k[T, t, µ, ǫ0]
∇

[f̂]

d/dt
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whose inverse operator being given by the (restriction of) specialization ǫ0 → 0. As

we have mentioned, the curvature of ∇[f̂ ] is zero so that L commutes with ∇
[f̂ ]
d/dT .

We thus see that we have

J̃ [f ] = k[T, t, µ, ǫ0]
∇[f̂] ∼= k[T, τ, µ]

(

∇
[f̂]

d/dT
|ǫ0=0

)

.

The right hand side draws back to W (f) (respectively, the trivial An-module) when
restricted to τ = 1 (respectively, τ = 0.) We have now verified that the condition
1,2 of Definition 2.8 is satisfied and our proposition is proved.

3. Definition of reflexivity

In this paper, the word “reflexive” is used in two ways. One is A-reflexivity
which is defined as follows.

Definition 3.1. (1) For any left A-module W , we define its dual W ⊲ as a right
A-module defined by

W ⊲ = HomA(W,A)

(2) Similarly, for any right A-module V , we define its dual V ⊳ as a left A-
module defined by

V ⊳ = Hom-A(V,A).

Definition 3.2. An A-module W is called A-reflexive if the canonical homomor-
phism

eval : W → (W ⊲)⊳.

is an isomorphism.

We would like to interpret A-reflexivity in a geometric way. Here comes the
reflexivity as in the usual sense in algebraic geometry like in [5]. Namely, we would
like to interpret A-reflexivity of an A-module W by a reflexivity of OX -module for
the corresponding sheaf WX . (See the convention 2.2 for the meaning of WX .)

Definition 3.3. [1, p.128],[5, p.126] A coherent sheaf F on X is normal if for
every open set U ⊂ X and every closed subset Y ⊂ U of codimension ≥ 2, the
restriction map F(U)→ F(U \ Y ) is bijective.

Proposition 3.4. [5, Proposition 1.6]. An sheaf on a normal integral scheme is
reflexive if and only if it is torsion free and normal

As a result of arguments on connections, we see that locally free R-module is
actually A-locally free, as the following lemma states.

Lemma 3.5. Let WU be a left AX module on an open subset U of X. We assume
that WU is a OU -free module. Then WU is locally isomorphic to A⊕r

U as an AU -
module.

Proof. By a general theory on full matrix algebras, we see that WU ⊗R R(1/p) is
locally isomorphic toMpn(R(1/p))⊕r. Let us equipMpn(R(1/p))⊕r with a connection
∇W compatible with the isomorphism. Then the curvatures and p-curvature of∇W

is equal to 0. Thus by using “Taylor’s formula”(TE), for each closed point P of U
we may easily construct a set of local sections B = {w1, w2, . . . , wr} of WU which
equals to an A|P (∼= Mpn(kP ))-basis of the fiber W |P of W at P . Then B is an
A-basis of W in a neighborhood of P . Thus WU is locally isomorphic to AU as
required.

�

Then we have the following criteria for reflexivity.
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Proposition 3.6. The following conditions are equivalent:

(1) W is A-reflexive.
(2) W ∼= M⊳ for a right A-module M .
(3) W is A-torsion free and WX is normal on X.
(4) W is A-torsion free and R-reflexive.

Proof. (1) =⇒ (2): Put M = W ⊲.
(2) =⇒ (3): Since we know that A has no zero-divisors, we see that M⊳ has no
A-torsion. It is also easy to see that M⊳ is normal.
(3) ⇐⇒ (4): is a consequence of Proposition 3.4.
(4) =⇒ (1): There exists a closed subset F of codimension ≥ 2 such that WX is
OX -locally free on U = X \F . In view of Lemma 3.5, we see that WX is AX -locally
free on U . Thus the sheaf homomorphism

evalX : WX → Hom-AX (HomAX (WX , AX), AX) = ((W ⊲)⊳)X

induced by eval is an isomorphism when restricted to U . Since both W and (W ⊲)⊳

are R-reflexive, this implies that eval gives an isomorphism on the whole of X .
�

Corollary 3.7. Intersections of reflexive modules are reflexive. In particular, for
any elements α1, α2, . . . , αs ∈ A, the intersection

Aα1 ∩Aα2 ∩ · · · ∩Aαs

is reflexive.

A result of Stafford [10] shows that any reflexive A-modules of rank one are
obtained in the form of the corollary above with s = 2. We will see later in
Theorem 5.4 an alternate proof of the fact using our theory. (In fact, the result
of Stafford is valid in a much general context so that it may deal with any prime
Goldie ring A in place of the Weyl algebra.)

4. Norms

4.1. Norm on the Weyl algebra A. We define a norm map NA : A→ R(1/p) by
the following diagram:

NA : A
⊗1
→ A⊗R R(1/p)

Φ0∼= Mpn(R(1/p))
det
→ R(1/p).

Proposition 4.1. The norm NA satisfies the following conditions:

(1) NA(x) ∈ R for any x ∈ A.
(2) NA(xy) = NA(x)NA(y) for any x, y ∈ A.

4.2. Norm on a reflexive A-module W of rank one.

Lemma 4.2. Let W be a reflexive A-module of rank one. Then there exists an
injective A-module homomorphism

W → A.

Thus W is isomorphic to a left ideal of A.

Proof. We take a non zero element ϕ of W ⊲. ϕ is generically an isomorphism. Since
W is torsion free, the kernel of ϕ should be equal to zero. �

Proposition 4.3. For any reflexive left A-module W of rank one, there exists a
map

NW : W → R

which satisfies:

(1) NW (ax) = NA(a)NW (x) for all a ∈ A and for all x ∈W .
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(2) For any open set U ⊂ A2n, x ∈ WX(U) is a generating section of WU if
and only if NW (x) is invertible on U .

Furthermore, the map is unique up to a multiplication by a constant in k×.

Proof. We may assume that W is equal to a left ideal J of A. Let us put

(4.2.1) cJ = gcd{NA(x);x ∈ J}.

The greatest common divisor cJ exists since the k-algebraR is a unique factorization
domain.

Let us then put

NJ(x) = NA(x)/cJ .

The property (1) is then trivially satisfied. To prove the property (2), let us first
assume that WU is free. Then we have WU ⊗OU O

(1/p) ∼= Mpn(O(1/p)) as an

AU ⊗OU O
(1/p) ∼= Mpn(O(1/p))-module. We see immediately that NJ coincides

with a multiple of the determinant map det by an invertible element of OX(U).
Thus NJ satisfies the property (2) in this case. For general case, we may use the
fact that there exists an closed subset F of codimension ≥ 2 in U such that WU\F

is locally free. �

Definition 4.4. For any reflexive module W of rank one, We call the map NW as
in the proposition the norm map of W .

Lemma 4.5. For any y ∈ W , we have W ⊂ A · yNJ(y)
−1.

Proof. There exists a closed subset F of codimension ≥ 2 in X such that WU is
locally free on U = X \ F . That means, there exists an open covering {Vj} of U
such that WVj is free. Then on each Vj we have

WVj ⊗O O
(1/p) ∼= Mpn(O(1/p))

as an A⊗O O
(1/p) ∼= Mpn(O(1/p))-module. With this identification, we see that for

any x, y ∈ W , xy−1NJ(y) defines a section aj of Γ(Vj ,Mpn(O(1/p))) which is parallel
with respect to ∇A. In other words, there exists a unique section aj ∈ Γ(Vj , AX)
such that

x = ajyNJ(y)
−1.

By the uniqueness, these {aj} patch together to define a section a ∈ Γ(X \F,AX).
Since the codimension of F is ≥ 2, a extends to the whole of X , that means, it is
actually an element of A and it satisfies x = ayNJ(y)

−1 as required. �

5. Structure of reflexive modules of rank one.

Using the norm defined in the preceding section, we show that a reflexive A-
module of rank one is an intersection of a examine a structure of reflexive modules
of rank one. Although the fact is known to be true in a much more general context
([10, Corollary 3.9]), we give an alternative proof for the sake of completeness.

Definition 5.1. For an A-module W of rank one, a subset {w1, w2, . . . , ws} of W
is called weakly generating if

gcd{NW (w1), NW (w2), . . . , NW (ws)} = 1.

Proposition 5.2. Let J be a reflexive left ideal of A. Then a subset {w1, w2, . . . , ws}
of J is weakly generating if and only if

J =

s
⋂

j=1

AwjNJ(wj)
−1.
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Proof. Let us denote by J the right hand side. Using Lemma 4.5, we may easily
see that J ⊂ J holds. To prove the other inclusion, let us take an element x of J .
For each j, let us denote by Uj the open set defined by

Uj = {NJ(wj) 6= 0}.

Then for each j, the element x is an element of AwjNJ(wj)
−1 and so it is an regular

element of W on Uj . Thus x is regular on V = ∪sj=1Uj . Since {w1, w2, . . . , ws} is

weakly generating, A2n \ V is of codimension greater than or equal to 2. By the
normality of J , we see that x ∈ J as required. �

In a paper of J. T. Stafford[9], it is shown that any left ideal of An(k) is generated
by two elements when the characteristic of the base field k is equal to 0. When the
characteristic of the base field k is non-zero, then the corresponding statement is
trivially false. (To see this, we consider ideals generated by elements of R such as

J =
∑2n

j=1 Anγ
p
j .) We give a much weaker, but easier, proposition.

Proposition 5.3. For any reflexive A-module W of rank 1, there exists a weakly
generating sections {w1, w2}.

Proof. In short, it is a result of “independence of valuations.” Let w0 ∈ W be an
non zero element. Let us decompose the zero divisor of NW (w0) into irreducible
components.

{NW (w0) = 0} = ∪sj=1Dj .

For each j, let us take wj ∈ W such that NW (wj)|Dj 6= 0. (Such an element exists
since ∩w∈W {NW (w) = 0} = ∅.) Let us denote by zj ∈ R the defining function of
Dj . Then we put

w∞ =

s
∑

j=1

(
∏

k 6=j

zk)wj .

Then we see immediately that {(NW (w0) = 0}∩ {NW (w∞) = 0} is of codimension
greater than or equal to 2 in SpecR.

�

Theorem 5.4. A left A-module W of rank one is A-reflexive if and only if W is
isomorphic to a left ideal J = Aα ∩ Aβ for some α, β ∈ A. Furthermore, if that is
the case, we may choose J, α, β in such a way that lcm(NA(α), NA(β)) = cJ . (See
equation cJ for the definition of cJ .)

Proof. We already know in Lemma 3.7 that J = Aα ∩ Aβ is reflexive for any
element α, β ∈ A. So any module W isomorphic to the ideal J obtained in this way
is reflexive. Conversely, assume we have a reflexive A-module W of rank 1. We
may assume that W is equal to a left ideal I of A. We may obtain by Proposition
5.3 an weakly generating sections {w1, w2} of I. Then by Proposition 5.2 we see
that I may be written as a intersection

I = Aw1NI(w1)
−1 ∩ Aw2NI(w2)

−1.

By multiplying by NI(w1)NI(w2), I is isomorphic to

J = Aw1NI(w2) ∩ Aw2NI(w1).

We see by a direct computation that J, α = w1NI(w2), β = w2NI(w1) satisfy the
condition lcm(NA(α), NA(β)) = cJ as required.

�

With the help of the theorem above, we may easily construct examples of reflexive
left A modules of rank one. All we need is to take arbitrary pair of elements α, β in
A and consider the intersection Aα ∩ Aβ. We note, however, that there are some
cases where the condition lcm(N(α), N(β)) 6= cJ is not met for J = Aα ∩Aβ.
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Example 5.5. Let n = 1, α = ξ1η1, β = ξ1η1− 1. Then N(α) = N(β) = ξp1η
p
1 (see

the next lemma for a computation). It is easy to see that we have in this case

J = Aα ∩ Aβ = Aαβ

so that we have
cJ = N(α)N(β) 6= lcm(N(α), N(β)).

Lemma 5.6. We have the following identity in A = A1(k). (For simplicity’s sake,
we we put ξ = ξ1, η = η1.)

(1) ξtηt = (ξη)(ξη − 1)(ξη − 1) . . . (ξη − (t− 1))
(2) (ξη)p − ξη = ξpηp.
(3) N(ξη) = ξpηp.

Proof. (1) Let us put θ = ξη. Then we have ηθ = (θ + 1)η. It is easy to see that
ξiηi is a polynomial fi(θ) in θ, and that the polynomials {fi} satisfy the following
inductive formula.

fi+1(θ) = ξfi(θ)η = ξηfi(θ − 1) = θfi(θ − 1)

The equation follows easily from this.
(2) This is a special case of (1). We note that the relation (2) gives the minimal
polynomial of θ = ξη over k. We may thus easily see that (3) holds.

�

5.1. A note on R-locally free ideals of A.

Proposition 5.7. Let us assume we are given an ideal J = Aα ∩ Aβ of A with
generators α, β such that lcm(NA(α), NA(β)) = cJ . Then

(1) J is R-locally free if and only if there exists an element xJ ∈Mpn(R(1/p))α∩
Mpn(R(1/p))β such that

det(xJ ) = cJ

holds.
(2) J is A-free if and only if we may choose xJ above as an element of A.

Proof. (1): J is R-locally free if and only if J ⊗R R(1/p) is locally free over R(1/p).
In that case, by using the “Serre conjecture” and the matrix arguments, we see that
J⊗RR(1/p) is isomorphic to Mpn(R(1/p)) as an A⊗RR(1/p) ∼= Mpn(R(1/p))-module.

Thus J is R-locally free if and only if there exists an element xJ ∈ Mpn(R(1/p))
such that

Mpn(R(1/p))α ∩Mpn(R(1/p))β = Mpn(R(1/p))xJ

holds.
Now, assume J is R-locally free and take an element xJ as above. From the fact

that xJ is an element of the intersection

Mpn(R(1/p))α ∩Mpn(R(1/p))β,

we see immediately that det(xJ ) is a multiple of lcm(N(α), N(β)). On the other
hand, from the definition of cJ , we see that cJ is a multiple of det(xJ ). Since we
assumed cJ = lcm(N(α), N(β)), we see that det(xJ ) is a constant multiple of cJ .

Conversely, let us assume that such xJ exists. Then we have an inclusion

Mpn(R(1/p))xJ ⊂Mpn(R(1/p))α ∩Mpn(R(1/p))β.

The both hand sides are R(1/p)-reflexive and the inclusion gives an isomorphism on
an open set U of X such that X \ U is of codimension ≥ 2. Thus we actually see
that the inclusion is an equation.

(2): follows easily from the above argument and Proposition 4.3.
�
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5.1.1. connection ∇J . Using the element xJ as above, we may introduce a “defining
derivation” ∇J .

Lemma 5.8. Let J be a projective left A-module of rank 1. There is a unique
connection on Mpn(R(1/p)) ∼= Mpn(R(1/p))xJ = J ⊗R R(1/p) such that

(1) Each element of J is parallel with respect to ∇J .
(2) ∇J is compatible with the action of A⊗R R(1/p) ∼= Mpn(R(1/p)).

Proof. We put

∇J (x) = ∇A(xxJ )x
−1
J = ∇A(x) + x · ∇A(xJ )x

−1
J .

(There is of course several ways to define ∇J above.) �

We may describe the moduli space of R-free(=projective) left A-module of rank
one in a good old “connection modulo gauge group” style:

Definition 5.9. Let us temporarily say that a connection ∇J on Mpn(O(1/p)) is
left compatible with ∇A if

∇J (xy) = ∇A(x)y + x∇J (y)

holds for any x, y ∈Mpn(O(1/p)). Let us denote by A the set of all left compatible
connections.

Theorem 5.10. Let us put K = Q(R), the quotient field of R. The projective left
A modules of rank one are parametrized by

GLpn(R(1/p))\A

∼=GLpn(R(1/p))\{x ∈Mpn(K);∇A(x)x−1 is regular}/A⊗R K.

6. An example.

We give an example of a reflexive left ideal of a Weyl algebraA2 = k〈ξ1, ξ2, η1, η2〉.
For simplicity, we put ξ = ξ1, η = η1, t = ξ2.

Let us put

J = A2(1 + tξ) ∩ A2η.

This section is devoted to give some analysis of the example. First we give some
definition to make our arguments easier.

Definition 6.1.

a1 = (1 + tξ)(6.0.1)

a3 = a1η + 2t(6.0.2)

b1 = η + t(ξη − 1) = a1η − t(6.0.3)

b2 = η2(6.0.4)

It is easy to see that following equation holds.

(6.0.5) ηa1 = a1η + t

Let us give a set of generators of J .

Proposition 6.2. The ideal J is isomorphic to

J0 = A2b1 +A2b2(= A2 · (η + t(ξη − 1)) +A2η
2)

as an A2-module. More precisely, we have

J = J0a1.
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Proof. We want to find see when an element x of A2 satisfies the condition x(1 +
tξ) ∈ A2η. Any element x of A2 may be written as

x = x2η
2 + x1η + x0

where

x2 ∈ A2, x1, x0 ∈ k〈ξ, t, η2〉.

Then

x · a1 ∈ A2η

⇐⇒ (x1η + x0) · a1 ∈ A2η

⇐⇒ x1t+ x0a1 ∈ A2η (by 6.0.5)

⇐⇒ x1t+ x0a1 = 0

⇐⇒ x1t+ x0 · (1 + tξ) = 0

⇐⇒ x1t+ x0 · (1 + tξ) = 0, x0 = y0t (∃y0 ∈ k〈ξ, t, η2〉)

⇐⇒ x1 = −y0 · (1 + tξ), x0 = y0t (∃y0 ∈ k〈ξ, t, η2〉)

⇐⇒ x1η + x0 ∈ A2b1

�

In the course of the proof above, we obtain the following equations which may
be useful in dealing with the ideals J0, J .

b1a1 = a21η(6.0.6)

b2a1 = a3η(6.0.7)

6.0.2. Digression. Since any reflexive sheaf which is reflexive over a normal variety
of dimension ≤ 2 is locally free, by imitating the proof of the proposition above, we
obtain the following proposition.

Proposition 6.3. A1ξ∩A1η
n+1 is projective A1-module of rank one. It is isomor-

phic to A1(ξη − n) +A1η
n+1.

It should be noted that the ideals of this type are frequently studied from the
earliest stage in the study of Weyl algebras.

6.1. Projectivity of J0. Let us prove that our J0 is R-locally free (that means,
A-projective).

Proposition 6.4. There exists an isomorphism

J0 ⊕A2
∼= A2 ⊕A2

of left A2-modules.

Proof. We have an exact sequence

0 −−−−→ A2
·(−η,(1+tξ))
−−−−−−−−→ A2 ⊕A2

·





b1
b2





−−−−→ J0 −−−−→ 0.

Indeed, let us call the map

(

b1
b2

)

by φ. By the definition of J0, φ is surely seen to

be surjective. The kernel of φ is equal to

JKer = A2b1 ∩A2b2.

We note that an equation

xJKer = ηb1 = a1b2 ∈ JKer
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holds. By using Proposition 5.7, we see that the ideal JKer is trivial and generated
by xJKer .

It is shown by a direct calculation that the splitting of the first arrow of the
exact sequence above is given by

A2 ⊕A2

·





ξa1
ξη + 2





−−−−−−−−→ A2.

�

6.2. A homotopy between trivial and non trivial A-modules. We put

J̃ = A1[t] · b1 +A1[t] · b2.

Then it is an A1[t]-module such that

I0 = A1 · η +A1 · η
2 = A1 · η ∼= (A1[t]/t)⊗A1[t] J̃ ,

and

I1 = A1 · ((ξ + 1)η − 1) +A1 · η
2. ∼= (A1[t]/(t− 1))⊗A1[t] J̃

holds. We also note that J0 ∼= A2 ⊗A1[t] J is stably free (hence is projective) by
Proposition 6.4. Thus the A1-modules I0 and the I1 are homotopic in the sense of
Definition 2.8.

As the reader may see, I0 is trivial A1-module generated by η. On the other hand,
I1 is not trivial. (To see this, assume I1 is trivial. Then I1 should be generated by
an element x in A = A1 with norm NA(x) = ηp. By looking at principal term, we
see immediately that such x should equal to η. But by considering a representation

Φ(ξ) = X, Φ(η) = ∂/∂X

of A on k[X ], we may see that η /∈ I1, since we have

Φ(a).(X + 1) = 0

for any a ∈ I1, where as Φ(η).(X + 1) = 1 6= 0.)
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