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Abstract. In the stable homotopy groups of spheres, we have Greek letter
elements due to J. F. Adams [2], L. Smith [12] and H. Toda [13]. Here we

study the non-triviality of products of the first alpha element, the first and the

second beta elements and a gamma element in the homotopy groups.

1. Introduction

Let S(p) denote the stable homotopy category of spectra localized at a prime

number p > 5, and S0 ∈ S(p) be the sphere spectrum localized at p. Since S0

is a generator of S(p) in a sense, the homotopy groups π∗(S
0) play an impor-

tant role to understand the category S(p). The homotopy groups π∗(S
0) form

a commutative graded algebra with multiplication given by composition. Unfor-
tunately, the structure of π∗(S

0) is little known. G. Nishida showed that every
element in πt(S

0) for t > 0 is nilpotent. We have generators of the groups called
Greek letter elements. In this paper, we study whether or not a product of the
Greek letter elements α1 ∈ πq−1(S0), β1 ∈ πpq−2(S0), β2 ∈ π(2p+1)q−2(S0) and

γt ∈ π(tp2+(t−1)p+t−2)q−3(S0) for t ≥ 1 is trivial. Hereafter, we put q = 2p − 2 as
usual.

In [1], M. Aubry determined the homotopy groups π∗(S
0) through total degree

less than (3p2 + 4p)q. In particular, we have the following:

Theorem 1.1 ([1]). α1β2γ2 and βr1β2γ2 for r < p are non-trivial, and α1β1β2γ2 =
0.

X. Liu showed the theorems:

Theorem 1.2 ([5]). The products α1β2γs are non-trivial for 2 < s < p.

Theorem 1.3 ([14]). The products α1β1β2γs are non-trivial for 2 < s < p.

These two theorems are shown by use of the classical Adams spectral sequence.
Thus, the subscript s of γs must be greater than two.

Consider the Adams-Novikov spectral sequence {E∗,∗r (X)} converging to the
homotopy groups π∗(X) of a spectrum X, and let

α1 ∈ E1,q
2 (S0), β1 ∈ E

2,pq
2 (S0), β2 ∈ E

2,(2p+1)q
2 (S0) and

γt ∈ E
3,(tp2+(t−1)p+t−2)q
2 (S0) (t ≥ 1)

be the elements detecting the Greek letter elements α1, β1, β2 and γt, respectively.
Observing products of these elements in the E2-term, we obtained the following
theorems:
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Theorem 1.4 ([11, Th. 1.1]). The products α1β
r
1γup+t 6= 0 if 1 < t < t + u < p

and r ≤ p− 2.

Theorem 1.5 ([3, Th. 1.4]). Let t be a positive integer with p - t(t2 − 1). Then,
β2γt 6= 0 ∈ π∗(S0).

C. -N. Lee showed that

Theorem 1.6 ([4, Th. 4.1, Th. 4.4]). Let p ≥ 7. The products βr1γt and βr−11 β2γt
are non-trivial if 0 < t < p and r ≤ p − 1. The product α1β

r
1γt is non-trivial if

2 ≤ t < p and r ≤ p− 2.

By using a result βp−21 β2γ2 6= 0 of Lee’s, we deduce the non-triviality of the

product βp−21 β2γp+2:

Theorem 1.7. Let t be an integer with 1 < t < p or t = p+ 2. Then, the products
βr1β2γt are non-trivial for 0 ≤ r ≤ p− 2.

Consider spectra V (2)k for k ≥ 1 characterized by the Brown-Peterson homology
BP∗(V (2)k) = BP∗/(p, v1, v

k
2 ) (see (2.6)). The spectrum V (2) = V (2)1 is the

second Smith-Toda spectrum. It is well known that γ1 = α1βp−1, and so α1γ1 = 0

as well as α1γ1 = 0. If t = p, p + 1, then γt = 0 ∈ E3,(tp2+(t−1)p+t−2)q
2 (V (2)) (see

(3.5), cf. [4, Lemma 4.3]).
For products α1β2γt in the Adams-Novikov E2-term for computing π∗(V (2)),

we have

Theorem 1.8. α1β2γt = 0 ∈ E6,(tp2+(t+1)p+t)q
2 (V (2)) for t ≥ p.

By use of the May and the Novikov spectral sequences together with Toda’s
calculation [13] on the May E1-term, we show the non-triviality of an element

α1β2γp+2 6= 0 ∈ E6,(p3+3p2+4p+2)q
2 (V (2)3) in Lemma 2.20. From this, we extend

non-triviality of products of Theorems 1.1 and 1.2 to the following:

Theorem 1.9. Let t be an integer with 1 < t < p or t = p + 2. Then, α1β2γt 6=
0 ∈ π∗(S0).

In the next section, we study the Adams-Novikov E2-term by use of the May and
the Novikov spectral sequences with Toda’s calculation [13] on the May E1-term.
We then show the non-triviality of α1β2γp+2 in Theorem 1.9 and the triviality of
the products in Theorem 1.8 in Section 3. The last section is devoted to show the
non-triviality of the composite βp−21 β2γp+2 in Theorem 1.7.

2. The Adams-Novikov E2-terms

We fix a prime number p ≥ 7. Let BP denote the Brown-Peterson spectrum at
the prime p, and we have a Hopf algebroid

(BP∗, BP∗(BP )) = (Z(p)[v1, v2, . . . ], BP∗[t1, t2, . . . ])

with structure maps: the left and the right units ηL, ηR : BP∗ → BP∗(BP ), the
coproduct ∆: BP∗(BP ) → BP∗(BP ) ⊗BP∗ BP∗(BP ), the counit ε : BP∗(BP ) →
BP∗ and the conjugation c : BP∗(BP )→ BP∗(BP ). Here, vi and ti are generators
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of degree 2pi − 2 = e(i)q for e(i) = pi−1
p−1 and q = 2p − 2. We notice here the

following action of the structure maps on the generators:

(2.1)

ηR(vn) ≡ vn + vn−1t
pn−1

1 − vpn−1t1 mod In−1 (n ≥ 2),

ηR(v3) ≡ v3 + v2t
p2

1 + v1t
p
2 − t1ηR(vp2) + v1w1(v2)− vp

2

1 t2 mod (p),

ηR(v4) ≡ v4 + v3t
p3

1 + v2t
p2

2 − ηR(vp3)t1 − vp
2

2 t2 mod I2,

∆(tn) ≡
∑n
i=0 ti ⊗ t

pi

n−i + vn−1b1,n−2 mod In−1 (n ≥ 1),

∆(t4) ≡
∑4
i=0 ti ⊗ t

pi

4−i + v3b1,2 + v2b2,1 mod I2,

c(t1) = −t1, c(t2) = tp+1
1 − t2 and

∆(c(x)) = (c⊗ c)T∆(x) for x ∈ BP∗(BP ).

(cf. [10, Ch. 4]). Here, T : BP∗(BP ) ⊗ BP∗(BP ) → BP∗(BP ) ⊗ BP∗(BP ) de-
notes the switching map given by T (x ⊗ y) = y ⊗ x, In−1 denotes the invari-
ant ideal of BP∗ generated by n − 1 elements v0 = p, v1, . . . , vn−2 (I0 = 0),

w1(v2) =
(
vp2 + vp1t

p2

1 − v
p2

1 t
p
1 − (v2 + v1t

p
1 − v

p
1t1)p

)
/p, and b1,k, b2,k and b3,k ∈

BP ∗ (BP ) ⊗BP∗ BP∗(BP ) for k ≥ 0 are the elements fitting in the following
equalities

(2.2)
d(tp

k+1

1 ) = pb1,k, d(tp
k+1

2 ) = −tp
k+1

1 ⊗ tp
k+2

1 − vp
k+1

1 bp
k+1

1,0 + pb2,k and

d(tp
k+1

3 ) = −tp
k+1

1 ⊗ tp
k+2

2 − tp
k+1

2 ⊗ tp
k+3

1 − vp
k+1

2 bp
k+1

1,1 − vp
k+1

1 bp
k+1

2,0 + pb3,k,

in which d(x) = 1⊗x+x⊗1−∆(x) ∈ BP∗(BP )⊗BP∗BP∗(BP ). By the definition
(2.2) and the formulas on ∆(t1) and ∆(t2) in (2.1), we see that

(2.3)
d(b2,i) = b1,i ⊗ tp

i+2

1 − tp
i+1

1 ⊗ b1,i+1 for i ≥ 0, and

d(b3,0) ≡ b1,0 ⊗ tp
2

2 − t
p
1 ⊗ b2,1 + b2,0 ⊗ tp

3

1 − t
p
2 ⊗ b1,2 mod (p).

We have the Adams-Novikov spectral sequence:

Es,t2 (W ) = Exts,tBP∗(BP )(BP∗, BP∗(W )) =⇒ πt−s(W )

for a spectrum W . In this paper, we use the cobar complex Ω∗,∗BP∗(W ) for

studying elements of the E2-term: Es,t2 (W ) = Hs,t(BP∗(W )) (cf. [7], [4]). Here,

(2.4) Hs,t(M) = Exts,tBP∗(BP )(BP∗,M)

for a BP∗(BP )-comodule M . Furthermore, we consider the k-th Smith-Toda spec-
trum V (k) for k = 0, 1, 2 defined by the cofiber sequences

(2.5)
S0 p−→ S0 i−→ V (0)

j−→ S1, ΣqV (0)
α−→ V (0)

i1−→ V (1)
j1−→ Σq+1V (0) and

Σ(p+1)qV (1)
β−→ V (1)

i2−→ V (2)
j2−→ Σ(p+1)q+1V (1)

for the maps p, α and β, which induces a multiplication by p, v1 and v2 on the
BP∗-homologies, respectively ([2], [12], cf. [10]). We also consider similar spectra
V (2)k for k ≥ 2 defined by the cofiber sequences

(2.6) Σk(p+1)qV (1)
βk

−−→ V (1)
ĩk−→ V (2)k

j̃k−→ Σk(p+1)q+1V (1).

We notice that V (2)k is a ring spectrum if k ≤ (p − 2)/2 ([9, Lemma 4.1], where
it is denoted by Lk). Note that BP∗(V (k)) = BP∗/Ik+1, and BP∗(V (2)k) =
BP∗/(p, v1, v

k
2 ).
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Consider a Hopf algebra T = Z/p[t1, t2, . . . ] = BP∗(BP )/(p, v1, v2, . . . ) with
structure maps obtained from BP∗(BP ) under the projection BP∗(BP ) → T .
May [6] constructed spectral sequences:

(2.7) E1 = H∗(V (L))⇒ H∗(T ) and E2 = P (bi,j)⊗H∗(U(L))⇒ H∗(V (L)).

Here, L denotes the restricted Lie algebra associated to the Hopf algebra T and
U(L) and V (L) = U(L)/(ξ(x) − xp) are the enveloping algebras of L (ξ is the “p
operation”). The bidegree of the generator bi,j is (2, pj+1e(i)q), and bi,j ’s corre-
spond to those given above for i = 1, 2, 3. The cohomology H∗(U(L)) is isomorphic
to the cohomology of the exterior complex E(ti,j : i ≥ 1, j ≥ 0) over generators ti,j
with bidegree (1, pje(i)q) along with the differential given by

(2.8) d(ti,j) =

i−1∑
k=1

ti−k,j+ktk,j .

In [13], Toda determined Hs,t(U(L)) for t− s ≤ (p3 + 3p2 + 2p+ 1)q − 4, which is
additively generated by the unit element 1 and the elements in the table:

h0 h1 g0 k0 k0h0 h2
1 p p+ 2 2p+ 1 2p+ 2 p2

h2h0 g1 l1 l2 l1h1 k1
p2 + 1 p2 + 2p p2 + 2p+ 3 p2 + 3p+ 1 p2 + 3p+ 3 2p2 + p

l3 k1h1 l1h2 m1 m1h0 l4
2p2 + p+ 2 2p2 + 2p 2p2 + 2p+ 3 2p2 + 4p+ 2 2p2 + 4p+ 3 3p2 + 2p+ 1

l4h0 l4h1 l4g0 l4k0 l4k0h0 h3
3p2 + 2p+ 2 3p2 + 3p+ 1 3p2 + 3p+ 3 3p2 + 4p+ 2 3p2 + 4p+ 3 p3

h3h0 h3h1 h3g0 h3k0 h3k0h0 g2
p3 + 1 p3 + p p3 + p+ 2 p3 + 2p+ 1 p3 + 2p+ 2 p3 + 2p2

g2h0 l5 m2 m3 l6 m4

p3 + 2p2 + 1 p3 + 2p2 + 3p
p3 + 2p2

+3p+ 4

p3 + 2p2

+4p+ 1
p3 + 3p2 + p

p3 + 3p2

+p+ 2

Table 2.9

Here, the integer under each element is the degree of it divided by q, and

(2.10)

hi = [t1,i], gi = [t1,it2,i], ki = [t1,i+1t2,i], (i ≥ 0);
l1 = [t3,0t2,0t1,0], l2 = [t2,1t2,0t1,1], l3 = [t3,0t1,2t1,0],
l4 = [t3,0t2,1t1,2], l5 = [t3,1t2,1t1,1], l6 = [t2,2t2,1t1,2];

m1 = [t3,0t2,1t2,0t1,1], m2 = [t4,0t3,0t2,0t1,0],
m3 = [t3,1t2,1t2,0t1,1], and m4 = [t2,2t3,0t1,2t1,0].

Lemma 2.11. The cohomology H5,(p3+3p2+3p+1)q(T ) is a subquotient of Z/p{l4h3h1},
and H5,(p3+3p2+4p+2)q(T ) = 0.

Proof. We consider the May spectral sequences (2.7). The module (E(ti,j))
5,tq

for
t = (p3 + 3p2 + ap + a − 2) with a = 3 or a = 4 is generated by the monomials of
the form

t
ε1,0
1,0 t

ε1,1
1,1 t

ε1,2
1,2 t

ε1,3
1,3 t

ε2,0
2,0 t

ε2,1
2,1 t

ε2,2
2,2 t

ε3,0
3,0 t

ε3,1
3,1 t

ε4,0
4,0
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with εi,j ∈ {0, 1} satisfying equations

5 = ε1,0 + ε1,1 + ε1,2 + ε1,3 + ε2,0 + ε2,1 + ε2,2 + ε3,0 + ε3,1 + ε4,0,(1)

1 = ε1,3 + ε2,2 + ε3,1 + ε4,0,(2)

3 = ε1,2 + ε2,1 + ε2,2 + ε3,0 + ε3,1 + ε4,0,(3)

a = ε1,1 + ε2,0 + ε2,1 + ε3,0 + ε3,1 + ε4,0 and(4)

a− 2 = ε1,0 + ε2,0 + ε3,0 + ε4,0.(5)

These equations implies

4 = ε1,0 + ε1,1 + ε1,2 + ε2,0 + ε2,1 + ε3,0 by (1) and (2),(6)

2 = ε1,0 + ε1,1 + ε1,3 + ε2,0 by (1) and (3),(7)

2 = ε1,2 + ε2,1 + ε3,0 − ε1,3 by (2) and (3), and(8)

2 = ε1,1 + ε2,1 + ε3,1 − ε1,0 by (4) and (5).(9)

The case for ε3,1 = 0: In this case, we see that ε1,1 = ε2,1 = 1 and ε1,0 = 0
by (9). Then,

2 = ε1,2 + ε2,0 + ε3,0 by (6) and ε1,3 + ε2,0 = 1 by (7).

• If ε1,3 = 1, then ε2,0 = 0, and so ε1,2 = ε3,0 = 1, and obtain a monomial
t1,1t2,1t1,2t3,0t1,3 at degree (p3+3p2+3p+1)q, which yields the element
l4h1h3.

• If ε1,3 = 0, then ε2,0 = 1, and so ε1,2 + ε3,0 = 1.
– If ε1,2 = 1, then the monomial has a factor t1,1t2,1t2,0t1,2 of degree

(2p2 + 3p+ 1)q, and so we obtain
t1,1t2,1t2,0t1,2t2,2 at a = 3, and
t1,1t2,1t2,0t1,2t4,0 at a = 4.

The first monomial gives us the element l2g2 = l6k0 ∈ H5,tq(U(L)).
We name the second monomial x1.

– If ε1,2 = 0, then ε3,0 = 1, and the monomial has a factor t1,1t2,1t2,0t3,0
of degree (2p2+4p+2)q, and so the monomial is t1,1t2,1t2,0t3,0t2,2
at degree (p3 + 3p2 + 4p+ 2)q. We name it x2.

The case for ε3,1 = 1: In this case, ε1,3 = ε2,2 = ε4,0 = 0 by (2). By (9),
1 = ε1,1 + ε2,1 − ε1,0.
• If ε1,0 = 1, then ε1,1 = ε2,1 = 1, and the monomial has a factor
t1,0t1,1t2,1t3,1 of degree (p3+2p2+3p+1). Therefore, we have monomials
t1,0t1,1t2,1t1,2t3,1 at a = 3 and t1,0t1,1t2,1t3,0t3,1 at a = 4. The first
monomial corresponds l5h2h0. By Table 2.9, we see that l5h0 = 0 and
the monomial yields nothing. We name the second one x3.

• If ε1,0 = 0, then 1 = ε1,1 + ε2,1. This together with (6) implies 3 =
ε1,2 + ε2,0 + ε3,0, and we obtain ε1,2 = ε2,0 = ε3,0 = 1. By (8), ε2,1 =
0, and so ε1,1 = 1. Therefore, we have t1,1t1,2t2,0t3,0t3,1 at degree
(p3 + 3p2 + 4p+ 2)q. We name it x4.

Now put

x̃1 = t1,1t2,1t2,0t1,2t3,1t1,0 x̃2 = t1,1t2,1t2,0t1,2t1,3t3,0

Then,

d(x1) = x̃1 + x̃2, d(x2) = −x̃2, d(x3) = −x̃1 and d(x4) = −x̃1 + x̃2,
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and

d(t1,1t2,1t3,0t4,0) = −x1 − x3 − x2 and d(t2,1t2,0t3,0t3,1) = −x2 + x3 − x4.

Thus, the elements xi for i = 1, 2, 3, 4 yield no element of H5,(p3+3p2+4p+2)q(U(L)).
We also have

d(t1,1t2,1t1,2t4,0 − t2,0t2,1t1,2t3,1)
= −t1,1t2,1t1,2(t3,1t1,0 + t2,2t2,0 + t1,3t3,0)− t1,1t1,0t2,1t1,2t3,1

+t2,0t2,1t1,2t2,2t1,1 = −2l2g2 + l4h3h1.

H5,tq(V (L)) for t = (p3 +3p2 +ap+a−2) with a = 3 or 4 also contains elements
obtained from the E1-term of the May spectral sequence (2.7):

b1,0H
3,t′q(U(L)) for t′ = t− p = (p3 + 3p2 + (a− 1)p+ a− 2), and

b21,0H
1,t′′q(U(L)) for t′′ = t− 2p = (p3 + 3p2 + (a− 2)p+ a− 2).

The latter module is trivial. We have a monomial of the complex (E(ti,j))
3,t′q

:

t2,1t3,0t4,0 (t′ = p3 + 3p2 + 3p+ 2).

on which the differential acts by d(t2,1t3,0t4,0) = t2,1t2,0t1,2t4,0 + · · · 6= 0, and this

monomial yields no element of H3,t′q(U(L)). Thus there is no element in these
modules.

From Table (2.9), we find no element of the form xbi,jbk,l or xbi,j for x ∈
H∗(U(L)) in our degree. �

For studying the Adams-Novikov E2-term, we consider the Novikov spectral
sequences

(2.12) E1 = ExtT (Z/p,Q) =⇒ E∗,∗2 (V (0))

(cf. [1, Lemme in p. 61]) and

(2.13) E1 = Z/p[vn]⊗ ExtT (Z/p,Q(n+ 1)) =⇒ ExtT (Z/p,Q(n))

(cf. [1, (1.4.3)]). Here,

(2.14) Q = Z/p[v1, v2, . . . ] and Q(n) = Q/(v1, . . . , vn−1)

are comodules with coactions given by

(2.15) η(vn) =

n∑
i=0

vit
pi

n−i.

We note that
ExtT (Z/p,Q(5)) = H∗(T )

in our range.
Among the generators (2.10) of H∗(U(L)), the elements gi and ki for i ≥ 0, l2, l4

and l6 survive to the Adams-Novikov E2-term, E∗2 (V (2)p) by the Massey products

(2.16)
gi = 〈hi, hi, hi+1〉 , ki = 〈hi, hi+1, hi+1〉 ,

l2 = 〈h0, h1, g1〉 , l4 = −2 〈h2, h2, h2, k0〉 and l6 = 〈h1, h2, g2〉 .
These satisfy

(2.17) gi = 〈hi+1, hi, hi〉 , 2gi = −〈hi, hi+1, hi〉 and 2ki = −〈hi+1, hi, hi+1〉
for i ≥ 0. By a juggling theorem of the Massey products, we also see that

higi = 0, hi+1gi = hiki and gihi+2 = 0.
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We moreover have elements of the E∗,∗2 (V (2)p):

(2.18) v3h2 = 〈v2, h2, h2〉 and xb2,0 =

〈
x, (h1, h2),

(
−b1
b0

)〉
for an element x ∈ E∗,∗2 (V (2)p) with xh1 = 0 = xh2. Hereafter, we write bi for
the homology class of b1,i (see also (3.3)). For example, x = h1, h2, g2 and k1b2.
Indeed, k1b2h1 = g1h2b2 = g1h3b1 = 0.

Lemma 2.19. For the spectra V (2)k in (2.6), some of the Adams-Novikov E2-
terms are given as follows:

E
3,(2p2+p)q
2 (V (2)3) = Z/p{h2b2,0} and E

2p,(3p2+p)q
2 (V (2)p−1) = 0.

Proof. For t ≤ 2p2 +3p+2, E∗,tq2 (V (2)3) is a subquotient of Z/p[v2, v3]⊗H∗(T ) by
the spectral sequences (2.12) and (2.13), and H∗(T ) is a subquotient of P (bi,j) ⊗
H∗(U(L)) by the May spectral sequence.

We pick generators with given bidegrees out of the module Z/p[v2, v3]⊗P (bi,j)⊗
H∗(U(L)) as in the following table, where a, b ∈ {0, 1, 2} and x ∈ H∗,∗(U(L)).

bidegree a, b dimx x generators

(3, (2p2 + p)q) va2v
b
3x a = b = 0 3 − −

va2v
b
3xbi,j a = b = 0 1 h2 h2b2,0

By (2.18), the element h2b2,0 yields an element of the Adams-Novikov E2-term.
We easily find only one element k1 of bidegree (2, (2p2 + p)q) in Z/p[v2, v3] ⊗
P (bi,j) ⊗ H∗(U(L)). This is an element of E

2,(2p2+p)q
2 (V (2)3), and no differen-

tial hit h2b2,0 in any above spectral sequences. Therefore, h2b2,0 survives to the

E2-term E
3,(2p2+p)q
2 (V (2)3).

Turn to the second. A monomial of bidegree (2p, (3p2 + p)q) of Z/p[v2, v3] ⊗
P (bi,j)⊗H∗(U(L)) has one of the forms va2v

b
3xb

2
2,0b

p−2− 1
2 dim x

1,0 , va2v
b
3xb2,0b1,1b

p−2− 1
2 dim x

1,0 ,

va2v
b
3xb

2
1,1b

p−2− 1
2 dim x

1,0 , va2v
b
3xb2,0b

p−1− 1
2 dim x

1,0 , va2v
b
3xb1,1b

p−1− 1
2 dim x

1,0 and va2v
b
3xb

p− 1
2 dim x

1,0 .
The degrees of these elements are

monomials degrees

va2v
b
3xb

2
2,0b

p−2− 1
2 dim x

1,0 q
(
(p+ 1)a+ (p2 + p+ 1)b+ deg x+ 3p2 − p

2 dimx
)

va2v
b
3xb2,0b1,1b

p−2− 1
2 dim x

1,0 q
(
(p+ 1)a+ (p2 + p+ 1)b+ deg x+ 3p2 − p− p

2 dimx
)

va2v
b
3xb

2
1,1b

p−2− 1
2 dim x

1,0 q
(
(p+ 1)a+ (p2 + p+ 1)b+ deg x+ 3p2 − 2p− p

2 dimx
)

va2v
b
3xb2,0b

p−1− 1
2 dim x

1,0 q
(
(p+ 1)a+ (p2 + p+ 1)b+ deg x+ 2p2 − p

2 dimx
)

va2v
b
3xb1,1b

p−1− 1
2 dim x

1,0 q
(
(p+ 1)a+ (p2 + p+ 1)b+ deg x+ 2p2 − p− p

2 dimx
)

va2v
b
3xb

p− 1
2 dim x

1,0 q
(
(p+ 1)a+ (p2 + p+ 1)b+ deg x+ p2 − p

2 dimx
)

Since the degree is (3p2 +p)q, we see that deg x/q ≡ −a−b mod p, and deduce that
a = b = 0. Indeed, deg x/q ≡ d mod p with 0 ≤ d ≤ 3, 0 ≤ a < p−1 and 0 ≤ b ≤ 2.

Thus, x = g1, k1, and we have a candidate g1b2,0b
p−2
1,0 for a generator. Note that

d2p−1(g1b2,0b
p−2
1,0 ) = g1h2b

p−1
1,0 = h1k1b

p−1
1,0 in the second May spectral sequence in

(2.7). Since h1k1 6= 0 by Table 2.9, we have no generator at the degree. �

Lemma 2.20. We have a non-zero element v22v
p
3b0b

2
1 ∈ E

6,(p3+3p2+4p+2)q
2 (V (2)3).
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Proof. Put t0 = p3+3p2+4p+2. We consider the element v22v
p
3b0b

2
1 ∈ E

6,t0q
2 (V (2)3)

by the spectral sequences (2.7), (2.12) and (2.13). For this sake, we compute the

Ext group E = Ext5,t0qT (Z/p,Q(2)) for the comodule Q(2) in (2.14). We study
whether or not the element v22v

p
3b0b

2
1 is in the image of a differential of the spectral

sequences, and so it suffices to consider modules

M(a, b, c) =
(
va2v

b
3v
c
4H

5,∗(V (L))
)5,t0q ⊂ (P (v2, v3, v4)/(v32)⊗H5,∗(V (L))

)5,t0q
.

We read off from Table 2.9 and Lemma 2.11, the module

M(a, b, c) v



Z/p{v4l2b1} (a, b, c) = (0, 0, 1)

Z/p{v3v4h2b20, v3v4h1b0b1} (a, b, c) = (0, 1, 1)

Z/p{v2v4h2b0b2,0, v2v4h1b1b2,0} (a, b, c) = (1, 0, 1)

Z/p{v3l2b2,1} (a, b, c) = (0, 1, 0)

Z/p{v2v3h3b22,0, v2v3h1b2,0b2,1, v2v3k1h1b2,
v2v3h1b1b3,0, v2v3h2b0b3,0} (a, b, c) = (1, 1, 0)

Z/p{v23h3b0b2,0, v23h1b2b2,0, v23h1b0b2,1} (a, b, c) = (0, 2, 0)

Z/p{v2vp3h0b22,0} (a, b, c) = (1, p, 0)

Z/p{v22v
p
3h2b0b1, v

2
2v
p
3h1b

2
1} (a, b, c) = (2, p, 0)

Z/p{vp+1
3 h0b0b2,0} (a, b, c) = (0, p+ 1, 0)

Z/p{v2l4h3h1} (a, b, c) = (1, 0, 0)

Z/p{v22l6b0, v22k1h1b2,1, v22h2b3,0b2,0} (a, b, c) = (2, 0, 0)

0 otherwise.

Here, we write A v B if A is a subquotient of B. Let E(a, b, c) denote a submodule
of E generated by elements detected by elements of M(a, b, c). We first verify which
of the elements on the right hand side of the above relation yields an element of
M(a, b, c), and then evaluate E(a, b, c) by the spectral sequences (2.13).

We consider the second spectral sequence (2.7). Note that the May filtration of
the elements hi,j and bi,j are 2i − 1 and p(2i − 1), respectively. Then, the May

differential d2p−1 : Es,t,u2p−1 → Es+1,t,u−2p+1
2p−1 of the spectral sequence acts as

(2.21)
d2p−1(b2,i) = b1,ihi+2 − hi+1b1,i+1 for i ≥ 0, and
d2p−1(b3,0) = −h1b2,1 + b2,0h3

by (2.3).
We start from the modules M(0, 1, 1), M(1, 0, 1), M(1, 1, 0) and M(2, p, 0). By

(2.21), h2b
2
0 = h1b0b1, h2b0b2,0 = h1b1b2,0 and h2b0b1 = h1b

2
1 in H∗(V (L)), and

d2p−1(h3b
2
2,0) = −2h3(b1,0h2 − h1b1,1)b2,0 = 2h3h1b1,1b2,0,

d2p−1(h1b2,0b2,1) = −h1(b1,0h2 − h1b1,1)b2,1 − h1b2,0(b1,1h3 − h2b1,2)
= h3h1b1,1b2,0,

d2p−1(h1b1,1b3,0) = −h1b1,1(−h1b2,1 + b2,0h3) = h3h1b1,1b2,0,
d2p−1(h2b1,0b3,0) = −h2b1,0(−h1b2,1 + b2,0h3) = 0, and
d2p−1(b2,0b3,0) = (b1,0h2 − h1b1,1)b3,0 + b2,0(−h1b2,1 + b2,0h3)

= h2b1,0b3,0 − h1b1,1b3,0 − h1b2,0b2,1 + h3b
2
2,0.

These differentials imply that the rank of the module M(1, 1, 0) is not greater than
three. Therefore, M(0, 1, 1) v Z/p{v3v4h2b20}, M(1, 0, 1) v Z/p{v2v4h2b2,0b0},
M(1, 1, 0) v v2v3Z/p{h2b0b3,0, h1b2,0b2,1 − h1b1b3,0, k1h1b2} and M(2, p, 0) v
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Z/p{v22v
p
3h2b0b1}. Furthermore, we have d4p−3(h2b1,0b3,0) = −h2b1,0(b1,0h2,2 −

h2,1b1,2) = −g2b21,0+k1b1,0b1,2, and d4p−3(h1b2,0b2,1−h1b1,1b3,0) = h1b1,1(b1,0h2,2−
h2,1b1,2) = g2b

2
1,0 − g1b1,1b1,2. Therefore, we obtain M(1, 1, 0) v Z/p{v2v3k1h1b2}.

Consider the spectral sequence (2.13). The differentials of the spectral sequences
are read off from the structure map (2.15). For example, d1(v4) = v3h3 for n = 3
and d1(v3) = v2h2 for n = 2. For M(0, 1, 1), noticing that v4h2 is represented by a

cocycle v4t
p2

1 + v3c(t
p2

2 ) + v2t
p2

1 t
p2

2 in the cobar complex Q(2)⊗ T , we compute

d(v4t
p2

1 + v3c(t
p2

2 ) + v2t
p2

1 t
p2

2 )

= v3t
p3

1 ⊗ t
p2

1 1
+ v2t

p2

2 ⊗ t
p2

1 2
+ v2t

p2

1 ⊗ c(t
p2

2 )− v3tp
3

1 ⊗ t
p2

1 1

−v2tp
2

1 ⊗ t
p2

2 − v2t
p2

2 ⊗ t
p2

1 2
− v2t2p

2

1 ⊗ tp
3

1 − v2t
p2

1 ⊗ t
p3+p2

1

= −2v2t
p2

1 ⊗ t
p2

2 − v2t
2p2

1 ⊗ tp
3

1 ,

in which the underlined terms with a subscript cancel each other out. The cocycle

2tp
2

1 ⊗ t
p2

2 + t2p
2

1 ⊗ tp
3

1 appearing in the right hand side of the above computation
represents 2g2 6= 0 ∈ ExtT (Z/p,Q(3)) (see (2.14) for Q(3)). It follows that v4h2
does not survive to ExtT (Z/p,Q(2)) in (2.13). Thus, E(0, 1, 1) = 0.

For M(1, 0, 1), we compute

(2.22)
h3h2b2,0 = h3

〈
h2, (h1, h2),

(
−b1
b0

)〉
= (〈h3, h2, h1〉 , 〈h3, h2, h2〉)

(
−b1
b0

)
= g2b0

by the juggling theorem in the E2p-term of the second spectral sequence in (2.7)
by (2.18) and (2.17). We also note that 〈h3, h2, h1〉 = 0 by considering d(tp3).
Therefore, d1(v4h2b2,0b0) = v3g2b

2
0 in the spectral sequence (2.13) for n = 3, and

E(1, 0, 1) = 0 follows.
In the spectral sequence (2.13) for n = 2, we compute

d1(v23g1b2) = 2v2v3h2g1b2 = 2v2v3k1h1b2 and

d1(v2v
p+1
3 b0b1) = v22v

p
3h2b0b1,

where we use the well known relation g1h2 = h1k1. Therefore, the triviality of
E(1, 1, 0) and E(2, p, 0) follows.

Since h2l2 = 0 = h3l2 by Table 2.9, we see that

l2b2,1 =

〈
l2, (h2, h3),

(
−b2
b1

)〉
in H∗(V (L)) in the same manner as (2.18). Note that 〈h2, l2, h2〉 = 2l4h1 and
〈h2, l2, h3〉 = 0 in H∗(V (L)). Therefore, in the spectral sequence (2.13) for n = 2,
we compute d1(v3l2b2,1) = −2v2l4h1b2 6= 0 and so E(0, 1, 0) = 0.

Since d2p−1(b3,0b1,0) = (−h1b2,1 + b2,0h3)b1,0 and

d2p−1(h1b2,1b1,0) = −h1(b1,1h3 − h2b1,2)b1,0 = −h3h1b1,1b1,0,
we see that M(0, 2, 0) v Z/p{v23h1b2,0b2}. In the spectral sequence (2.13) for n = 2,

d1(v23h1b2,0) = 2v2v3h2

〈
h1, (h1, h2),

(
−b1
b0

)〉
= 2v2v3 〈h2, h1, (h1, h2)〉

(
−b1
b0

)
= 2v2v3(g1b1 − 2k1b0)

by (2.17) and (2.18). It follows that E(0, 2, 0) = 0.



10 HIROKI OKAJIMA AND KATSUMI SHIMOMURA

In the spectral sequence in (2.7), d2p−1(k1b3,0) = k1(−h1b2,1+b2,0h3) = −k1h1b2,1
and k1h1b2,1 = 0 ∈ H∗(V (L)). By (2.3), we compute the differential d(tp

2

1 ⊗ b2,0 ⊗
b3,0) in the cobar complex for computing H∗(V (L)), and deduce that

d4p−3(h2b2,0b3,0) = h2b2,0(b1,0h2,2 − h2,1b1,2) = g2b2,0b1,0 − k1b1,2b2,0
in the spectral sequence. Here, xb2,0 for x = g2, k1b2 are given in (2.18). Thus,
M(2, 0, 0) v Z/p{v22l6b0}.

We have M(1, p, 0) = 0 and M(0, p+ 1, 0) = 0, since

d2p−1(h0b2,0) = −h0(b1,0h2 − h1b1,1) = h2h0b1,0.

Therefore, E(1, p, 0) = 0 and E(0, p+ 1, 0) = 0.

Therefore, Ext5,t0qT (Z/p,Q(2)) is a subquotient of the module

Z/p{v4l2b1, v2l4h3h1, v22l6b0}.

We consider the element v4l2. By (2.16), l2 ∈ E∗,∗2 (V (2)2). Let l2 denote a cocycle
representing l2 in the cobar complex for computing E∗,∗2 (V (2)2). By Table 2.9
together with (2.16), we see that h0l2 = 0 and h3l2 = 0, and so we have cochains

yi such that d(yi) = tp
i

1 ⊗ l2 for i = 0, 3 in the cobar complex. Then,

d(v4l2 − v3y3 + vp3y0) ≡ v3t
p3

1 ⊗ l2 − v
p
3t1 ⊗ l2 + v2t

p2

2 ⊗ l2 − v2t
p2

1 ⊗ y3
−v3tp

3

1 ⊗ l2 + vp3t1 ⊗ l2
≡ v2(tp

2

2 ⊗ l2 − t
p2

1 ⊗ y3) mod (p, v1, v
3
2).

Since tp
2

2 ⊗l2−t
p2

1 ⊗y3 represents an element of the Massey product 〈h2, h3, l2〉, which

belongs to H4,(p3+2p2+3p+1)q(U(L)). Therefore, we deduce that 〈h2, h3, l2〉 = 0 by

Table 2.9, and so we have a cochain z such that d(z) = tp
2

2 ⊗ l2 − t
p2

1 ⊗ y3. Now

the element v4l2b1 yields an element of E∗,∗2 (V (2)3) represented by (v4l2 − v3y3 +
vp3y0 − v2z)⊗ b1,1.

The other generators of the module are represented by the Massey products

−2v2 〈h2, h2, h2, k0〉h3h1 and v22 〈h1, h2, g2〉 b0
in the Adams-Novikov E2-term E∗,∗2 (V (2)3) (cf. (2.16)). Therefore, the differentials
of (2.12) on these generators act trivially, and v22v

p
3b0b

2
1 is not in the image of any

differentials of the spectral sequences. �

3. On the product α1β2γp+2

We recall the definition of the Greek letter elements. The Greek letter elements
in the homotopy groups π∗(S

0) are defined by composites

(3.1) αs = jαsi, βs = jj1β
si1i and γs = jj1j2γ

si2i1i

for the maps in (2.5) and a map γ : Σ(p2+p+1)qV (2)→ V (2) inducing a multiplica-
tion by v3 on BP∗-homologies given by Toda [13]. We notice that (ι ∧ V (0))αsi =
vs1 ∈ BP∗/(p), βsi1i = (ι∧ V (1))vs2 ∈ BP∗/I2 and (ι∧ V (2))γsi2i1i = vs3 ∈ BP∗/I3
for the unit map ι : S0 → BP of the ring spectrum BP . Then by the Geometric
Boundary Theorem (cf. [10, Th. 2.3.4]), the Greek letter elements (3.1) are detected
by those in the Adams-Novikov E2-term defined by

(3.2)
αs = δ0(vs1) ∈ E1,sq

2 (S0), βs = δ0δ1(vs2) ∈ E2,(sp+s−1)q
2 (S0) and

γs = δ0δ1δ2(vs3) ∈ E3,(sp2+(s−1)p+s−2)q
2 (S0).
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Here δk : E∗,∗2 (V (k)) → E∗+1,∗
2 (V (k − 1)) denotes the connecting homomorphism

associated to the cofiber sequences in (2.5) (V (−1) = S0). Traditionally we put

(3.3) hi = [tp
i

1 ] ∈ E1,piq
2 (S0) and bi = [b1,i] ∈ E2,pi+1q

2 (S0),

where [c] denotes the cohomology class of a cocycle c ∈ Ω∗,∗BP∗. We note that hi
corresponds to hi in Table 2.9. Then, by definition, we have well known relations
(cf. [4], [10]):

(3.4). α1 = h0, β1 ≡ b0 and β2 ≡ 2v2b0 + k0 mod I2

in the E2-term. Furthermore, it is also showen in [4, Lemma 4.3] that

(3.5) γt = 2

(
t

2

)
vt−23 h2b2,0 + 3

(
t

3

)
vt−33 l4 mod I3 = (p, v1, v2)

in E
3,(tp2+(t−1)p+t−2)q
2 (S0) = H3,(tp2+(t−1)p+t−2)q(BP∗), where h2b2,0 and l4 are

given in (2.18) and (2.16). By Lemma 2.19, we have

Lemma 3.6. γ2 = 2h2b2,0 6= 0 ∈ E3,(2p2+p)q
2 (V (2)3).

Lemma 3.7. The element γp+2 ∈ E
3,(p3+3p2+2p)q
2 (S0) satisfies that γp+2 ≡ vp3γ2

mod (p, v1, v
3
2).

Proof. The relation γp+2 ≡ v
p
3γ2 follows from computation:

δ2(vp+2
3 ) ≡ vp3δ2(v23) mod (v62).

δ1δ2(vp+2
3 ) = δ1(vp3δ2(v23) + v52x) ≡ vp3δ1δ2(v23) mod (v21 , v

4
2).

δ0δ1δ2(vp+2
3 ) = δ0(vp3δ1δ2(v23) + v21y + v42z) ≡ vp3δ0δ1δ2(v23) mod (p, v1, v

3
2),

for elements x ∈ E1,∗
2 (V (1)), and y, z ∈ E2,∗

2 (V (0)). �

Lemma 3.8. For the spectrum V (2)3 in (2.6), we have

h0k0γ2 = 0 ∈ E6,(2p2+3p+2)q
2 (V (2)3).

Proof. By the juggling Theorem of the Massey products, (2.18) and Lemma 3.6,
we compute

h0k0γ2 = g0h1γ2 = 2g0(〈h1, h2, h1〉 , 〈h1, h2, h2〉)
(
−b1
b0

)
= 4g0g1b1 + 2g0k1b1 = 0

in E
6,(2p2+3p+2)q
2 (V (2)3). Indeed, 〈h1, h2, h1〉 = −2g1 by (2.17), and g0g1 = 0 =

g0k1. Therefore, the lemma follows. �

Lemma 3.9. In the Adams-Novikov E2-term,

α1β2γ2 = 4v22b0b
2
1 ∈ E

6,(2p2+3p+2)q
2 (V (2)3).
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Proof. By (3.4) and Lemma 3.8, we see that α1β2γ2 = 2v2α1β1γ2, which is con-
gruent to 4v2h0b0h2b2,0 modulo (p, v1, v

3
2) by Lemma 3.6. We compute

1
4v2α1β1γ2 ≡ v2h0b0

〈
h2, (h1, h2),

(
−b1
b0

)〉
≡ h0b0 〈v2, h2, (h1, h2)〉

(
−b1
b0

)
≡ h0b0(〈v2, h2, h1〉 , 〈v2, h2, h2〉)

(
−b1
b0

)
≡ h0b0 (−〈v2, h2, h1〉 b1 + 〈v2, h2, h2〉 b0)
≡ −v2 〈h2, h1, h0〉 b0b1 + 〈v2, h2, h2〉h0b0b0
≡ v22b0b

2
1 + v3h2h0b

2
0.

Here, the differential d(c(t3)) (see (2.1)) gives us a relation 〈h2, h1, h0〉 ≡ v2b1
mod I2 in the E2-term. We further see that h2h0b

2
0 = 0 ∈ H∗(V (L)), since

d2p−1(h0b1,0b2,0) = h0h2b
2
1,0 in the May spectral sequence. �

Theorem 3.10. α1β2γp+2 6= 0 ∈ E6,(p3+3p2+4p+2)q
2 (S0).

Proof. By Lemma 3.7, we have γp+2 = vp3γ2 ∈ E
3,(p3+3p2+2p)q
2 (V (2)3), and so

α1β2γp+2 = vp3α1β2γ2 = 4v22v
p
3b0b

2
1 ∈ E

6,(p3+3p2+4p+2)q
2 (V (2)3)

by Lemma 3.9. Now the theorem follows from Lemma 2.20. �

Proof of Theorem 1.8. For t = p and = p + 1, γt = 0 by (3.5), and so the propo-

sition holds in these cases. Suppose now t ≥ p + 2. Note that β2 = [k̃0] = k0 and
γt = 2

(
t
2

)
vt−23 h2b2,0 + 3

(
t
3

)
vt−33 l4 for t ≥ 2 in E∗2 (V (2)) by (3.4) and (3.5) (cf. [4,

p. 234], [4, Lemma 4.3]). Here, BP∗(V (2)) = BP∗/I3 and l4 denotes the generator
given in [13, p. 55]. This implies that γt = vp3γt−p for t ≥ p + 2 in E∗2 (V (2)),

and we also see vp3h0 = v3h3 in E1
2(V (2)) by d(v4), where hi ∈ E1,piq

2 (V (2))

is an element represented by a cocycle tp
i

1 . Therefore, α1β2γt is represented by

vt−p−23 h3k0(2
(
t
2

)
v3h2b2,0 + 3

(
t
3

)
l4). Here, we see that h3k0h2b2,0 = k0g2b1,0 by

(2.22). We also see that h3k0l4 = h3h2m1 for the generators in Toda’s calculation
[13, p. 55]. Since both of k0g2 and h3h2 are zero by Toda’s calculation (see Table
2.9), these imply the triviality of α1β2γt for t ≥ p+ 2. �

4. Non-triviality of βp−21 β2γp+2

We begin with a recollection of some results from [4]: Ω∗,∗BP∗{a} denotes a
quotient complex of the cobar complex Ω∗,∗BP∗ by a subcomplex generated by
monomials m ⊗ tE1 ⊗ · · · ⊗ tEn with

∑n
i=1Ei > (a, 0, . . . ). Here, tE for a se-

quence E = (e1, e2, . . . ) denotes the monomial te11 t
e2
2 · · · ∈ BP∗(BP ), and the set

of sequences admits the lexicographical ordering (cf. [4, p.235]).
Then, the gamma elements γt for t ≥ 2 in the Adams-Novikov E2-term are

represented by a cocycle

(4.1) γ̃t ≡ −tvp−32 vt−13 k̃0 ⊗ t1 mod J3 = (p, v1, v
p−1
2 )

in Ω3,(tp2+(t−1)p+t−2)qBP∗{p2 − 1} (cf. [4, p. 239]). In this section, we consider a
spectrum V (2)p−1 in (2.6). Note that BP∗(V (2)p−1) = BP∗/J3.
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Theorem 4.2. β
p−2
1 β2γp+2 6= 0 ∈ E2p+1,tq

2 (S0) for t = p3 + 4p2 + 2p+ 1.

Proof. LetG ∈ C = Ω2p+1,tqBP∗ be a cocycle representing the element β
p−2
1 β2γp+2.

Then, G ≡ vp3G2 mod J3 for a cochain

G2 = −2vp−32 v3k̃0 ⊗ t1 ⊗ (2v2b1,0 + k̃0)⊗ b⊗(p−2)1,0

in C = Ω2p+1,(3p2+p+1)qBP∗{p2 + 2} by (3.4) and (4.1). Note that G2 is the cochain
D of [4, p. 240] for t = 2, which is shown not to be a coboundary in C/J3. We
claim that

(4.3) G has no term with v4 as a factor modulo J3.

Indeed, ifG = vp3G2+v4w+w′ mod J3 for w,w′ ∈ Ω∗BP∗/(J3+(v4)), then, applying
the differential d to the equality, we obtain 0 = vp3d(G2)+d(v4)⊗w+v4d(w)+d(w′).
Since d(G2), d(v4) and d(w′) have no term with v4, we deduce that d(w) = 0.

Therefore, [w] ∈ E
2p,(3p2+p)q
2 (V (2)p−1), which is zero by Lemma 2.19. It follows

that there is a cochain w such that w = d(w). So replace v4w by d(v4)⊗w so that
G has no term with factor v4 modulo J3.

Suppose that there is a cocycle y ∈ Ω2p,tqBP∗ such that d(y) = G in C. Put
y = y1+v4y2+vp3y3+z for yi =

∑
a,b v

a
2v
b
3yi,a,b (i = 1, 2, 3) with yi,a,b ∈ Ω2p,∗BP∗/I5

and z ∈ J3Ω2p,∗BP∗. By a similar argument showing (4.3), we replace v4y2 by a
linear combination of terms without factor v4. Thus we may put y = y1 + vp3y3 + z.
By (2.1), we see that d(ti) ∈ Ω2BP∗/J3{p2+2} has the only one term v2b1,1 if i = 3,
and v2b2,1 if i = 4 with factors v2 and v3. It follows that for x ∈ Ω2p,uqBP∗/I5 with
u ≤ t, d(x) ∈ (Z/p){1, v2} ⊗ Ω2p+1,uqBP∗/I5{p2 + 2} by degree reason. Indeed,
v22b

2
1,1 = 0 ∈ Ω4,2e(3)qBP∗/I2{p2 +2} and v22b

2
2,1 has an internal degree greater than

tq. Since d(vb3) = bv2v
b−1
3 tp

2

1 in Ω1,∗BP∗/J3{p2 + 2} by (2.1), we see that

d(y) = d(y1) + vp3d(y3) = vp3G2 ∈ Ω2p+1,tqBP∗/J3{p2 + 2}.
Here, we notice that d(z) ≡ 0 mod J3, since J3 is an invariant ideal. From the

equality, we see that d(y1) = 0 and d(y3) = G2 in Ω2p+1,(3p2+p+1)qBP∗/J3{p2 + 2}.
Thus, G2(= D in [4, p. 240]) is a coboundary in the complex. This contradicts to
the conclusion of the proof of [4, Th. 4.1]. �

Corollary 4.4. βp−21 β2γp+2 6= 0 ∈ π(p3+4p2+2p)q−3(S0).

Proof. By virtue of Theorem 4.2, it suffices to show that there is no element

x ∈ E2,(t−1)q
2 (S0) such that d2p−1(x) = β

p−2
1 β2γp+2 in the Adams-Novikov spectral

sequence. In [7, Th. 2.6], it is shown that the E2-term E2,∗
2 (S0) is generated by

the elements βspi/j,k+1 for integers p - s ≥ 1, i, k ≥ 0, j ≥ 1, subject to j ≤ pi if

s = 1, pk | j ≤ ai−k and ai−k−1 < j if pk+1 | j, where a0 = 1, an = pn + pn−1 − 1
for n ≥ 1. The internal degree of the element βspi/j,k+1 is (spi(p + 1) − j)q, and

we have an equation t − 1 = spi(p + 1) − j to find the element x. Note that
spi − j ≥ 0, and we have 2p3 > spi+1 and so i ≤ 2. Thus, we obtain the only
solution (i, j, s) = (1, p, p + 3) of the equation. In this case, k = 0 by the relation
pk | j ≤ ai−k. The element β(p+3)p/p(= β(p+3)p/p,1) is a permanent cycle by [8].

Thus, we have no such element x, and hence β
p−2
1 β2γp+2 is not in the image of the

differential d2p−1 of the spectral sequence. �
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