
A note on papers
Math. Z. 250 (2005), 573–597

and Int. J. Math. 17 (2006), 761–789.

Yoshiaki Fukuma

April 1, 2008

In our papers [3] and [4] we gave the definition of the scroll (resp. quadric
fibration) as follows:

Definition 1 (See [3, Definition 1.3] and [4, Definition 1.3].) Let (X, L) be a polar-
ized manifold of dimension n. We say that (X, L) is a scroll (resp. quadric fibration)
over a normal projective variety Y with dim Y = m if there exists a surjective mor-
phism with connected fibers f : X → Y such that KX + (n−m + 1)L = f ∗A (resp.
KX + (n − m)L = f ∗A) for some ample line bundle A on Y .

This is the adjunction theoretic definition. But in some results in [3] and [4] we
used other definition of the scroll (resp. quadric fibration). So here we would like
to give more precise statements about these. First we note the following:

Remark 1 (1) If (X, L) is a scroll over a smooth curve C (resp. a smooth pro-
jective surface S) with dim X = n ≥ 3, then by [2, (3.2.1) Theorem] and [1,
Proposition 3.2.1] there exists an ample vector bundle E of rank n (resp. n−1)
on C (resp. S) such that (X, L) ∼= (PC(E), H(E)) (resp. (PS(E), H(E))). Here
PY (E) denotes the projective space bundle over a smooth projective variety Y
and H(E) denotes the tautological line bundle.

(2) In some papers, (X, L) is called a (classical) scroll over a smooth projective
variety Y if (X, L) ∼= (PY (E), H(E)), where E is a vector bundle on Y .

Remark 2 Assume that (X, L) is a quadric fibration over a smooth curve C with
dim X = n ≥ 3. Let f : X → C be its morphism. By [2, (3.2.6) Theorem] and the
proof of [5, Lemma (c) in Section 1], we see that (X, L) is one of the following:

(a) f is the contraction morphism of an extremal ray, and every fiber of f is
irreducible and reduced. We put E := f∗(L). Then E is a locally free sheaf of
rank n + 1 on C. Let π : PC(E) → C be the projection. Then there exists an
embedding i : X ↪→ PC(E) such that f = π ◦ i, X ∈ |2H(E)+ π∗(B)| for some
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B ∈ Pic(C) and L = H(E)|X. Moreover ρ(X) = ρ(C) + 1 = 2. Therefore
h2(X, C) = 2 in this case.

(b) X is a P1-bundle over a smooth surface and L|F = O�1(1) for every fiber F .

So if (X, L) is not the type (a) in Remark 2, then we may assume that there exists
an ample vector bundle F of rank 2 on a smooth projective surface S such that
(X, L) ∼= (PS(F), H(F)). In particular dimX = 3 in this case.

Definition 2 (X, L) is called a hyperquadric fibration over a smooth curve C if
(X, L) is a quadric fibration over C which is the type (a) in Remark 2.

By these remarks, we can rephrase [3, Theorem 1.2] and [4, Theorem 1.2] as
follows: (The types (5) and (6) are slightly changed.)

Theorem 1 Let (X, L) be a polarized manifold with n = dim X ≥ 3. Then (X, L)
is one of the following types.

(1) (Pn,O�n(1)).

(2) (Qn,O�n (1)).

(3) A scroll over a smooth projective curve.

(4) KX ∼ −(n − 1)L, that is, (X, L) is a Del Pezzo manifold.

(5) A hyperquadric fibration over a smooth curve.

(6) (PS(E), H(E)), where S is a smooth projective surface and E is an ample vector
bundle of rank n − 1 on S.

(7) Let (M, A) be a reduction of (X, L).

(7.1) n = 4, (M, A) = (P4,O�4(2)).

(7.2) n = 3, (M, A) = (Q3,O�3 (2)).

(7.3) n = 3, (M, A) = (P3,O�3(3)).

(7.4) n = 3, M is a P2-bundle over a smooth curve C and for any fiber F ′ of
it, (F ′, A|F ′) ∼= (P2,O�2(2)).

(7.5) KM ∼ −(n − 2)A, that is, (M, A) is a Mukai manifold.

(7.6) (M, A) is a Del Pezzo fibration over a smooth curve.

(7.7) (M, A) is a quadric fibration over a normal surface.

(7.8) n ≥ 4, and there exist a normal projective variety W with dim W = 3
and a fiber space Φ : M → W such that for a general fiber F ′ of Φ,
(F ′, A|F ′) ∼= (Pn−3,O�n−3(1)).

(7.9) KM + (n − 2)A is nef and big.
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Now we will modify some statements in [3] and [4].
(1.0) A statement in [3, Notation 1.3] should be modified as follows: “Assume that
(X, L) is a hyperquadric fibration over a smooth curve C.”
(1.1) The statement in [3, Theorem 3.1.1 (2)] should be modified as follows:
“8χH

2 (X, L) ≥ (KX + (n − 2)L)2Ln−2 holds if (X, L) is neither (Pn,O�n(1)) nor
(PS(E), H(E)), where S is a smooth projective surface and E is an ample vector
bundle of rank n − 1 on S.”
(1.2) The statement in [3, Theorem 3.1.1 (4)] should be modified as follows:
“If (X, L) ∼= (PS(E), H(E)), where S is a smooth projective surface and E is an
ample vector bundle of rank n − 1 on S, then

(KX + (n − 2)L)2Ln−2

{ ≤ 8χH
2 (X, L) if κ(S) �= 2,

< 9χH
2 (X, L) if κ(S) = 2.”

Here we also note the following:

Claim 1 If (X, L) is a quadric fibration over a smooth curve C, then (KX + (n −
2)L)2Ln−2 ≤ 8χH

2 (X, L) holds.

Proof. If (X, L) is the type (a) in Remark 2, then this inequality holds by the proof
of [3, Theorem 3.1.1].

Assume that (X, L) is the type (b) in Remark 2. Then X is a P1-bundle over a
smooth surface S. Let f : X → C be the quadric fibration over C and let π : X → S
be the projection. Then there exists a surjective morphism δ : S → C such that
f = δ ◦ π. Since q(Ff) = 0 for any general fiber Ff of f , we have q(Fδ) = 0 for any
general fiber Fδ of δ. Therefore κ(S) = −∞ because dim Fδ = 1. So by (1.2) above,
we have (KX + (n − 2)L)2Ln−2 ≤ 8χH

2 (X, L). Therefore we get the assertion. �

(1.3) At the second line of the case (5) in the proof of [3, Theorem 3.1.1] we should
add the following statement after “· · · and χH

2 (X, L) = 1 − q(X) = 1 − g(C).” :
“Assume that (X, L) is a hyperquadric fibration over C, that is, (X, L) satisfies the
type (a) in Remark 2.”
(1.4) The statement of the case (6) in the proof of [3, Theorem 3.1.1] should be
modified as follows:
“The case where (X, L) ∼= (PS(E), H(E)), where S is a smooth projective surface
and E is an ample vector bundle of rank n − 1 on S.”
(1.5) Here we note that the example which was given in [3, Example 3.1.1] is a scroll
over a smooth surface in the sense of Definition 1.

(2.0) A statement in [4, Notation 1.2] should be modified as follows: “Assume that
(X, L) is a hyperquadric fibration over a smooth curve C.”
(2.1) The statement in [4, Theorem 2.2 (B)] should be modified as follows:
“(X, L) is a hyperquadric fibration over an elliptic curve C, and one of the following
holds.”
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(2.2) The statement in [4, Theorem 2.2 (C)] should be modified as follows:
“(X, L) ∼= (PS(E), H(E)), where S is a smooth projective surface and E is an ample
vector bundle of rank n − 1 on S, and (S, E) is one of the following.”
(2.3) The statement of the cases (b) and (c) in the proof of [4, Theorem 2.2] should
be modified as follows:

(b) A hyperquadric fibration over a smooth curve.

(c) (X, L) ∼= (PS(E), H(E)), where S is a smooth projective surface and E is an
ample vector bundle of rank n − 1 on S.

(2.4) The statement in [4, the proof of Theorem 2.2, P774 line ↑ 3] should be modified
as follows:
“(b) The case in which (X, L) is a hyperquadric fibration over a smooth curve.”
(2.5) The statement in [4, the proof of Theorem 2.2, P775 line ↑ 5] should be modified
as follows:
“(c) The case where (X, L) ∼= (PS(E), H(E)), where S is a smooth projective surface
and E is an ample vector bundle of rank n − 1 on S.”
(2.6) The statement in [4, Theorem 2.4 (B)] should be modified as follows:
“(X, L) is a hyperquadric fibration over an elliptic curve C, and one of the following
holds.”
(2.7) The statement in [4, Theorem 2.4 (C)] should be modified as follows:
“(X, L) ∼= (PS(E), H(E)), where S is a smooth projective surface and E is an ample
vector bundle of rank 2 on S, and (S, E) is one of the following.”

(3) Here we would like to fix an error of the statement in [4, Problem 3.2.1].

Table of an error.

Page Line Error Correct
786 19 m ≥ 1 m ≥ 2

Actually, to be pricise, Tsuji gave this problem for m ≥ 2. But it is also important
to consider the case where m = 1.
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