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2 Preliminaries
0000000000 00000000.

Definition 2.1 (1) Let X (resp. Y) be an n-dimensional projective manifold, and
let L (resp. H) be an ample line bundle on X (resp. Y). Then (X, L) is called
a simple blowing up of (Y, H) if there exists a birational morphism 7 : X — Y
such that 7 is a blowing up at a point of Y and L = n*(H) — E, where E is the
m-exceptional reduced divisor.

(2) Let X (resp. M) be an n-dimensional projective manifold, and let L (resp. A)
be an ample line bundle on X (resp. M). Then we say that (M, A) is a reduction
of (X, L) if (X, L) is obtained by a composite of simple blowing ups of (M, A),
and (M, A) is not obtained by a simple blowing up of any polarized manifold. The
morphism p : X — M is called the reduction map.

Remark 2.1 Let (X, L) be a polarized manifold of dimension n and (M, A) a re-
duction of (X, L). Then we obtain g(X, L) = g(M, A).

Definition 2.2 Let (X, L) be a polarized manifold of dimension n. We say that
(X, L) is a scroll (resp. quadric fibration, Del Pezzo fibration) over a normal variety
Y of dimension m if there exists a surjective morphism with connected fibers f :
X — Y such that Kx + (n —m + 1)L = f*A (resp. Kx + (n — m)L = f*A,
Kx + (n—m—1)L = f*A) for some ample line bundle A on Y.

Theorem 2.1 Let (X, L) be a polarized manifold of dimension n > 3. Then (X, L)
is one of the following types.

1) (P, Opn(1)).

2) (@, Ogr(1)).

A scroll over a smooth curve.

3

5

(1)
(2)
(3)
(4) Kx ~ —(n—1)L, that is, (X, L) is a Del Pezzo manifold.
(5) A quadric fibration over a smooth curve.

(6)

6

A scroll over a smooth surface S. In this case, there exists an ample vector

bundle € on S such that X =Pg(E) and L = H(E).
(7) Let (M, A) be a reduction of (X, L).

(7.1) n =4, (M, A) = (P*, Op(2)).
(7.2) n=3, (M, A) = (Q° Ogs(2)).
(7.3) n=3, (M, A) = (P, Opa(3)).
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(7.4) n = 3, M is a P*-bundle over a smooth curve C such that (F, Alp) =
(P2, Op2(2)) for any fiber F of it.

(7.5) Ky + (n—2)A is nef.

Proof. See [1, Proposition 7.2.2, Theorem 7.2.4, Theorem 7.3.2, Theorem 7.3.4,
and Theorem 7.5.3]. See also [5, Chapter II, (11.2), (11.7), and (11.8)], or [13,
Section 1, Theorem). O

Remark 2.2 Let (X, L) be a polarized manifold of dimension n > 3. If (X, L) is
one of the types from (1) to (6) in Theorem 2.1, then (X, L) is a reduction of itself.

Remark 2.3 Let (X, L) be a polarized manifold of dimension n > 3. Then (K x +
(n—2)L) = —oo if and only if (X, L) is one of the types from (1) to (7.4) in Theorem
2.1.

OoooboboooboobooboobOon. Theorem 22000000000
gboobgobobbobboobooboobon

Theorem 2.2 Let (X, L) be a polarized manifold with dim X = n > 3. Assume
that dim Bs|L| < 0, h°(L) > n+m, and m > 1, where m = g(X, L) — q(X). Let
(M, A) be a reduction of (X, L). Then (X, L) is one of the following types:

(1) (X, L) is a Del Pezzo manifold.
(2) (X, L) is a hyperquadric fibration over a smooth curve with

1 2m+1
X)< = .
dX) =5+ —,

(3) (X, L) is a scroll over a smooth surface S with k(S) = —oc.
If q(X) > 0 and S is relatively minimal, then

2m —n+1
X <1l4 —-.
a(X) = +n2—3n+4

If g(X) > 0 and S is not relatively minimal, then

dm —4n + 3
X) <1 .
1X) < T o oo 1 16

(4) (M, A) = (P*,0(2)).

(5) (M, A) =(Q%0(2)).
(6) (M, A) = (P%,0(3)).



(7) M is a P2-bundle over a smooth curve C with (F, Ar) = (P?,O(2)) for any
fiber F of it.

Proof. 9|00 O00O0ODO. O

000000 Theorem 22000000000 Theorem 27200000000
0. Theorem 2200 dimBs|L| < 0000000000000, Theorem 7700
Bs|L|=90000000000000D0.

Theorem 2.3 Let (X, L) be a polarized manifold with dim X = n > 3. Assume
that Bs|L| = 0, h°(L) = n+m — 1, where m = g(X,L) — q¢(X). Let (M, A) be a
reduction of (X, L). Then (X, L) is one of the following types:

(1) (X, L) is a hyperquadric fibration over a smooth projective curve with

3 2m-—1
xX)<?2 .
(X) <5+ —,

(2) (X, L) is a classical scroll over a smooth projective surface Y with k(Y') = —oo.
If (X) > 0 and Y is relatively minimal, then

2m—n—+1
X <14 ——
o) <1+ s

If ¢(X) > 0 and Y is not relatively minimal, then

dm —1
X) <1 .
1X) <1 S o 16
(3) (M, A) = (P* Ops(2)) and (X, L) is obtained by 7 times simple blowing ups of
(M, A)
(4) (M,A) = (Q°,0qs(2)) and (X, L) is obtained by 7 times simple blowing ups
of (M, A).
(5) (M, A) = (P3,Ops(3)) and (X, L) is obtained by 8 times simple blowing ups of
(M, A)

(6) M is a P%*-bundle over P! with (F, Alr) = (P?, Op2(2)) for any fiber F of it,
and (X, L) is obtained by 7 times simple blowing ups of (M, A).

(7) (X, L) is a Mukai manifold with L™ = 2m — 2 and A(X,L) =m — 1.

Proof. [10]000000. 0



3 Main results
ooooooooooo.

Theorem 3.1 Let (X, L) be a polarized manifold with dim X = n > 3. Assume
that L is very ample and g(X, L) — q(X) = 3. Then (X, L) is one of the following
types:

(1) A hyperquadric fibration over P*. Then e, b and L™ are the following

L\ 71819110 11 | 12
e 2345 | 6 7
b 1312|110 |—-1|-2

(2) A classical scroll over P2. In this case, there exists an ample vector bundle €
on P? such that X = Pp2(E) and L = H(E). Then & is one of the following

types.

) Op2(1)%4.

) O]}DQ(l)@2 @ O]}»Q(Q)

) T]p2 @ O]p2 (2)

) rankE =2 and £ has type (1,3) or (2,2).

(3) X is a quartic hypersurface in P"*' and L = Ox(1).

Theorem 3.2 Let (X, L) be a polarized manifold with dim X = n > 3. Assume
that L is very ample and g(X,L) — q(X) = 4. Then (X, L) is one of the following
types:

(1) A hyperquadric fibration over a smooth curve C' and one of the following two
types is satisfied.

(1.1) g(C)=1,e=8,b=—4 and n = 3.
(1.2) g(C) =0 and e, b and L™ are the following

L 7/819|10 11 | 12 | 13 | 14 | 15
e 213|456 7| 8 9 | 10
b 1312|110 |—-1-2|-3|—-4]-5

(2) A classical scroll over a smooth surface S. In this case, there exists an ample
vector bundle € on S such that X = Pg(E) and L = H(E). Moreover (S,E)
satisfies one of the following three types.

(2.1) S is a quadric surface in P3 and c1(€) = Og(3).
(2.2) S is a cubic surface in P? and ¢, (€) = Og(2).
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(2.3) S =Pc(F) and 1 (E) = 2H(F) +p*(B), where C is a smooth curve with
g(C) <1, F is a vector bundle of rank two on C, p: Po(F) — C is the
projection and B is a line bundle on C. In this case, the rank of £ is two.

(3) X is a complete intersection of type (2,3) in P"*2 and L = Ox(1).

Theorem 3.3 Let (X, L) be a polarized manifold with dim X = n > 3. Assume
that L is very ample and g(X, L) — q(X) = 5. Let (M, A) be a reduction of (X, L).
Then (X, L) is one of the following types:

(1) A hyperquadric fibration over a smooth curve C' and one of the following three
types is satisfied.

(1.1) g(C)=2,e=8,b=—4 and n = 3.
(1.1) g(C) =1 and e, b and L™ are the following.

L 12 | 13 | 14 | 15
e 7 8 9 | 10
b | -2 -3]—-4|-5

(1.2) g(C) =0 and e, b and L™ are the following.

L"|9(10|11 (12| 13 | 14 | 15| 16 | 17 | 18
e |34 |5 6| 7| 8 9 |10 | 11 | 12
b 13210 |-1|-2|-3|—-4|-5|—-6

(2) A classical scroll over a smooth surface S. In this case, there exists an ample
vector bundle € on S such that X = Pg(E) and L = H(E). Moreover (S,E)
satisfies one of the following two types.

(2.1) S=F; and ¢1(€)* = 21.

(2.2) S =Pc(F) and 1 (€) = 2H(F) +p*(B), where C is a smooth curve with
g9(C) <1, F is a vector bundle of rank two on C, p: Po(F) — C is the
projection and B is a line bundle on C. In this case, the rank of £ is two.

(M, A) = (P*, Op(2)).

)
4) (M, A) = (Q°, 0 (2)).
)
)

(3

(

(5) X is a complete intersection of type (2,2,2) in P"*3 and L = Ox(1).
(

6) X is a one point blowing up of the type (2,2,2) complete intersection Y in
P and L = 7*(Oy (1)) — E, where 7 : X — Y is the birational morphism
and E is the exceptional divisor.



Proof. O000300000000D000000O0O0DOODOOONO Theorem 3.30
oo000oOooooooooot.
00,L00000000000000A(L)>n+100000000000
0.
(a) h°(L) > n+4000, Theorem 2.2 0 Theorem ??70 0000 (X,L) 0000
I T A O

(b) (L) =n+3000, X0 LOOODOOO00 P2 0000020000000
00.00 n>3000 Barth-Lasen 0 0 O ([15, Theorem 3.2.1]) OO A'(Ox) =0
000000000, 00000 g(X,L) = h(Ox)+5=5000000000.
000 w(Kx+(n—2)L)000000000000D0.

(b.1) 00 k(Kx + (n—2)L) > 000

1 1
5=g(X,L)=1+ 5(KX +mn—-1L)L" ' > 1+ §L”

000 L"<80000.L0000000000000000 (X,L)000000
00 ([11],[12],[14). 000000000 O0000OOOO.

(b2) 00 k(Kx+(n—2)L)=—-00o00,00000000 (X,L)0000000
00 (Theorem 2.100000)00000000.

(c)R(L)=n+2000,X0 LO0000000P 000001000000,
000P+H'0000000.000d=L"0000 g(X,L)=1%d-1)(d-2)D
00000000, ¢(X,L)=50010=(d—1)(d—2)0000. 0000000
00o00d000o0oon.

(d) (L) =n+1000, (X,L)0 (P",0(1))000000. 00000000
g(X,L)=0000,000000. O
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