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Abstract

In this note, we investigate the formula of the sectional class of classical scrolls and we give
an answer of a conjecture proposed in a previous paper.

1 Introduction

Let (X,L) be a polarized manifold of dimension n. Assume that L is very ample and let ϕ : X ↪→
PN be the morphism defined by |L|. Then ϕ is an embedding. In this situation, its dual variety
X∨ → (PN )∨ is a hypersurface of N -dimensional projective space except some special types. Then
the class cl(X,L) of (X,L) is defined by the following.

cl(X,L) =
{

deg(X∨), if X∨ is a hypersurface in (PN )∨

0, otherwise.

As a generalization of this notion, in [3], we defined the ith sectional class cli(X,L) for any ample
line bundle L and every integer i with 0 ≤ i ≤ n (see Definition 2.2).

Here we note the following fact: Assume that L is very ample. Then there exists a sequence of
smooth subvarieties X ⊃ X1 ⊃ · · · ⊃ Xn−i such that Xj ∈ |Lj−1| and dimXj = n − j for every
integer j with 1 ≤ j ≤ n − i, where Lj = L|Xj and L0 := L. In particular, Xn−i is a smooth
projective variety of dimension i and Ln−i is a very ample line bundle on Xn−i. Then cli(X,L) is
equal to the class of (Xn−i, Ln−i). This is the reason why we call this invariant the ith sectional
class.

In [4], we calculated the sectional class of special polarized manifolds. For example, we consider
the case where (X,L) is a classical scroll over a smooth projective variety Y of dimension m such
that n := dimX ≥ 2m. Namely, there exists an ample vector bundle E on Y of rank r ≥ m + 1
such that (X,L) ∼= (PY (E),H(E)), where H(E) is the tautological line bundle. Here we note that
we need the assumption n ≥ 2m in order to define and compare cli(X,L) and cl2m−i(X,L) for
every integer i with 0 ≤ i ≤ m. Then we get the following:
(i) If m = 1, then by [4, Example 2.1 (ix)] we have

cli(X,L) =


s1(E), if i = 0,
2g(C) − 2 + 2c1(E), if i = 1,
c1(E), if i = 2,
0, if i ≥ 3 and n ≥ 3.

(1)
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(ii) If m = 2, then by [4, Example 2.1 (x)] we have

cli(X,L) =



s2(E), if i = 0,
(s1(E) + KS)s1(E) + 2s2(E), if i = 1,
c2(S) + 3c1(E)2 + 2KSc1(E), if i = 2,
(c1(E) + KS)c1(E) + 2c2(E), if i = 3,
c2(E), if i = 4,
0, if i ≥ 5 and n ≥ 5.

(2)

(iii) If m = 3, then by [4, Example 2.1] we have

cli(X,L) =



s3(E), if i = 0,

3s3(E) + (s1(E) + KY )s2(E), if i = 1,

3s3(E) + 12(s1(E) + KY )s2(E)
+(s1(E) + KY )s1(E)2 + c2(Y )s1(E), if i = 2,

−c3(Y ) + 2c3(E) − 2c1(E)c2(E) + 4c1(E)3

+3KY c1(E)2 + 2c2(Y )c1(E), if i = 3,

3c3(E) + 12(c1(E) + KY )c2(E)
+(c1(E) + KY )c1(E)2 + c2(Y )c1(E), if i = 4,

3c3(E) + (c1(E) + KY )c2(E), if i = 5,

c3(E), if i = 6,

0, if i ≥ 7 and n ≥ 7.

(3)

The above equations show that there exists a relation between cli(X,L) and cl2m−i(X,L). Here
we note that for every integer i with 0 ≤ i ≤ m, cli(X,L) can be written by the Segre classes
s1(E), . . . , sm(E).

Definition 1.1 For every integer i with 0 ≤ i ≤ m, we define the polynomial Fi(t1, . . . , tm) ∈
Z[t1, . . . , tm] such that the following equality holds.

Fi(s1(E), . . . , sm(E)) = cli(X,L).

Then we see from the above that if m = 1, 2 and 3, then

clj(X,L) = F2m−j(c1(E), . . . , cm(E))

for m ≤ j ≤ 2m. In general, we can prove the following theorem, which was proposed in [4] and is
the main result of this paper.

Theorem 1.1 Let a polarized manifold (X,L) be a classical scroll over a smooth projective variety
Y with dimX = n and dimY = m. Let E be an ample vector bundle on Y such that X ∼= PY (E)
and L = H(E). Let Fi(t1, . . . , tm) be the polynomial defined in Definition 1.1 for every integer i
with 0 ≤ i ≤ m. Assume that n ≥ 2m. Then for any integer j with m ≤ j ≤ 2m we have

clj(X,L) = F2m−j(c1(E), . . . , cm(E)).

In particular
Fm(s1(E), . . . , sm(E)) = Fm(c1(E), . . . , cm(E)).
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By Theorem 1.1 we can easily calculate cl2m−i(X,L) (resp. cli(X,L)) if we are able to calculate
cli(X,L) (resp. cl2m−i(X,L)). By this relation we expect that we can get some useful information
about cl2m−i(X,L) (resp. cli(X,L)) from several properties of cli(X,L) (resp. cl2m−i(X,L)).
Moreover if i = m, then we have clm(X,L) = Fm(c1(E), . . . , cm(E)) = Fm(s1(E), . . . , sm(E)) by
Theorem 1.1. So clm(X,L) may have special and interesting properties. We will study these on
another occasion.

2 Preliminaries

Definition 2.1 (See [1, Definition 3.1].) Let (X,L) be a polarized manifold of dimension n, and
i an integer with 0 ≤ i ≤ n. Then the ith sectional Euler number ei(X,L) of (X,L) is defined by
the following:

ei(X,L) :=
i∑

l=0

(−1)l

(
n − i + l − 1

l

)
ci−l(X)Ln−i+l.

Definition 2.2 (See [3, Definitions 2.8 and 2.9]. See also [3, Remark 2.6].) Let (X,L) be a
polarized manifold of dimension n and i an integer with 0 ≤ i ≤ n. Then the ith sectional class of
(X,L) is defined by the following.

cli(X,L) =


e0(X,L), if i = 0,

(−1){e1(X,L) − 2e0(X,L)}, if i = 1,

(−1)i{ei(X,L) − 2ei−1(X,L) + ei−2(X,L)}, if 2 ≤ i ≤ n.

Definition 2.3 Let Y be a smooth projective variety of dimension m and E a vector bundle of
rank r on Y .

(i) The Chern polynomial ct(E) is defined by ct(E) =
∑
i≥0

ci(E)ti.

(ii) For every integer j with j ≥ 0, the jth Segre class sj(F) of F is defined by the following
equation: ct(F∨)st(F) = 1, where ct(F∨) is the Chern polynomial of F∨ and st(F) =∑

j≥0 sj(F)tj .

Remark 2.1 (i) Let Y be a smooth projective variety and F a vector bundle on X. Let s̃j(F)
be the Segre class which is defined in [5, Chapter 3]. Then sj(F) = s̃j(F∨).

(ii) For every integer i with 1 ≤ i, si(F) can be written by using the Chern classes cj(F) with
1 ≤ j ≤ i. (For example, s1(F) = c1(F), s2(F) = c1(F)2 − c2(F), and so on.)

Notation 2.1 Let (X,L) be an n-dimensional classical scroll over a smooth projective variety Y
of dimension m. Let E be an ample vector bundle of rank r on Y such that X = PY (E) and
L = H(E). Let p : X → Y be the projection. Then n = m + r − 1. In this paper we assume that
r ≥ m + 1, that is, n ≥ 2m.

Proposition 2.1 Let (X,L) be a classical scroll over a smooth projective variety Y of dimension
m. We use notations in Notation 2.1. Then for every integer i with 0 ≤ i ≤ n the following holds.

ei(X,L) =
i∑

t=0

i−t∑
k=0

(−1)i−t

(
m − t − 2
i − t − k

)
ck (E) ct (Y ) sm−k−t(E).

Proof. See the first part of the proof in [2, Theorem 3.1].

3



3 Main result

Definition 3.1 Let Y be a smooth projective variety of dimension m and E a vector bundle on
Y . Then for every integer i with 0 ≤ i ≤ m we define the polynomial ti(x0, . . . , xi) ∈ Z[x0, . . . , xi]
which satisfies the following.

ci(E) = ti(s0(E), . . . , si(E)).(4)

For example, we see that t0(x0) = 1, t1(x0, x1) = x1, t2(x0, x1, x2) = x2
1 − x2 and so on.

Proposition 3.1 Let Y be a smooth projective variety of dimension m and E a vector bundle over
Y . For every integer i with 0 ≤ i ≤ m, we have si(E) = ti(c0(E), . . . , ci(E)).

Proof. We prove this by induction.
(I) If i = 0, then this is true because c0(E) = s0(E) = 1.
(II) Assume that the assertion holds for every i with i ≤ k − 1. So we consider the case i = k.
Then by Definition 2.3 (ii) ∑

i+j=k
i≥0,j≥0

(−1)ici(E)sj(E) = 0.(5)

Hence by (5) we have

tk(s0(E), . . . , sk(E)) = ck(E)

= (−1)k+1
∑

i+j=k
j≥1

(−1)ici(E)sj(E)

= (−1)k+1
∑

i+j=k
j≥1

(−1)iti(s0(E), . . . , si(E))sj(E).

In particular, we have

tk(x0, . . . , xk) = (−1)k+1
∑

i+j=k
j≥1

(−1)iti(x0, . . . , xi)xj .(6)

On the other hand, we see from the induction hypothesis and (6) that

sk(E) = −
∑

i+j=k
i≥1

(−1)ici(E)sj(E)

= (−1)k+1
∑

i+j=k
i≥1

(−1)jci(E)tj(c0(E), . . . , cj(E))

= tk(c0(E), . . . , ck(E)).

So we get the assertion.

The following theorem which is Theorem 1.1 in Introduction is the main result of this note.

Theorem 3.1 Let (X,L) be an n-dimensional classical scroll over a smooth projective variety Y
of dimension m such that n ≥ 2m. Let Fi(t1, . . . , tm) be the polynomial defined in Definition 1.1
for every integer i with 0 ≤ i ≤ m. We use notations in Notation 2.1. Then for any integer j with
m ≤ j ≤ 2m we have

clj(X,L) = F2m−j(c1(E), . . . , cm(E)).

In particular
Fm(s1(E), . . . , sm(E)) = Fm(c1(E), . . . , cm(E)).
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Proof. First we prove the following.

Claim 3.1 For any integer i with 0 ≤ i ≤ m, we have

e2m−2−i(X,L) =
i∑

t=0

i−t∑
l=0

(−1)i−t

(
m − t − 2
i − t − l

)
cm−t−l(E∨)ct(Y )sl(E) + (m − i − 1)cm(Y ),

e2m−1−i(X,L) =
i−1∑
t=0

i−1−t∑
l=0

(−1)i−1−t

(
m − t − 2

i − 1 − t − l

)
cm−t−l(E∨)ct(Y )sl(E) + (m − i)cm(Y ),

e2m−i(X,L) =
i−2∑
t=0

i−2−t∑
l=0

(−1)i−2−t

(
m − t − 2

i − 2 − t − l

)
cm−t−l(E∨)ct(Y )sl(E) + (m − i + 1)cm(Y ).

(We note that if i = 0 (resp. i = 0, 1), then
∑i−1

t=0

∑i−1−t
l=0 (−1)i−1−t

(
m−t−2
i−1−t−l

)
cm−t−l(E∨)ct(Y )sl(E) =

0 (resp.
∑i−2

t=0

∑i−2−t
l=0 (−1)i−2−t

(
m−t−2
i−2−t−l

)
cm−t−l(E∨)ct(Y )sl(E) = 0).)

Proof. (A) First we treat e2m−2−i(X,L). Then by Proposition 2.1

e2m−2−i(X,L) =
2m−2−i∑

t=0

(
2m−2−i−t∑

k=0

(−1)2m−2−i−t−k

(
m − t − 2

2m − 2 − i − t − k

)
ck(E∨)ct(Y )sm−k−t(E)

)
.

Here we note that
2m − 2 − i − t ≥ k.(7)

We set

E(i, k, t) = (−1)2m−2−i−t−k

(
m − t − 2

2m − 2 − i − t − k

)
ck(E∨)ct(Y )sm−k−t(E).

If E(i, k, t) ̸= 0, then the following two conditions hold by noting (7).

0 ≤ k ≤ m.(8)
0 ≤ t ≤ m.(9)
k + t ≤ min{m, 2m − 2 − i}.(10)

If m−t−2 > 0 and m−t−2 < 2m−2−i−t−k, then
(

m−t−2
2m−2−i−t−k

)
= 0. Hence if E(i, k, t) ̸= 0,

then m − t − 2 ≤ 0 or m − t − 2 ≥ 2m − 2 − i − t − k, that is,

t ≥ m − 2 or k ≥ m − i.(11)

(A.1) The case where 0 ≤ i ≤ m − 3.
We see from (8), (9), (10) and (11) that the possible cases of (k, t) are as follows.

(A.1.1)

 k = 0, 1, 2 t = m − 2,
k = 0, 1, t = m − 1,
k = 0, t = m.

(A.1.2)


k = m − i, t = i, i − 1, . . . , 1, 0
k = m − i + 1, t = i − 1, . . . , 1, 0

...
k = m, t = 0.

In the case (A.1.1) we have

m∑
t=m−2

m−t∑
k=0

E(i, k, t) = cm−1(Y )s1(E) + c1(E∨)cm−1(Y ) + (m − i − 1)cm(Y )(12)

= (m − 1 − i)cm(Y ).
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On the other hand, in the case (A.1.2) we get

m∑
k=m−i

m−k∑
t=0

(−1)2m−2−i−t−k

(
m − t − 2

2m − 2 − i − t − k

)
ck(E∨)ct(Y )sm−k−t(E)

=
i∑

t=0

m−t∑
k=m−i

(−1)2m−2−i−t−k

(
m − t − 2

2m − 2 − i − t − k

)
ck(E∨)ct(Y )sm−k−t(E).

Here we put j := k − (m − i). Then by t ≤ i ≤ m − 3 we have

i∑
t=0

m−t∑
k=m−i

(−1)2m−2−i−t−k

(
m − t − 2

2m − 2 − i − t − k

)
ck(E∨)ct(Y )sm−k−t(E)

=
i∑

t=0

i−t∑
j=0

(−1)m−2−t−j

(
m − t − 2

m − 2 − t − j

)
cj+m−i(E∨)ct(Y )si−j−t(E)

=
i∑

t=0

i−t∑
j=0

(−1)m−2−t−j

(
m − t − 2

j

)
cj+m−i(E∨)ct(Y )si−j−t(E).

Hence we have

e2m−2−i(X,L)(13)

=
i∑

t=0

i−t∑
j=0

(−1)m−2−t−j

(
m − t − 2

j

)
cj+m−i(E∨)ct(Y )si−j−t(E) + (m − 1 − i)cm(Y ).

(A.2) The case where i = m − 2.
We see from (8), (9), (10) and (11) that the possible cases of (k, t) are as follows.

(A.2.1)

 k = 0, 1, 2 t = m − 2,
k = 0, 1, t = m − 1,
k = 0, t = m.

(A.2.2)


k = 2, t = m − 2,m − 3, . . . , 1, 0
k = 3, t = m − 3, . . . , 1, 0

...
k = m, t = 0.

Here we note that the case (k, t) = (2,m−2) is contained in both the cases (A.2.1) and (A.2.2).
So we count the case (k, t) = (2,m − 2) as the case (A.2.2).

In the case (A.2.1) we have

m∑
t=m−2

m−t∑
k=0

E(i, k, t) = cm−1(Y )s1(E) + c1(E∨)cm−1(Y ) + cm(Y ) = cm(Y ).(14)

On the other hand, in the case (A.2.2) by the same argument as above we get

m∑
k=2

m−k∑
t=0

E(i, k, t)(15)

=
m−2∑
t=0

m−t∑
k=2

(−1)2m−2−i−t−k

(
m − t − 2

2m − 2 − i − t − k

)
ck(E∨)ct(Y )sm−k−t(E)

=
m−2∑
t=0

m−2−t∑
j=0

(−1)m−2−t−j

(
m − t − 2

m − 2 − t − j

)
cj+2(E∨)ct(Y )s(m−2)−j−t(E)

=
m−2∑
t=0

m−2−t∑
j=0

(−1)m−2−t−j

(
m − t − 2

j

)
cj+2(E∨)ct(Y )s(m−2)−j−t(E).
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Hence we see from (14) and (15) that for i = m − 2

e2m−2−i(X,L)(16)

=
i∑

t=0

i−t∑
j=0

(−1)m−2−t−j

(
m − t − 2

j

)
cj+m−i(E∨)ct(Y )si−j−t(E) + (m − 1 − i)cm(Y ).

(A.3) The case where i = m − 1.
We see from (8), (9), (10) and (11) that the possible cases of (k, t) are as follows.

(A.3.1)
{

k = 0, 1 t = m − 2,
k = 0 t = m − 1.

(A.3.2)


k = 1, t = m − 2,m − 3, . . . , 1, 0
k = 2, t = m − 3, . . . , 1, 0

...
k = m − 1, t = 0.

Here we note that the case (k, t) = (1,m−2) is contained in both the cases (A.3.1) and (A.3.2).
So we count the case (k, t) = (1,m − 2) as the case (A.3.2).

In the case (A.3.1) we have

m−1∑
t=m−2

m−1−t∑
k=0

E(i, k, t) = cm−1(Y )s1(E).(17)

On the other hand, in the case (A.3.2) by the same argument as above we get

m−1∑
k=1

m−1−k∑
t=0

E(i, k, t)(18)

=
m−2∑
t=0

m−1−t∑
k=1

(−1)2m−2−(m−1)−t−k

(
m − t − 2

2m − 2 − (m − 1) − t − k

)
ck(E∨)ct(Y )sm−k−t(E)

=
m−2∑
t=0

m−2−t∑
j=0

(−1)m−2−t−j

(
m − t − 2

m − 2 − t − j

)
cj+1(E∨)ct(Y )s(m−1)−j−t(E)

=
m−1∑
t=0

m−1−t∑
j=0

(−1)m−2−t−j

(
m − t − 2

m − 2 − t − j

)
cj+1(E∨)ct(Y )s(m−1)−j−t(E).

We note that in the final step of the above equalities we use
(

m−t−2
m−2−t−j

)
= 0 for (t, j) = (0,m −

1), (1,m − 2), . . . , (m − 1, 0). Moreover

m−1∑
t=0

m−1−t∑
j=0

(−1)m−2−t−j

(
m − t − 2

m − 2 − t − j

)
cj+1(E∨)ct(Y )s(m−1)−j−t(E)(19)

=
i∑

t=0

i−t∑
j=0

(−1)m−2−t−j

(
m − t − 2

j

)
cj+m−i(E∨)ct(Y )si−j−t(E) − c1(E)cm−1(Y ).

We also note that in the final step of the above equalities(
m − t − 2

m − 2 − t − j

)
=

{ (
m−t−2

j

)
if t ≤ m − 2,(

m−t−2
j

)
− 1 if t = m − 1.

(Here we note that if t = m − 1, then j = 0 in this case.)
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Hence we see from (17), (18) and (19) that for i = m − 1

e2m−2−i(X,L)(20)

=
i∑

t=0

i−t∑
j=0

(−1)m−2−t−j

(
m − t − 2

j

)
cj+m−i(E∨)ct(Y )si−j−t(E) + (m − 1 − i)cm(Y ).

(A.4) The case where i = m.
We see from (8), (9), (10) and (11) that the possible cases of (k, t) are as follows.

(A.4.1) k = 0, t = m − 2. (A.4.2)


k = 0, t = m − 2,m − 3, . . . , 1, 0,
k = 1, t = m − 3, . . . , 1, 0,

...
k = m − 2, t = 0.

Here we note that the case (k, t) = (0,m−2) is contained in both the cases (A.4.1) and (A.4.2).
So we count the case (k, t) = (0, m − 2) as the case (A.4.2) and it suffices to calculate the case
(A.4.2). By the same argument as above we get

e2m−2−i(X,L) =
m−2∑
t=0

m−2−t∑
j=0

(−1)m−2−t−j

(
m − t − 2

m − 2 − t − j

)
cj(E∨)ct(Y )sm−j−t(E)(21)

=
m∑

t=0

m−t∑
j=0

(−1)m−2−t−j

(
m − t − 2

m − 2 − t − j

)
cj(E∨)ct(Y )sm−j−t(E).

We note that in the final step of the above equalities we use
(

m−t−2
m−2−t−j

)
= 0 for (t, j) = (0,m), (1, m−

1), . . . , (m, 0), (0, m − 1), (1, m − 2), . . . , (m − 1, 0).
On the other hand(

m − t − 2
m − 2 − t − j

)
=

{ (
m−t−2

j

)
if t ≤ m − 2,(

m−t−2
j

)
− (−1)j if t = m − 1,m.

(22)

(Here we note that if t = m − 1 (resp. t = m), then j = 0, 1 (resp. j = 0) in this case.)
Hence we see from (21) and (22) that for i = m

e2m−2−i(X,L)(23)

=
i∑

t=0

i−t∑
j=0

(−1)m−2−t−j

(
m − t − 2

m − 2 − t − j

)
cj+m−i(E∨)ct(Y )si−j−t(E)

=
i∑

t=0

i−t∑
j=0

(−1)m−2−t−j

(
m − t − 2

j

)
cj+m−i(E∨)ct(Y )si−j−t(E)

+cm−1(Y )s1(E) + c1(E∨)cm−1(Y ) − cm(Y )

=
i∑

t=0

i−t∑
j=0

(−1)m−2−t−j

(
m − t − 2

j

)
cj+m−i(E∨)ct(Y )si−j−t(E) + (m − i − 1)cm(Y ).

By (13), (16), (20) and (23) for any i with 0 ≤ i ≤ m we have

e2m−2−i(X,L) =
i∑

t=0

i−t∑
j=0

(−1)m−2−t−j

(
m − t − 2

j

)
cj+m−i(E∨)ct(Y )si−j−t(E) + (m− i− 1)cm(Y ).
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Furthermore we set l := i − t − j. Then

i∑
t=0

i−t∑
j=0

(−1)m−2−t−j

(
m − t − 2

j

)
cj+m−i(E∨)ct(Y )si−j−t(E)

=
i∑

t=0

i−t∑
l=0

(−1)m−2−i+l

(
m − t − 2
i − t − l

)
cm−t−l(E∨)ct(Y )sl(E)

=
i∑

t=0

i−t∑
l=0

(−1)i−t

(
m − t − 2
i − t − l

)
cm−t−l(E)ct(Y )sl(E).

Hence for every integer i with 0 ≤ i ≤ m

e2m−2−i(X,L) =
i∑

t=0

i−t∑
l=0

(−1)i−t

(
m − t − 2
i − t − l

)
cm−t−l(E)ct(Y )sl(E) + (m − i − 1)cm(Y ).(24)

(B) Next we consider e2m−1(X,L) and e2m(X,L). Then by [2, Theorem 3.1 (3.1.1)] we have

e2m−1(X,L) = mcm(Y ),(25)
e2m(X,L) = (m + 1)cm(Y ).(26)

(C) By (24), (25) and (26), we get the assertion of Claim 3.1.

Here we set

Ei(c0(E), . . . , ci(E); sm−i(E), . . . , sm(E)) :=
i∑

t=0

i−t∑
k=0

(−1)i−t

(
m − t − 2
i − t − k

)
ck (E) ct (Y ) sm−k−t(E).

Then by Proposition 2.1 we have

Ei(c0(E), . . . , ci(E); sm−i(E), . . . , sm(E)) = ei(X,L).(27)

Moreover by Claim 3.1 we have

e2m−2−i(X,L) = Ei(s0(E), . . . , si(E); cm−i(E), . . . , cm(E)) + (m − i − 1)cm(Y ),(28)
e2m−1−i(X,L) = Ei−1(s0(E), . . . , si−1(E); cm−i+1(E), . . . , cm(E)) + (m − i)cm(Y ),(29)

e2m−i(X,L) = Ei−2(s0(E), . . . , si−2(E); cm−i+2(E), . . . , cm(E)) + (m − i + 1)cm(Y )(30)

for every integer i with 0 ≤ i ≤ m. By (27) and Definitions 1.1 and 2.2 we get

Fi(s1(E), . . . , sm(E))(31)
= cli(X,L)
= (−1)i{Ei(c0(E), . . . , ci(E); sm−i(E), . . . , sm(E))
−2Ei−1(c0(E), . . . , ci−1(E); sm−i+1(E), . . . , sm(E))
+Ei−2(c0(E), . . . , ci−2(E); sm−i+2(E), . . . , sm(E))}

= (−1)i{Ei(t0(s0(E)), . . . , ti(s0(E), . . . , si(E)); sm−i(E), . . . , sm(E))
−2Ei−1(t0(s0(E)), . . . , ti−1(s0(E), . . . , si−1(E)); sm−i+1(E), . . . , sm(E))
+Ei−2(t0(s0(E)), . . . , ti−2(s0(E), . . . , si−2(E)); sm−i+2(E), . . . , sm(E))}

for every integer i with 0 ≤ i ≤ m. Here ti(x0, . . . , xi) denotes the polynomial which was defined
in Definition 3.1.
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On the other hand we see from (28), (29), (30) and (31) that for every integer i with 0 ≤ i ≤ m

cl2m−i(X,L) = (−1)2m−i{e2m−i(X,L) − 2e2m−i−1(X,L) + e2m−i−2(X,L)}
= (−1)i{Ei−2(s0(E), . . . , si−2(E); cm−i+2(E), . . . , cm(E))

−2Ei−1(s0(E), . . . , si−1(E); cm−i+1(E), . . . , cm(E))
+Ei(s0(E), . . . , si(E); cm−i(E), . . . , cm(E))
+(m − i + 1)cm(Y ) − 2(m − i)cm(Y ) + (m − i − 1)cm(Y )}

= (−1)i{Ei(s0(E), . . . , si(E); cm−i(E), . . . , cm(E))
−2Ei−1(s0(E), . . . , si−1(E); cm−i+1(E), . . . , cm(E))
+Ei−2(s0(E), . . . , si−2(E); cm−i+2(E), . . . , cm(E))}

= (−1)i{Ei(t0(c0(E)), . . . , ti(c0(E), . . . , ci(E)); cm−i(E), . . . , cm(E))
−2Ei−1(t0(c0(E)), . . . , ti−1(c0(E), . . . , ci−1(E)); cm−i+1(E), . . . , cm(E))
+Ei−2(t0(c0(E)), . . . , ti−2(c0(E), . . . , ci−2(E)); cm−i+2(E), . . . , cm(E))}

= Fi(c1(E), . . . , cm(E)).

Therefore we get the assertion of Theorem 3.1.

Finally we note the following.

Proposition 3.2 Let (X,L) be an n-dimensional classical scroll over a smooth projective variety
Y of dimension m such that n ≥ 2m+1. Then cli(X,L) = 0 for every integer i with 2m+1 ≤ i ≤ n.

Proof. By [2, Theorem 3.1 (3.1.1)], we see that ej(X,L) = (j −m+1)cm(Y ) for every integer
j with j ≥ 2m − 1. Hence

cli(X,L) = (−1)i(ei(X,L) − 2ei−1(X,L) + ei−2(X,L)) = 0.

This completes the proof.
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