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Abstract

In this note, we investigate the formula of the sectional class of classical scrolls and we give
an answer of a conjecture proposed in a previous paper.

1 Introduction

Let (X, L) be a polarized manifold of dimension n. Assume that L is very ample and let ¢ : X —
PY be the morphism defined by |L|. Then ¢ is an embedding. In this situation, its dual variety
XV — (PN)Y is a hypersurface of N-dimensional projective space except some special types. Then
the class cl(X, L) of (X, L) is defined by the following.

| deg(XY), if XV is a hypersurface in (PV)Y
el(X, L) = { 0, otherwise.

As a generalization of this notion, in [3], we defined the ith sectional class cl;(X, L) for any ample
line bundle L and every integer ¢ with 0 < i < n (see Definition 2.2).

Here we note the following fact: Assume that L is very ample. Then there exists a sequence of
smooth subvarieties X D Xy D --- D X,,_; such that X; € |L;_1| and dim X; = n — j for every
integer j with 1 < j < n — i, where L; = L|x, and Lo := L. In particular, X, _; is a smooth
projective variety of dimension ¢ and L,,_; is a very ample line bundle on X,,_;. Then cl;(X, L) is
equal to the class of (X,,—;, Lp—;). This is the reason why we call this invariant the ith sectional
class.

In [4], we calculated the sectional class of special polarized manifolds. For example, we consider
the case where (X, L) is a classical scroll over a smooth projective variety Y of dimension m such
that n := dim X > 2m. Namely, there exists an ample vector bundle £ on Y of rank » > m + 1
such that (X, L) & (Py (€), H(E)), where H(E) is the tautological line bundle. Here we note that
we need the assumption n > 2m in order to define and compare cl;(X, L) and cly,,—;(X, L) for
every integer ¢ with 0 < ¢ < m. Then we get the following:

(i) If m =1, then by [4, Example 2.1 (ix)] we have

51(€), ifi =0,

4 ) 29(C) = 242¢1(8),  ifi=1,

(1) (X L) =9 ce), ifi=2,
0, if ¢ >3 and n > 3.
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(ii) If m = 2, then by [4, Example 2.1 (x)] we have

82(5), ifi =0,
(81(5)+Ks)81(5)+282(8), ifi =1,
CQ(S)+301(8)2+2K501(5), if i =2,

(2) (X L) =9 (C(€) + Ke)er(€) + 260(E),  ifi =3,
c2(8), if i =4,
0, if4>5and n > 5.

(iii) If m = 3, then by [4, Example 2.1] we have
s3(E), if i =0,
353(8)+(81(5)—|—Ky)82(5), ifi =1,

353(5) + 12(51(5) + KY)SQ(E)
+(81(<€) + Ky)81(5)2 + CQ(Y)Sl(g), ifi = 2,

—Cg(Y) + 203(5) — 261(5)02(5) + 401(5)3

(3) (X, L +3Kyci1(E)? +2¢o(Y)er (€), ifi =3,

~

363(5) + 12(61(5) + KY)CQ(E)

+(c1(&) + Ky)e1(8)? + c2(Y)er (€), if i = 4,
3e3(&) + (c1(€) + Ky )ea(€), if i =75,
c3(€), if i =6,
0, ifi >7andn>7.

The above equations show that there exists a relation between cl; (X, L) and cly,,,—; (X, L). Here
we note that for every integer ¢ with 0 < ¢ < m, cl;(X, L) can be written by the Segre classes

$1(€), ..., 8m(E).

Definition 1.1 For every integer ¢ with 0 < ¢ < m, we define the polynomial F;(t1,...,t,) €
Z[t1,...,tm] such that the following equality holds.

Fi(51(&)y...,8m(E)) = cli(X, L).
Then we see from the above that if m = 1, 2 and 3, then
cli(X,L) = Fopm—j(c1(€),...,cm(E))

for m < j < 2m. In general, we can prove the following theorem, which was proposed in [4] and is
the main result of this paper.

Theorem 1.1 Let a polarized manifold (X, L) be a classical scroll over a smooth projective variety
Y with dim X = n and dimY = m. Let £ be an ample vector bundle on'Y such that X = Py (£)
and L = H(E). Let Fy(ty,...,tm) be the polynomial defined in Definition 1.1 for every integer i
with 0 <1 < m. Assume that n > 2m. Then for any integer j with m < j < 2m we have

Clj(Xa L) = F2m—j(cl(5)7 s 7Cm(5))

In particular

Fr(51(E), .., 5m(E)) = Fun(c1(E), ..., cm(E)).



By Theorem 1.1 we can easily calculate cla,—; (X, L) (resp. cl;(X, L)) if we are able to calculate
cl;(X, L) (resp. cloy,—i(X, L)). By this relation we expect that we can get some useful information
about cloy,—;(X, L) (resp. cl;(X,L)) from several properties of cl;(X, L) (resp. clom—i(X,L)).
Moreover if i = m, then we have cl,,,(X, L) = F(c1(E),...,cm(E)) = Fn(s1(E),...,sm(E)) by
Theorem 1.1. So cl,, (X, L) may have special and interesting properties. We will study these on
another occasion.

2 Preliminaries

Definition 2.1 (See [1, Definition 3.1].) Let (X, L) be a polarized manifold of dimension n, and
i an integer with 0 < ¢ < n. Then the ith sectional Fuler number e;(X, L) of (X, L) is defined by
the following:

e(X, L) = 3 (1) <” o l” -1

) Ci_l(X)Ln7i+l.
=0

Definition 2.2 (See [3, Definitions 2.8 and 2.9]. See also [3, Remark 2.6].) Let (X,L) be a
polarized manifold of dimension n and i an integer with 0 < i < n. Then the ith sectional class of
(X, L) is defined by the following.

eo(X, L), if i =0,
(X, L) = (=1){e1(X, L) — 2e0(X, L)}, ifi=1,
(—1)i{6i(X7 L) — 261',1(X, L) + eifz(X, L)}, if 2 S 7 S n.

Definition 2.3 Let Y be a smooth projective variety of dimension m and £ a vector bundle of
rank r on Y.

(i) The Chern polynomial c;(E) is defined by ¢:(€) = Z ci(ENt.
i>0

(ii) For every integer j with j > 0, the jth Segre class s;(F) of F is defined by the following
equation: ¢;(FY)si(F) = 1, where ¢;(F") is the Chern polynomial of F¥ and s;(F) =

>0 55 (F).

Remark 2.1 (i) Let Y be a smooth projective variety and F a vector bundle on X. Let 5;(F)
be the Segre class which is defined in [5, Chapter 3]. Then s;(F) = §;(F").

(ii) For every integer ¢ with 1 < ¢, s;(F) can be written by using the Chern classes ¢;(F) with
1 < j <i. (For example, s1(F) = c1(F), s2(F) = c1(F)? — ca(F), and so on.)

Notation 2.1 Let (X, L) be an n-dimensional classical scroll over a smooth projective variety ¥
of dimension m. Let £ be an ample vector bundle of rank r on Y such that X = Py (&) and
L=H(E). Let p: X — Y be the projection. Then n = m + r — 1. In this paper we assume that
r > m+ 1, that is, n > 2m.

Proposition 2.1 Let (X, L) be a classical scroll over a smooth projective variety Y of dimension
m. We use notations in Notation 2.1. Then for every integer ¢ with 0 < i < n the following holds.

) =SS (T

i 1=t , (m—t—?
t=0 k=0

)ck (E) et (V) sm—p—t(E).

Proof.  See the first part of the proof in [2, Theorem 3.1]. O



3 Main result

Definition 3.1 Let Y be a smooth projective variety of dimension m and £ a vector bundle on

Y. Then for every integer ¢ with 0 < i < m we define the polynomial ¢;(zo,...,z;) € Z[xo, ...,z
which satisfies the following.
(4) Ci((c;) :ti(SO(S),...,Si(g)).

For example, we see that tq(xg) = 1, t1(z0, 1) = o1, t2(w0, 71, 72) = 22 — 25 and so on.

Proposition 3.1 LetY be a smooth projective variety of dimension m and € a vector bundle over
Y. For every integer i with 0 < i < m, we have $;(E) = t;(co(E),...,ci(E)).

Proof. We prove this by induction.
(I) If ¢ = 0, then this is true because ¢o(€) = s0(€) = 1.
(IT) Assume that the assertion holds for every ¢ with ¢ < k — 1. So we consider the case i = k.
Then by Definition 2.3 (ii)
(5) > (1)ei(&)si(E) =o0.
itj=k
i>0,5>0

Hence by (5) we have
tp(s0(E),...,s6(E)) = k(&)
(DM Y (1) e(€)s;(€)

i+i=k
jz1

= (=D D (=) ti(s0(E), -, 5i(E))s;(E).
i+j=k
j>1
In particular, we have
(6) th(zo,.. . xx) = (=¥ Y (=1)ti(=o, .2
it+j=k
i>1

On the other hand, we see from the induction hypothesis and (6) that

si(€) = = Y (FD)'a(€)s(6)

itj=k
i>1
= (=DM Y (=) a(@)ti(eo(€), - ei(E))
i+j=k
i>1
= tk(CO((c;), ey Ck((‘:))
So we get the assertion. O

The following theorem which is Theorem 1.1 in Introduction is the main result of this note.

Theorem 3.1 Let (X, L) be an n-dimensional classical scroll over a smooth projective variety Y
of dimension m such that n > 2m. Let F;(ty,...,t,) be the polynomial defined in Definition 1.1
for every integer i with 0 < i < m. We use notations in Notation 2.1. Then for any integer j with
m < j < 2m we have

Clj(X, L) = FQm_j(Cl(g), “en 7Cm(g))

In particular

Fr(51(E), .., 5m(E)) = Fun(c1(E), ..., cm(E)).



Proof. First we prove the following.

Claim 3.1 For any integer i with 0 < i < m, we have

eom—2-i(X, L) = Zi ( i 2) Cm—t-1(EV)et(Y)si(€) + (m — i — Dem(Y),

t=0 1=0 it
i—14i—1—t m—1t—2

eom1-i(X, L) = Y Y (—1)H (Z.1tl)Cmtl(<‘3v)0t(Y)Sl(5)+(m—i)cm(Y%
t=0 1=0
i—21i—2—t , m—t—29

oni(X,L) = ([ S 2 ) emeia(€)a)sE) + (m i+ e (D),

t=0 1=0

(We note that ifi =0 (resp. i =0,1), then Et 0 ; é f(=1) B i t; Dem—t—1(EV)e(Y)s(E) =

0 (resp. Zt o ; § Y~ 1)i_2_t(iTg_ttfl)Cm—t—l(g )Ct(Y) 1(€) =0).)

Proof. (A) First we treat es,,—2—;(X, L). Then by Proposition 2.1

—2— 2m—2—i—t
2m—2—i—t—k m—t—2
€2m—2— 1 X L Z ( Z 1) t (27’77, 9t k)Ck(gv)Ct(Y)Smkt(5)> .

t= k=0

Here we note that
(7) 2m —2 —i—t > k.
We set

B(i, 1) = (—1)2m2imt=k (2m motE k) W )er(Y )5 4(E).

If E(i, k,t) # 0, then the following two conditions hold by noting (7).

(8) 0<k<m.
(9) 0<t<m.
(10) k+t < min{m,2m — 2 —i}.

Ifm—t—2>0and m—t—2 < 2m—2—i—t—k, then (2m7_”2__t1__2t_k) = 0. Hence if E(i, k,t) # 0,

thenm —t—2<0orm—t—2>2m—2—i—1t—k, that is,

(11) t>m—2 or k>m—i.

(A.1) The case where 0 <i <m — 3.
We see from (8), (9), (10) and (11) that the possible cases of (k,t) are as follows.

k=m—i, t=4,i—1,...,1,0

k=0,1,2 t=m-2, k=m—i+1, t=i—1,...,1,0
(A11){ k=01, t=m—1,  (A.12) ,
k=0, t=m. :
k=m, t=0
In the case (A.1.1) we have
m m—t
(12) E(i,k,t) = cm1(Y)s1(E) +c1(EV)em1(Y) 4+ (m —i—1Dep(Y)

= (m—1—=19)cy,(Y).



On the other hand, in the case (A.1.2) we get

S (—1)meristk (2m 1”2__2__275 B k) ek (EV)et(Y)sm—1—e(E)

= (—1)mormk <2m _m2__tz__2t _ k) i (EY)et(Y)sm—r—t(E).

t=0 k=m—i

Here we put j := k — (m — 7). Then by ¢t <i <m — 3 we have

- — \2m—2—i—t—k m—t—2 v
> ¥ (o "5 mss(E)
i i—t
_ Cym—2—t—j( m—t—=2 ) (ev o
S (S e i)
i i—t

=SS (M € eV sy i)

Hence we have

(13) 62m727i<X7 L)

) DI (m - 2) Chmi(€)ee(Y)8i— -t (€) + (m — 1 — e (V).

t=0 j=0 J

(A.2) The case where i = m — 2.
We see from (8), (9), (10) and (11) that the possible cases of (k,t) are as follows.

k=2, t=m-2m-3,...,1,0
k=0,1,2 t=m—2, k=3, t=m—3,...,1,0
(A.21){ k=01 m—1,  (A.2.2) .
k=0 :
k=m, t=0.

Here we note that the case (k,t) = (2,m—2) is contained in both the cases (A.2.1) and (A.2.2).
So we count the case (k,t) = (2, m — 2) as the case (A.2.2).
In the case (A.2.1) we have

m m—t

(14) S Y Bl k) = emo1(Y)s1(E) + c1(EV)em-1(Y) + cm(Y) = cm(Y).

t=m—2 k=0
On the other hand, in the case (A.2.2) by the same argument as above we get

m m—k

(15) > ) E(ikt)

k=2 t=0



Hence we see from (14) and (15) that for i = m — 2

(16) egm,Q,i(X, L)
=N (-ymrt (m ‘j - 2) Ciam—i(€)ci(Y)8i— -4 () + (m — 1 = i)em (V).

t=0 j=0

(A.3) The case where i =m — 1.
We see from (8), (9), (10) and (11) that the possible cases of (k,t) are as follows.

1t:t: m=2(A3.2)

0
0 m — 1.

(A.3.1) { ;

Here we note that the case (k,t) = (1,m —2) is contained in both the cases (A.3.1) and (A.3.2).
So we count the case (k,t) = (1,m — 2) as the case (A.3.2).
In the case (A.3.1) we have

m—1 m-—1-—t

(17) S S Bk t) = em 1 (V)s1(6).

t=m—2 k=0

On the other hand, in the case (A.3.2) by the same argument as above we get

=0
m—2m—1—t
m—1—2

= Z (_1)2m—27(m71)7t7k (2m e m—1)—t— k> Ck(gv)ct(y)smfkft(g)
=Y % (M el smn )

m—2—t—j m—t—2
= (—1) 2—t—j (m 9 ]) Cj+1(5V)Ct(Y)S(m,1),j,t(5).

We note that in the final step of the above equalities we use (m"_l;:Ej) =0 for (¢,7) = (0,m —
1),(1,m —2),...,(m —1,0). Moreover
m—1t—2

a9 XS (M () aly) s (€)

D) N (m ‘j B 2) ¢jm—i(E)er(Y)si—j—1(E) — e1(E)em—(Y).

We also note that in the final step of the above equalities
m—t—2\ [ ("7 ift<m-—2,
m-2—-t—j) | (") -1 ift=m-1L

(Here we note that if ¢ = m — 1, then j = 0 in this case.)



Hence we see from (17), (18) and (19) that for i =m — 1

(20) egm,Q,i(X, L)

) N (m T 2) rem i€ )er (Y )51yt (E) 1 (m — 1 — Den(Y).

t=0 j=0

(A.4) The case where i = m.
We see from (8), (9), (10) and (11) that the possible cases of (k,t) are as follows.

,m—3,...,1,0,

(A41) k=0, t=m—2. (A42)

Here we note that the case (k,t) = (0,m —2) is contained in both the cases (A.4.1) and (A.4.2).
So we count the case (k,t) = (0,m — 2) as the case (A.4.2) and it suffices to calculate the case
(A.4.2). By the same argument as above we get

3

21)  egm 9 i(X,L) =
(21)  eam—2-i(X, L) m_9—t—

QmZ_Q:t )= 2”( meote .)cj(EV)ct(Y)sm_j_t(g)

t—2

B ] PR T F )

7 i

t

Il
o

7=0

We note that in the final step of the above equalities we use (m"igzzj) = 0for (¢,5) = (0,m), (1, m—
1),...,(m,0),(0,m—1),(1,m—2),...,(m—1,0).
On the other hand

m—t—2 (mjﬂ) ift <m—2,
(22) <m2ti>:{(m?2)—@4y ift=m—1,m.

(Here we note that if t = m — 1 (resp. t = m), then j = 0,1 (resp. j = 0) in this case.)
Hence we see from (21) and (22) that for i = m

(23) €oam—2— Z(X L)

=SS (T Y€ el gi(€)
t=0 j=0

_ Lo m—2—t—j (M —1—2 c (EVe s

=S e ( ) ) i€Vl (Y )31y (E)
+Cm_71(Y)81(5) +er(E)em—1(Y) = en(Y)

— SOy (i (m o 2) remi(E)er(V)siegt(E) + (m — i — Ve (V)
t=0 j=0

By (13), (16), (20) and (23) for any 4 with 0 <4 < m we have

: (mo—t—2
s s(X.1) = 33 1yt ("1 e €)Y Dsisal€) + =i (1)
t=0 j= O



Furthermore we set [ :=¢ —t¢ — j. Then

0j= 0 J

=ZZ yr (”Z__ L f)cmu@f Jeo(Y)si(€)
t=0 1=0

~33 1)Zt<ﬂz__tt__lz)cmtl(S)ct(Y)sl(g)
t=0 [=0

Hence for every integer ¢ with 0 <i < m

i it m—t—9
(24) eam—o-i(X, L) ) Cm—t—1(E)et(Y)s1(E) + (m — i — 1)ep (V).
prde (Z—t—l) i !

(B) Next we consider eg;,—1(X, L) and egp, (X, L). Then by [2, Theorem 3.1 (3.1.1)] we have

(25) eam-1(X,L) = men(Y),
(26) eam (X, L) (m+ 1)ep(Y).

(C) By (24), (25) and (26), we get the assertion of Claim 3.1. O

Here we set
Bilo(€)s- s cs(€)s 5mi () 5m(€)) = 3O (—1)”(”7‘“2)% () er (V) sm_po(£).

Then by Proposition 2.1 we have
(27) Ei(co(€)y...,ci(E); sm—i(E),...,sm(E)) = ei(X, L).

Moreover by Claim 3.1 we have

(28) eam—o—i(X, L) = FEi(so(&),...,8:(E);cmi(&E),. ., cm(E)) + (m—i—1)cn(Y),
(29) €2m717i(X7L) = Ei,l(so(é’),...,si,l(é‘);cm,i+1(5),...,cm(g))—I—(m—i)cm(Y),
(30)  eomi(X,L) = Eio(s0(E).--s8i2(E);cmiza(E)serem(€)) + (m —i+ Ve (Y)

for every integer ¢ with 0 < i < m. By (27) and Definitions 1.1 and 2.2 we get

(31) Fi(51(€), .., 5m(£))
=cl;(X, L)
= (~1){Ei(co(E)s -, i) sm—i(E); -, 5m(E))
—2F; _1(co(&), ..., ¢ci—1(E); $m—it1(E)y ...y 8m(E))
+Ei—2(co(E),- -1 ci—2(E); Sm—it2(E), - 5m(E))}
= (-1){E; (t0(80(5)) ti(50(€), -, 5:(€)); sm—i(E), - -, 5m(E))

—2E;_1(to(s0(£)), - - ti—1(s0(E), - - -, 5i-1(E)); Sm-i+1(E), - - ., 5m(E))
+Ei—2(to(s0(€)), -+, ti—2(s0(E), -+, 8i-2(€)); Sm—i+2(E)s - -+, 5m(E)) }
for every integer ¢ with 0 < ¢ < m. Here t;(xo,...,x;) denotes the polynomial which was defined

in Definition 3.1.



On the other hand we see from (28), (29), (30) and (31) that for every integer ¢ with 0 <i <m
clom_i(X,L) = (=1)* Hegm_i(X,L) — 2eom_i—1(X,L) + eam_i_2(X,L)}

= (=DYEi_2(50(E), -, 8i-2(E)icm_italE), ... cm(E))
—2F;_1(50(E)y ..., 8i-1(E);em—it1(E)y .. em(E))
+E;i(50(E), ..., 5:(E);em—i(E),...,cm(E))
+(m—i+ 1)cm( )—2(m —)ep(Y)+ (m—1i—1)en(Y)}

= (_l)i{Ei(SO(S ) 5i(E); em—i(E), ... em(E))
—2E;_1(80(E), .., 8i-1(E); em—it1(E)y .- -y em(E))
+Ei—2(50(E), -, 8i-2(E); em—it2(E), - .., em(E))}

D HBto(oE))r o tier(E). - (E)): msE). . (£

—2E;_1(to(co(€)), - -, ti—1(co(€), - - -, cim1(E)); m—i+1(E), .., cm(E))
+Eis(to(co(£)), - -, tima(co(£), - .,ci,g(é’));cm,i+2(€),.. em(€))}
= Fi(cl(5)7...,cm(5)).
Therefore we get the assertion of Theorem 3.1. O

Finally we note the following.

Proposition 3.2 Let (X, L) be an n-dimensional classical scroll over a smooth projective variety
Y of dimension m such that n > 2m+1. Then cl;(X, L) = 0 for every integer i with 2m+1 < i < n.

Proof. By [2, Theorem 3.1 (3.1.1)], we see that e;(X, L) = (j — m+1)c,,(Y) for every integer
j with 7 > 2m — 1. Hence

cli(X, L) = (=1)%(es(X, L) — 2e;_1(X,L) + e;_2(X, L)) = 0.

This completes the proof. O
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