A property for the formula of the sectional classes of classical scrolls *†‡

YOSHIAKI FUKUMA

February 21, 2017

Abstract

In this note, we investigate the formula of the sectional class of classical scrolls and we give an answer of a conjecture proposed in a previous paper.

1 Introduction

Let (X, L) be a polarized manifold of dimension n. Assume that L is very ample and let $\varphi : X \hookrightarrow \mathbb{P}^N$ be the morphism defined by |L|. Then φ is an embedding. In this situation, its dual variety $X^{\vee} \to (\mathbb{P}^N)^{\vee}$ is a hypersurface of N-dimensional projective space except some special types. Then the class $\operatorname{cl}(X, L)$ of (X, L) is defined by the following.

 $\mathrm{cl}(X,L) = \begin{cases} \mathrm{deg}(X^{\vee}), & \text{ if } X^{\vee} \text{ is a hypersurface in } (\mathbb{P}^N)^{\vee} \\ 0, & \text{ otherwise.} \end{cases}$

As a generalization of this notion, in [3], we defined the *i*th sectional class $cl_i(X, L)$ for any ample line bundle L and every integer i with $0 \le i \le n$ (see Definition 2.2).

Here we note the following fact: Assume that L is very ample. Then there exists a sequence of smooth subvarieties $X \supset X_1 \supset \cdots \supset X_{n-i}$ such that $X_j \in |L_{j-1}|$ and dim $X_j = n - j$ for every integer j with $1 \leq j \leq n - i$, where $L_j = L|_{X_j}$ and $L_0 := L$. In particular, X_{n-i} is a smooth projective variety of dimension i and L_{n-i} is a very ample line bundle on X_{n-i} . Then $cl_i(X, L)$ is equal to the class of (X_{n-i}, L_{n-i}) . This is the reason why we call this invariant the *i*th sectional class.

In [4], we calculated the sectional class of special polarized manifolds. For example, we consider the case where (X, L) is a classical scroll over a smooth projective variety Y of dimension m such that $n := \dim X \ge 2m$. Namely, there exists an ample vector bundle \mathcal{E} on Y of rank $r \ge m + 1$ such that $(X, L) \cong (\mathbb{P}_Y(\mathcal{E}), H(\mathcal{E}))$, where $H(\mathcal{E})$ is the tautological line bundle. Here we note that we need the assumption $n \ge 2m$ in order to define and compare $cl_i(X, L)$ and $cl_{2m-i}(X, L)$ for every integer i with $0 \le i \le m$. Then we get the following: (i) If m = 1, then by [4, Example 2.1 (ix)] we have

(1)
$$cl_i(X,L) = \begin{cases} s_1(\mathcal{E}), & \text{if } i = 0, \\ 2g(C) - 2 + 2c_1(\mathcal{E}), & \text{if } i = 1, \\ c_1(\mathcal{E}), & \text{if } i = 2, \\ 0, & \text{if } i \ge 3 \text{ and } n \ge 3. \end{cases}$$

^{*2010} Mathematics Subject Classification. Primary 14C20; Secondary 14J30, 14C17.

[†]Key words and phrases. Polarized manifold, sectional class, classical scroll.

[‡]This research was partially supported by JSPS KAKENHI Grant Number 24540043.

(ii) If m = 2, then by [4, Example 2.1 (x)] we have

(2)
$$cl_i(X,L) = \begin{cases} s_2(\mathcal{E}), & \text{if } i = 0, \\ (s_1(\mathcal{E}) + K_S)s_1(\mathcal{E}) + 2s_2(\mathcal{E}), & \text{if } i = 1, \\ c_2(S) + 3c_1(\mathcal{E})^2 + 2K_Sc_1(\mathcal{E}), & \text{if } i = 2, \\ (c_1(\mathcal{E}) + K_S)c_1(\mathcal{E}) + 2c_2(\mathcal{E}), & \text{if } i = 3, \\ c_2(\mathcal{E}), & \text{if } i = 4, \\ 0, & \text{if } i \ge 5 \text{ and } n \ge 5. \end{cases}$$

(iii) If m = 3, then by [4, Example 2.1] we have

$$\begin{cases} s_{3}(\mathcal{E}), & \text{if } i = 0, \\ 3s_{3}(\mathcal{E}) + (s_{1}(\mathcal{E}) + K_{Y})s_{2}(\mathcal{E}), & \text{if } i = 1, \\ 3s_{3}(\mathcal{E}) + 12(s_{1}(\mathcal{E}) + K_{Y})s_{2}(\mathcal{E}) \\ + (s_{1}(\mathcal{E}) + K_{Y})s_{1}(\mathcal{E})^{2} + c_{2}(Y)s_{1}(\mathcal{E}), & \text{if } i = 2, \\ -c_{3}(Y) + 2c_{3}(\mathcal{E}) - 2c_{1}(\mathcal{E})c_{2}(\mathcal{E}) + 4c_{1}(\mathcal{E})^{3} \end{cases}$$

The above equations show that there exists a relation between $cl_i(X, L)$ and $cl_{2m-i}(X, L)$. Here we note that for every integer i with $0 \le i \le m$, $cl_i(X, L)$ can be written by the Segre classes $s_1(\mathcal{E}),\ldots,s_m(\mathcal{E}).$

if $i \geq 7$ and $n \geq 7$.

Definition 1.1 For every integer i with $0 \le i \le m$, we define the polynomial $F_i(t_1, \ldots, t_m) \in$ $\mathbb{Z}[t_1,\ldots,t_m]$ such that the following equality holds.

$$F_i(s_1(\mathcal{E}),\ldots,s_m(\mathcal{E})) = \mathrm{cl}_i(X,L).$$

Then we see from the above that if m = 1, 2 and 3, then

$$cl_j(X,L) = F_{2m-j}(c_1(\mathcal{E}),\ldots,c_m(\mathcal{E}))$$

for $m \leq j \leq 2m$. In general, we can prove the following theorem, which was proposed in [4] and is the main result of this paper.

Theorem 1.1 Let a polarized manifold (X, L) be a classical scroll over a smooth projective variety Y with dim X = n and dim Y = m. Let \mathcal{E} be an ample vector bundle on Y such that $X \cong \mathbb{P}_Y(\mathcal{E})$ and $L = H(\mathcal{E})$. Let $F_i(t_1, \ldots, t_m)$ be the polynomial defined in Definition 1.1 for every integer i with $0 \leq i \leq m$. Assume that $n \geq 2m$. Then for any integer j with $m \leq j \leq 2m$ we have

$$cl_j(X,L) = F_{2m-j}(c_1(\mathcal{E}),\ldots,c_m(\mathcal{E})).$$

In particular

$$F_m(s_1(\mathcal{E}),\ldots,s_m(\mathcal{E}))=F_m(c_1(\mathcal{E}),\ldots,c_m(\mathcal{E})).$$

By Theorem 1.1 we can easily calculate $cl_{2m-i}(X, L)$ (resp. $cl_i(X, L)$) if we are able to calculate $cl_i(X, L)$ (resp. $cl_{2m-i}(X, L)$). By this relation we expect that we can get some useful information about $cl_{2m-i}(X, L)$ (resp. $cl_i(X, L)$) from several properties of $cl_i(X, L)$ (resp. $cl_{2m-i}(X, L)$). Moreover if i = m, then we have $cl_m(X, L) = F_m(c_1(\mathcal{E}), \ldots, c_m(\mathcal{E})) = F_m(s_1(\mathcal{E}), \ldots, s_m(\mathcal{E}))$ by Theorem 1.1. So $cl_m(X, L)$ may have special and interesting properties. We will study these on another occasion.

2 Preliminaries

Definition 2.1 (See [1, Definition 3.1].) Let (X, L) be a polarized manifold of dimension n, and i an integer with $0 \le i \le n$. Then the *i*th sectional Euler number $e_i(X, L)$ of (X, L) is defined by the following:

$$e_i(X,L) := \sum_{l=0}^{i} (-1)^l \binom{n-i+l-1}{l} c_{i-l}(X) L^{n-i+l}.$$

Definition 2.2 (See [3, Definitions 2.8 and 2.9]. See also [3, Remark 2.6].) Let (X, L) be a polarized manifold of dimension n and i an integer with $0 \le i \le n$. Then the *i*th sectional class of (X, L) is defined by the following.

$$cl_i(X,L) = \begin{cases} e_0(X,L), & \text{if } i = 0, \\ (-1)\{e_1(X,L) - 2e_0(X,L)\}, & \text{if } i = 1, \\ (-1)^i\{e_i(X,L) - 2e_{i-1}(X,L) + e_{i-2}(X,L)\}, & \text{if } 2 \le i \le n. \end{cases}$$

Definition 2.3 Let Y be a smooth projective variety of dimension m and \mathcal{E} a vector bundle of rank r on Y.

(i) The Chern polynomial $c_t(\mathcal{E})$ is defined by $c_t(\mathcal{E}) = \sum_{i \ge 0} c_i(\mathcal{E}) t^i$.

- (ii) For every integer j with $j \ge 0$, the *j*th Segre class $s_j(\mathcal{F})$ of \mathcal{F} is defined by the following equation: $c_t(\mathcal{F}^{\vee})s_t(\mathcal{F}) = 1$, where $c_t(\mathcal{F}^{\vee})$ is the Chern polynomial of \mathcal{F}^{\vee} and $s_t(\mathcal{F}) = \sum_{j>0} s_j(\mathcal{F})t^j$.
- **Remark 2.1** (i) Let Y be a smooth projective variety and \mathcal{F} a vector bundle on X. Let $\tilde{s}_j(\mathcal{F})$ be the Segre class which is defined in [5, Chapter 3]. Then $s_j(\mathcal{F}) = \tilde{s}_j(\mathcal{F}^{\vee})$.
 - (ii) For every integer *i* with $1 \le i$, $s_i(\mathcal{F})$ can be written by using the Chern classes $c_j(\mathcal{F})$ with $1 \le j \le i$. (For example, $s_1(\mathcal{F}) = c_1(\mathcal{F})$, $s_2(\mathcal{F}) = c_1(\mathcal{F})^2 c_2(\mathcal{F})$, and so on.)

Notation 2.1 Let (X, L) be an *n*-dimensional classical scroll over a smooth projective variety Y of dimension m. Let \mathcal{E} be an ample vector bundle of rank r on Y such that $X = \mathbb{P}_Y(\mathcal{E})$ and $L = H(\mathcal{E})$. Let $p: X \to Y$ be the projection. Then n = m + r - 1. In this paper we assume that $r \ge m + 1$, that is, $n \ge 2m$.

Proposition 2.1 Let (X, L) be a classical scroll over a smooth projective variety Y of dimension m. We use notations in Notation 2.1. Then for every integer i with $0 \le i \le n$ the following holds.

$$e_i(X,L) = \sum_{t=0}^{i} \sum_{k=0}^{i-t} (-1)^{i-t} \binom{m-t-2}{i-t-k} c_k(\mathcal{E}) c_t(Y) s_{m-k-t}(\mathcal{E}).$$

Proof. See the first part of the proof in [2, Theorem 3.1].

3 Main result

Definition 3.1 Let Y be a smooth projective variety of dimension m and \mathcal{E} a vector bundle on Y. Then for every integer i with $0 \le i \le m$ we define the polynomial $t_i(x_0, \ldots, x_i) \in \mathbb{Z}[x_0, \ldots, x_i]$ which satisfies the following.

(4) $c_i(\mathcal{E}) = t_i(s_0(\mathcal{E}), \dots, s_i(\mathcal{E})).$

For example, we see that $t_0(x_0) = 1$, $t_1(x_0, x_1) = x_1$, $t_2(x_0, x_1, x_2) = x_1^2 - x_2$ and so on.

Proposition 3.1 Let Y be a smooth projective variety of dimension m and \mathcal{E} a vector bundle over Y. For every integer i with $0 \le i \le m$, we have $s_i(\mathcal{E}) = t_i(c_0(\mathcal{E}), \ldots, c_i(\mathcal{E}))$.

Proof. We prove this by induction.

(I) If i = 0, then this is true because $c_0(\mathcal{E}) = s_0(\mathcal{E}) = 1$.

(II) Assume that the assertion holds for every i with $i \leq k - 1$. So we consider the case i = k. Then by Definition 2.3 (ii)

$$\sum_{\substack{i+j=k\\i>0,i>0}} (-1)^i c_i(\mathcal{E}) s_j(\mathcal{E}) = 0.$$

Hence by (5) we have

$$t_{k}(s_{0}(\mathcal{E}), \dots, s_{k}(\mathcal{E})) = c_{k}(\mathcal{E})$$

= $(-1)^{k+1} \sum_{\substack{i+j=k \ j \ge 1}} (-1)^{i} c_{i}(\mathcal{E}) s_{j}(\mathcal{E})$
= $(-1)^{k+1} \sum_{\substack{i+j=k \ j \ge 1}} (-1)^{i} t_{i}(s_{0}(\mathcal{E}), \dots, s_{i}(\mathcal{E})) s_{j}(\mathcal{E}).$

In particular, we have

(6)
$$t_k(x_0, \dots, x_k) = (-1)^{k+1} \sum_{\substack{i+j=k\\j\ge 1}} (-1)^i t_i(x_0, \dots, x_i) x_j.$$

On the other hand, we see from the induction hypothesis and (6) that

$$s_k(\mathcal{E}) = -\sum_{\substack{i+j=k\\i\geq 1}} (-1)^i c_i(\mathcal{E}) s_j(\mathcal{E})$$

= $(-1)^{k+1} \sum_{\substack{i+j=k\\i\geq 1}} (-1)^j c_i(\mathcal{E}) t_j(c_0(\mathcal{E}), \dots, c_j(\mathcal{E}))$
= $t_k(c_0(\mathcal{E}), \dots, c_k(\mathcal{E})).$

So we get the assertion.

The following theorem which is Theorem 1.1 in Introduction is the main result of this note.

Theorem 3.1 Let (X, L) be an n-dimensional classical scroll over a smooth projective variety Y of dimension m such that $n \ge 2m$. Let $F_i(t_1, \ldots, t_m)$ be the polynomial defined in Definition 1.1 for every integer i with $0 \le i \le m$. We use notations in Notation 2.1. Then for any integer j with $m \le j \le 2m$ we have

$$cl_j(X,L) = F_{2m-j}(c_1(\mathcal{E}),\ldots,c_m(\mathcal{E}))$$

In particular

$$F_m(s_1(\mathcal{E}),\ldots,s_m(\mathcal{E}))=F_m(c_1(\mathcal{E}),\ldots,c_m(\mathcal{E})).$$

Proof. First we prove the following.

Claim 3.1 For any integer *i* with $0 \le i \le m$, we have

$$e_{2m-2-i}(X,L) = \sum_{t=0}^{i} \sum_{l=0}^{i-t} (-1)^{i-t} \binom{m-t-2}{i-t-l} c_{m-t-l}(\mathcal{E}^{\vee})c_{t}(Y)s_{l}(\mathcal{E}) + (m-i-1)c_{m}(Y),$$

$$e_{2m-1-i}(X,L) = \sum_{t=0}^{i-1} \sum_{l=0}^{i-1-t} (-1)^{i-1-t} \binom{m-t-2}{i-1-t-l} c_{m-t-l}(\mathcal{E}^{\vee})c_{t}(Y)s_{l}(\mathcal{E}) + (m-i)c_{m}(Y),$$

$$e_{2m-i}(X,L) = \sum_{t=0}^{i-2} \sum_{l=0}^{i-2-t} (-1)^{i-2-t} \binom{m-t-2}{i-2-t-l} c_{m-t-l}(\mathcal{E}^{\vee})c_{t}(Y)s_{l}(\mathcal{E}) + (m-i+1)c_{m}(Y)$$

 $(We note that if i = 0 (resp. i = 0, 1), then \sum_{t=0}^{i-1} \sum_{l=0}^{i-1-t} (-1)^{i-1-t} {\binom{m-t-2}{i-1-t-l}} c_{m-t-l}(\mathcal{E}^{\vee}) c_t(Y) s_l(\mathcal{E}) = 0 (resp. \sum_{t=0}^{i-2} \sum_{l=0}^{i-2-t} (-1)^{i-2-t} {\binom{m-t-2}{i-2-t-l}} c_{m-t-l}(\mathcal{E}^{\vee}) c_t(Y) s_l(\mathcal{E}) = 0).)$

Proof. (A) First we treat $e_{2m-2-i}(X, L)$. Then by Proposition 2.1

$$e_{2m-2-i}(X,L) = \sum_{t=0}^{2m-2-i} \left(\sum_{k=0}^{2m-2-i-t} (-1)^{2m-2-i-t-k} \binom{m-t-2}{2m-2-i-t-k} c_k(\mathcal{E}^{\vee})c_t(Y)s_{m-k-t}(\mathcal{E}) \right).$$

Here we note that

$$2m-2-i-t \ge k.$$

We set

(7)

$$E(i,k,t) = (-1)^{2m-2-i-t-k} \binom{m-t-2}{2m-2-i-t-k} c_k(\mathcal{E}^{\vee}) c_t(Y) s_{m-k-t}(\mathcal{E}).$$

If $E(i, k, t) \neq 0$, then the following two conditions hold by noting (7).

$$(8) 0 \le k \le m.$$

$$(9) 0 \le t \le m.$$

(10)
$$k+t \le \min\{m, 2m-2-i\}$$

If m-t-2 > 0 and m-t-2 < 2m-2-i-t-k, then $\binom{m-t-2}{2m-2-i-t-k} = 0$. Hence if $E(i,k,t) \neq 0$, then $m-t-2 \leq 0$ or $m-t-2 \geq 2m-2-i-t-k$, that is,

(11)
$$t \ge m-2 \quad \text{or} \quad k \ge m-i.$$

(A.1) The case where $0 \le i \le m - 3$. We see from (8), (9), (10) and (11) that the possible cases of (k, t) are as follows.

(A.1.1)
$$\begin{cases} k = 0, 1, 2 \quad t = m - 2, \\ k = 0, 1, \quad t = m - 1, \\ k = 0, \quad t = m. \end{cases}$$
 (A.1.2)
$$\begin{cases} k = m - i, \quad t = i, i - 1, \dots, 1, 0 \\ k = m - i + 1, \quad t = i - 1, \dots, 1, 0 \\ \vdots \\ k = m, \quad t = 0. \end{cases}$$

In the case (A.1.1) we have

(12)
$$\sum_{t=m-2}^{m} \sum_{k=0}^{m-t} E(i,k,t) = c_{m-1}(Y)s_1(\mathcal{E}) + c_1(\mathcal{E}^{\vee})c_{m-1}(Y) + (m-i-1)c_m(Y)$$
$$= (m-1-i)c_m(Y).$$

On the other hand, in the case (A.1.2) we get

$$\sum_{k=m-i}^{m} \sum_{t=0}^{m-k} (-1)^{2m-2-i-t-k} \binom{m-t-2}{2m-2-i-t-k} c_k(\mathcal{E}^{\vee}) c_t(Y) s_{m-k-t}(\mathcal{E})$$
$$= \sum_{t=0}^{i} \sum_{k=m-i}^{m-t} (-1)^{2m-2-i-t-k} \binom{m-t-2}{2m-2-i-t-k} c_k(\mathcal{E}^{\vee}) c_t(Y) s_{m-k-t}(\mathcal{E}).$$

Here we put j := k - (m - i). Then by $t \le i \le m - 3$ we have

$$\sum_{t=0}^{i} \sum_{k=m-i}^{m-t} (-1)^{2m-2-i-t-k} {m-t-2 \choose 2m-2-i-t-k} c_k(\mathcal{E}^{\vee})c_t(Y)s_{m-k-t}(\mathcal{E})$$
$$= \sum_{t=0}^{i} \sum_{j=0}^{i-t} (-1)^{m-2-t-j} {m-t-2 \choose m-2-t-j} c_{j+m-i}(\mathcal{E}^{\vee})c_t(Y)s_{i-j-t}(\mathcal{E})$$
$$= \sum_{t=0}^{i} \sum_{j=0}^{i-t} (-1)^{m-2-t-j} {m-t-2 \choose j} c_{j+m-i}(\mathcal{E}^{\vee})c_t(Y)s_{i-j-t}(\mathcal{E}).$$

Hence we have

(13)
$$e_{2m-2-i}(X,L) = \sum_{t=0}^{i} \sum_{j=0}^{i-t} (-1)^{m-2-t-j} \binom{m-t-2}{j} c_{j+m-i}(\mathcal{E}^{\vee}) c_t(Y) s_{i-j-t}(\mathcal{E}) + (m-1-i)c_m(Y).$$

(A.2) The case where i = m - 2.

We see from (8), (9), (10) and (11) that the possible cases of (k, t) are as follows.

$$(A.2.1) \begin{cases} k = 0, 1, 2 \quad t = m - 2, \\ k = 0, 1, \quad t = m - 1, \\ k = 0, \quad t = m. \end{cases}$$

$$(A.2.2) \begin{cases} k = 2, \quad t = m - 2, m - 3, \dots, 1, 0 \\ k = 3, \quad t = m - 3, \dots, 1, 0 \\ \vdots \\ k = m, \quad t = 0. \end{cases}$$

Here we note that the case (k, t) = (2, m-2) is contained in both the cases (A.2.1) and (A.2.2). So we count the case (k, t) = (2, m-2) as the case (A.2.2).

In the case (A.2.1) we have

(14)
$$\sum_{t=m-2}^{m} \sum_{k=0}^{m-t} E(i,k,t) = c_{m-1}(Y)s_1(\mathcal{E}) + c_1(\mathcal{E}^{\vee})c_{m-1}(Y) + c_m(Y) = c_m(Y).$$

On the other hand, in the case (A.2.2) by the same argument as above we get

(15)
$$\sum_{k=2}^{m} \sum_{t=0}^{m-k} E(i,k,t)$$
$$= \sum_{t=0}^{m-2} \sum_{k=2}^{m-t} (-1)^{2m-2-i-t-k} {m-t-2 \choose 2m-2-i-t-k} c_k(\mathcal{E}^{\vee})c_t(Y)s_{m-k-t}(\mathcal{E})$$
$$= \sum_{t=0}^{m-2} \sum_{j=0}^{m-2-t} (-1)^{m-2-t-j} {m-t-2 \choose m-2-t-j} c_{j+2}(\mathcal{E}^{\vee})c_t(Y)s_{(m-2)-j-t}(\mathcal{E})$$
$$= \sum_{t=0}^{m-2} \sum_{j=0}^{m-2-t} (-1)^{m-2-t-j} {m-t-2 \choose j} c_{j+2}(\mathcal{E}^{\vee})c_t(Y)s_{(m-2)-j-t}(\mathcal{E}).$$

Hence we see from (14) and (15) that for i = m - 2

(16)
$$e_{2m-2-i}(X,L) = \sum_{t=0}^{i} \sum_{j=0}^{i-t} (-1)^{m-2-t-j} \binom{m-t-2}{j} c_{j+m-i}(\mathcal{E}^{\vee}) c_t(Y) s_{i-j-t}(\mathcal{E}) + (m-1-i)c_m(Y).$$

(A.3) The case where i = m - 1.

We see from (8), (9), (10) and (11) that the possible cases of (k, t) are as follows.

(A.3.1)
$$\begin{cases} k = 0, 1 \ t = m - 2, \\ k = 0 \ t = m - 1. \end{cases}$$
 (A.3.2)
$$\begin{cases} k = 1, \ t = m - 2, m - 3, \dots, 1, 0 \\ k = 2, \ t = m - 3, \dots, 1, 0 \\ \vdots \\ k = m - 1, \ t = 0. \end{cases}$$

Here we note that the case (k, t) = (1, m-2) is contained in both the cases (A.3.1) and (A.3.2). So we count the case (k, t) = (1, m-2) as the case (A.3.2).

In the case (A.3.1) we have

(17)
$$\sum_{t=m-2}^{m-1} \sum_{k=0}^{m-1-t} E(i,k,t) = c_{m-1}(Y)s_1(\mathcal{E}).$$

On the other hand, in the case (A.3.2) by the same argument as above we get

(18)
$$\sum_{k=1}^{m-1} \sum_{t=0}^{m-1-k} E(i,k,t)$$
$$= \sum_{t=0}^{m-2} \sum_{k=1}^{m-1-t} (-1)^{2m-2-(m-1)-t-k} {m-t-2 \choose 2m-2-(m-1)-t-k} c_k(\mathcal{E}^{\vee})c_t(Y)s_{m-k-t}(\mathcal{E})$$
$$= \sum_{t=0}^{m-2} \sum_{j=0}^{m-2-t} (-1)^{m-2-t-j} {m-t-2 \choose m-2-t-j} c_{j+1}(\mathcal{E}^{\vee})c_t(Y)s_{(m-1)-j-t}(\mathcal{E})$$
$$= \sum_{t=0}^{m-1} \sum_{j=0}^{m-1-t-t} (-1)^{m-2-t-j} {m-t-2 \choose m-2-t-j} c_{j+1}(\mathcal{E}^{\vee})c_t(Y)s_{(m-1)-j-t}(\mathcal{E}).$$

We note that in the final step of the above equalities we use $\binom{m-t-2}{m-2-t-j} = 0$ for $(t,j) = (0, m-1), (1, m-2), \ldots, (m-1, 0)$. Moreover

(19)
$$\sum_{t=0}^{m-1} \sum_{j=0}^{m-1-t} (-1)^{m-2-t-j} {m-t-2 \choose m-2-t-j} c_{j+1}(\mathcal{E}^{\vee}) c_t(Y) s_{(m-1)-j-t}(\mathcal{E})$$
$$= \sum_{t=0}^{i} \sum_{j=0}^{i-t} (-1)^{m-2-t-j} {m-t-2 \choose j} c_{j+m-i}(\mathcal{E}^{\vee}) c_t(Y) s_{i-j-t}(\mathcal{E}) - c_1(\mathcal{E}) c_{m-1}(Y).$$

We also note that in the final step of the above equalities

$$\binom{m-t-2}{m-2-t-j} = \begin{cases} \binom{m-t-2}{j} & \text{if } t \le m-2, \\ \binom{m-t-2}{j} - 1 & \text{if } t = m-1. \end{cases}$$

(Here we note that if t = m - 1, then j = 0 in this case.)

Hence we see from (17), (18) and (19) that for i = m - 1

(20)
$$e_{2m-2-i}(X,L) = \sum_{t=0}^{i} \sum_{j=0}^{i-t} (-1)^{m-2-t-j} \binom{m-t-2}{j} c_{j+m-i}(\mathcal{E}^{\vee}) c_t(Y) s_{i-j-t}(\mathcal{E}) + (m-1-i)c_m(Y).$$

(A.4) The case where i = m.

We see from (8), (9), (10) and (11) that the possible cases of (k, t) are as follows.

(A.4.1)
$$k = 0, \quad t = m - 2.$$
 (A.4.2)
$$\begin{cases} k = 0, \quad t = m - 2, m - 3, \dots, 1, 0, \\ k = 1, \quad t = m - 3, \dots, 1, 0, \\ \vdots \\ k = m - 2, \quad t = 0. \end{cases}$$

Here we note that the case (k,t) = (0, m-2) is contained in both the cases (A.4.1) and (A.4.2). So we count the case (k,t) = (0, m-2) as the case (A.4.2) and it suffices to calculate the case (A.4.2). By the same argument as above we get

$$(21) \quad e_{2m-2-i}(X,L) = \sum_{t=0}^{m-2} \sum_{j=0}^{m-2-t} (-1)^{m-2-t-j} \binom{m-t-2}{m-2-t-j} c_j(\mathcal{E}^{\vee}) c_t(Y) s_{m-j-t}(\mathcal{E}) = \sum_{t=0}^{m} \sum_{j=0}^{m-t} (-1)^{m-2-t-j} \binom{m-t-2}{m-2-t-j} c_j(\mathcal{E}^{\vee}) c_t(Y) s_{m-j-t}(\mathcal{E}).$$

We note that in the final step of the above equalities we use $\binom{m-t-2}{m-2-t-j} = 0$ for $(t, j) = (0, m), (1, m-1), \dots, (m, 0), (0, m-1), (1, m-2), \dots, (m-1, 0).$

On the other hand

(22)
$$\binom{m-t-2}{m-2-t-j} = \begin{cases} \binom{m-t-2}{j} & \text{if } t \le m-2, \\ \binom{m-t-2}{j} - (-1)^j & \text{if } t = m-1, m. \end{cases}$$

(Here we note that if t = m - 1 (resp. t = m), then j = 0, 1 (resp. j = 0) in this case.) Hence we see from (21) and (22) that for i = m

$$(23) \qquad e_{2m-2-i}(X,L) \\ = \sum_{t=0}^{i} \sum_{j=0}^{i-t} (-1)^{m-2-t-j} {m-t-2 \choose m-2-t-j} c_{j+m-i}(\mathcal{E}^{\vee}) c_{t}(Y) s_{i-j-t}(\mathcal{E}) \\ = \sum_{t=0}^{i} \sum_{j=0}^{i-t} (-1)^{m-2-t-j} {m-t-2 \choose j} c_{j+m-i}(\mathcal{E}^{\vee}) c_{t}(Y) s_{i-j-t}(\mathcal{E}) \\ + c_{m-1}(Y) s_{1}(\mathcal{E}) + c_{1}(\mathcal{E}^{\vee}) c_{m-1}(Y) - c_{m}(Y) \\ = \sum_{t=0}^{i} \sum_{j=0}^{i-t} (-1)^{m-2-t-j} {m-t-2 \choose j} c_{j+m-i}(\mathcal{E}^{\vee}) c_{t}(Y) s_{i-j-t}(\mathcal{E}) + (m-i-1) c_{m}(Y).$$

By (13), (16), (20) and (23) for any i with $0 \leq i \leq m$ we have

$$e_{2m-2-i}(X,L) = \sum_{t=0}^{i} \sum_{j=0}^{i-t} (-1)^{m-2-t-j} \binom{m-t-2}{j} c_{j+m-i}(\mathcal{E}^{\vee}) c_t(Y) s_{i-j-t}(\mathcal{E}) + (m-i-1)c_m(Y).$$

Furthermore we set l := i - t - j. Then

$$\sum_{t=0}^{i} \sum_{j=0}^{i-t} (-1)^{m-2-t-j} \binom{m-t-2}{j} c_{j+m-i}(\mathcal{E}^{\vee}) c_t(Y) s_{i-j-t}(\mathcal{E})$$
$$= \sum_{t=0}^{i} \sum_{l=0}^{i-t} (-1)^{m-2-i+l} \binom{m-t-2}{i-t-l} c_{m-t-l}(\mathcal{E}^{\vee}) c_t(Y) s_l(\mathcal{E})$$
$$= \sum_{t=0}^{i} \sum_{l=0}^{i-t} (-1)^{i-t} \binom{m-t-2}{i-t-l} c_{m-t-l}(\mathcal{E}) c_t(Y) s_l(\mathcal{E}).$$

Hence for every integer i with $0 \leq i \leq m$

(24)
$$e_{2m-2-i}(X,L) = \sum_{t=0}^{i} \sum_{l=0}^{i-t} (-1)^{i-t} \binom{m-t-2}{i-t-l} c_{m-t-l}(\mathcal{E})c_t(Y)s_l(\mathcal{E}) + (m-i-1)c_m(Y).$$

(B) Next we consider $e_{2m-1}(X,L)$ and $e_{2m}(X,L)$. Then by [2, Theorem 3.1 (3.1.1)] we have

(25)
$$e_{2m-1}(X,L) = mc_m(Y),$$

(26)
$$e_{2m}(X,L) = (m+1)c_m(Y).$$

(C) By (24), (25) and (26), we get the assertion of Claim 3.1.

Here we set

$$E_i(c_0(\mathcal{E}), \dots, c_i(\mathcal{E}); s_{m-i}(\mathcal{E}), \dots, s_m(\mathcal{E})) := \sum_{t=0}^i \sum_{k=0}^{i-t} (-1)^{i-t} \binom{m-t-2}{i-t-k} c_k(\mathcal{E}) c_t(Y) s_{m-k-t}(\mathcal{E}).$$

Then by Proposition 2.1 we have

(27)
$$E_i(c_0(\mathcal{E}), \dots, c_i(\mathcal{E}); s_{m-i}(\mathcal{E}), \dots, s_m(\mathcal{E})) = e_i(X, L).$$

Moreover by Claim 3.1 we have

$$(28) \ e_{2m-2-i}(X,L) = E_i(s_0(\mathcal{E}),\ldots,s_i(\mathcal{E});c_{m-i}(\mathcal{E}),\ldots,c_m(\mathcal{E})) + (m-i-1)c_m(Y), (29) \ e_{2m-1-i}(X,L) = E_{i-1}(s_0(\mathcal{E}),\ldots,s_{i-1}(\mathcal{E});c_{m-i+1}(\mathcal{E}),\ldots,c_m(\mathcal{E})) + (m-i)c_m(Y), (30) \ e_{2m-i}(X,L) = E_{i-2}(s_0(\mathcal{E}),\ldots,s_{i-2}(\mathcal{E});c_{m-i+2}(\mathcal{E}),\ldots,c_m(\mathcal{E})) + (m-i+1)c_m(Y)$$

for every integer i with $0 \leq i \leq m.$ By (27) and Definitions 1.1 and 2.2 we get

$$(31) F_{i}(s_{1}(\mathcal{E}), \dots, s_{m}(\mathcal{E})) = cl_{i}(X, L) = (-1)^{i} \{E_{i}(c_{0}(\mathcal{E}), \dots, c_{i}(\mathcal{E}); s_{m-i}(\mathcal{E}), \dots, s_{m}(\mathcal{E})) -2E_{i-1}(c_{0}(\mathcal{E}), \dots, c_{i-1}(\mathcal{E}); s_{m-i+1}(\mathcal{E}), \dots, s_{m}(\mathcal{E})) +E_{i-2}(c_{0}(\mathcal{E}), \dots, c_{i-2}(\mathcal{E}); s_{m-i+2}(\mathcal{E}), \dots, s_{m}(\mathcal{E}))\} = (-1)^{i} \{E_{i}(t_{0}(s_{0}(\mathcal{E})), \dots, t_{i}(s_{0}(\mathcal{E}), \dots, s_{i}(\mathcal{E})); s_{m-i}(\mathcal{E}), \dots, s_{m}(\mathcal{E})) -2E_{i-1}(t_{0}(s_{0}(\mathcal{E})), \dots, t_{i-1}(s_{0}(\mathcal{E}), \dots, s_{i-1}(\mathcal{E})); s_{m-i+1}(\mathcal{E}), \dots, s_{m}(\mathcal{E})) +E_{i-2}(t_{0}(s_{0}(\mathcal{E})), \dots, t_{i-2}(s_{0}(\mathcal{E}), \dots, s_{i-2}(\mathcal{E})); s_{m-i+2}(\mathcal{E}), \dots, s_{m}(\mathcal{E}))\}$$

for every integer i with $0 \le i \le m$. Here $t_i(x_0, \ldots, x_i)$ denotes the polynomial which was defined in Definition 3.1. On the other hand we see from (28), (29), (30) and (31) that for every integer i with $0 \le i \le m$

$$\begin{aligned} \mathrm{cl}_{2m-i}(X,L) &= (-1)^{2m-i} \{e_{2m-i}(X,L) - 2e_{2m-i-1}(X,L) + e_{2m-i-2}(X,L)\} \\ &= (-1)^i \{E_{i-2}(s_0(\mathcal{E}), \dots, s_{i-2}(\mathcal{E}); c_{m-i+2}(\mathcal{E}), \dots, c_m(\mathcal{E})) \\ &- 2E_{i-1}(s_0(\mathcal{E}), \dots, s_{i-1}(\mathcal{E}); c_{m-i+1}(\mathcal{E}), \dots, c_m(\mathcal{E})) \\ &+ E_i(s_0(\mathcal{E}), \dots, s_i(\mathcal{E}); c_{m-i}(\mathcal{E}), \dots, c_m(\mathcal{E})) \\ &+ (m-i+1)c_m(Y) - 2(m-i)c_m(Y) + (m-i-1)c_m(Y)\} \\ &= (-1)^i \{E_i(s_0(\mathcal{E}), \dots, s_i(\mathcal{E}); c_{m-i}(\mathcal{E}), \dots, c_m(\mathcal{E})) \\ &- 2E_{i-1}(s_0(\mathcal{E}), \dots, s_{i-1}(\mathcal{E}); c_{m-i+1}(\mathcal{E}), \dots, c_m(\mathcal{E})) \\ &+ E_{i-2}(s_0(\mathcal{E}), \dots, s_{i-2}(\mathcal{E}); c_{m-i+2}(\mathcal{E}), \dots, c_m(\mathcal{E}))\} \\ &= (-1)^i \{E_i(t_0(c_0(\mathcal{E})), \dots, t_i(c_0(\mathcal{E}), \dots, c_{i-1}(\mathcal{E})); c_{m-i+1}(\mathcal{E}), \dots, c_m(\mathcal{E})) \\ &- 2E_{i-1}(t_0(c_0(\mathcal{E})), \dots, t_{i-2}(c_0(\mathcal{E}), \dots, c_{i-2}(\mathcal{E})); c_{m-i+2}(\mathcal{E}), \dots, c_m(\mathcal{E})) \\ &+ E_{i-2}(t_0(\mathcal{E}), \dots, c_m(\mathcal{E})). \\ &= F_i(c_1(\mathcal{E}), \dots, c_m(\mathcal{E})). \end{aligned}$$

Therefore we get the assertion of Theorem 3.1.

Finally we note the following.

Proposition 3.2 Let (X, L) be an n-dimensional classical scroll over a smooth projective variety Y of dimension m such that $n \ge 2m+1$. Then $cl_i(X, L) = 0$ for every integer i with $2m+1 \le i \le n$.

Proof. By [2, Theorem 3.1 (3.1.1)], we see that $e_j(X, L) = (j - m + 1)c_m(Y)$ for every integer j with $j \ge 2m - 1$. Hence

$$cl_i(X,L) = (-1)^i (e_i(X,L) - 2e_{i-1}(X,L) + e_{i-2}(X,L)) = 0.$$

This completes the proof.

References

- Y. FUKUMA, On the sectional invariants of polarized manifolds, J. Pure Appl. Algebra 209 (2007), 99–117.
- Y. FUKUMA, Sectional invariants of scroll over a smooth projective variety, Rend. Sem. Mat. Univ. Padova 121 (2009), 93–119.
- [3] Y. FUKUMA, Sectional class of ample line bundles on smooth projective varieties, Riv. Mat. Univ. Parma (N.S.) 6 (2015), 215–240.
- [4] Y. FUKUMA, Calculations of sectional classes of special polarized manifolds, preprint, http://www.math.kochi-u.ac.jp/fukuma/Cal-SC.html
- [5] W. FULTON, Intersection Theory, Second edition. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 2. Springer-Verlag, Berlin, 1998.

Department of Mathematics Faculty of Science Kochi University Akebono-cho, Kochi 780-8520 Japan E-mail: fukuma@kochi-u.ac.jp