A NOTE ON THE PRODUCTS $\alpha_1\beta_2\gamma_t$ AND $\beta_1^{r+1}\beta_2\gamma_t$ IN THE STABLE HOMOTOPY OF SPHERES

HIROKI OKAJIMA AND KATSUMI SHIMOMURA

ABSTRACT. In the stable homotopy groups of spheres, we have Greek letter elements due to J. F. Adams [2], L. Smith [12] and H. Toda [13]. Here we study the non-triviality of products of the first alpha element, the first and the second beta elements and a gamma element in the homotopy groups.

1. INTRODUCTION

Let $S_{(p)}$ denote the stable homotopy category of spectra localized at a prime number p > 5, and $S^0 \in S_{(p)}$ be the sphere spectrum localized at p. Since S^0 is a generator of $S_{(p)}$ in a sense, the homotopy groups $\pi_*(S^0)$ play an important role to understand the category $S_{(p)}$. The homotopy groups $\pi_*(S^0)$ form a commutative graded algebra with multiplication given by composition. Unfortunately, the structure of $\pi_*(S^0)$ is little known. G. Nishida showed that every element in $\pi_t(S^0)$ for t > 0 is nilpotent. We have generators of the groups called Greek letter elements. In this paper, we study whether or not a product of the Greek letter elements $\alpha_1 \in \pi_{q-1}(S^0)$, $\beta_1 \in \pi_{pq-2}(S^0)$, $\beta_2 \in \pi_{(2p+1)q-2}(S^0)$ and $\gamma_t \in \pi_{(tp^2+(t-1)p+t-2)q-3}(S^0)$ for $t \ge 1$ is trivial. Hereafter, we put q = 2p - 2 as usual.

In [1], M. Aubry determined the homotopy groups $\pi_*(S^0)$ through total degree less than $(3p^2 + 4p)q$. In particular, we have the following:

Theorem 1.1 ([1]). $\alpha_1\beta_2\gamma_2$ and $\beta_1^r\beta_2\gamma_2$ for r < p are non-trivial, and $\alpha_1\beta_1\beta_2\gamma_2 = 0$.

X. Liu showed the theorems:

Theorem 1.2 ([5]). The products $\alpha_1 \beta_2 \gamma_s$ are non-trivial for 2 < s < p.

Theorem 1.3 ([14]). The products $\alpha_1\beta_1\beta_2\gamma_s$ are non-trivial for 2 < s < p.

These two theorems are shown by use of the classical Adams spectral sequence. Thus, the subscript s of γ_s must be greater than two.

Consider the Adams-Novikov spectral sequence $\{E_r^{*,*}(X)\}$ converging to the homotopy groups $\pi_*(X)$ of a spectrum X, and let

$$\overline{\alpha}_1 \in E_2^{1,q}(S^0), \ \overline{\beta}_1 \in E_2^{2,pq}(S^0), \ \overline{\beta}_2 \in E_2^{2,(2p+1)q}(S^0) \text{ and } \\ \overline{\gamma}_t \in E_2^{3,(tp^2 + (t-1)p + t-2)q}(S^0) \quad (t \ge 1)$$

be the elements detecting the Greek letter elements α_1 , β_1 , β_2 and γ_t , respectively. Observing products of these elements in the E_2 -term, we obtained the following theorems:

²⁰¹⁰ Mathematics Subject Classification. Primary 55Q45, Secondary 55T15, 55Q51.

 $Key\ words\ and\ phrases.$ stable homotopy groups of spheres, Greek letter elements.

Theorem 1.4 ([11, Th. 1.1]). The products $\alpha_1 \beta_1^r \gamma_{up+t} \neq 0$ if 1 < t < t + u < p and $r \leq p - 2$.

Theorem 1.5 ([3, Th. 1.4]). Let t be a positive integer with $p \nmid t(t^2 - 1)$. Then, $\beta_2 \gamma_t \neq 0 \in \pi_*(S^0)$.

C. -N. Lee showed that

Theorem 1.6 ([4, Th. 4.1, Th. 4.4]). Let $p \ge 7$. The products $\beta_1^r \gamma_t$ and $\beta_1^{r-1} \beta_2 \gamma_t$ are non-trivial if 0 < t < p and $r \le p-1$. The product $\alpha_1 \beta_1^r \gamma_t$ is non-trivial if $2 \le t < p$ and $r \le p-2$.

By using a result $\beta_1^{p-2}\beta_2\gamma_2 \neq 0$ of Lee's, we deduce the non-triviality of the product $\beta_1^{p-2}\beta_2\gamma_{p+2}$:

Theorem 1.7. Let t be an integer with 1 < t < p or t = p + 2. Then, the products $\beta_1^r \beta_2 \gamma_t$ are non-trivial for $0 \le r \le p - 2$.

Consider spectra $V(2)_k$ for $k \ge 1$ characterized by the Brown-Peterson homology $BP_*(V(2)_k) = BP_*/(p, v_1, v_2^k)$ (see (2.6)). The spectrum $V(2) = V(2)_1$ is the second Smith-Toda spectrum. It is well known that $\overline{\gamma}_1 = \overline{\alpha}_1 \overline{\beta}_{p-1}$, and so $\overline{\alpha}_1 \overline{\gamma}_1 = 0$ as well as $\alpha_1 \gamma_1 = 0$. If t = p, p + 1, then $\overline{\gamma}_t = 0 \in E_2^{3,(tp^2 + (t-1)p + t-2)q}(V(2))$ (see (3.5), cf. [4, Lemma 4.3]).

For products $\overline{\alpha}_1 \overline{\beta}_2 \overline{\gamma}_t$ in the Adams-Novikov E_2 -term for computing $\pi_*(V(2))$, we have

Theorem 1.8. $\overline{\alpha}_1\overline{\beta}_2\overline{\gamma}_t = 0 \in E_2^{6,(tp^2+(t+1)p+t)q}(V(2))$ for $t \ge p$.

By use of the May and the Novikov spectral sequences together with Toda's calculation [13] on the May E_1 -term, we show the non-triviality of an element $\overline{\alpha}_1\overline{\beta}_2\overline{\gamma}_{p+2} \neq 0 \in E_2^{6,(p^3+3p^2+4p+2)q}(V(2)_3)$ in Lemma 2.20. From this, we extend non-triviality of products of Theorems 1.1 and 1.2 to the following:

Theorem 1.9. Let t be an integer with 1 < t < p or t = p + 2. Then, $\alpha_1 \beta_2 \gamma_t \neq 0 \in \pi_*(S^0)$.

In the next section, we study the Adams-Novikov E_2 -term by use of the May and the Novikov spectral sequences with Toda's calculation [13] on the May E_1 -term. We then show the non-triviality of $\alpha_1\beta_2\gamma_{p+2}$ in Theorem 1.9 and the triviality of the products in Theorem 1.8 in Section 3. The last section is devoted to show the non-triviality of the composite $\beta_1^{p-2}\beta_2\gamma_{p+2}$ in Theorem 1.7.

2. The Adams-Novikov E_2 -terms

We fix a prime number $p \ge 7$. Let *BP* denote the Brown-Peterson spectrum at the prime p, and we have a Hopf algebroid

$$(BP_*, BP_*(BP)) = (\mathbb{Z}_{(p)}[v_1, v_2, \dots], BP_*[t_1, t_2, \dots])$$

with structure maps: the left and the right units $\eta_L, \eta_R: BP_* \to BP_*(BP)$, the coproduct $\Delta: BP_*(BP) \to BP_*(BP) \otimes_{BP_*} BP_*(BP)$, the counit $\varepsilon: BP_*(BP) \to BP_*$ and the conjugation $c: BP_*(BP) \to BP_*(BP)$. Here, v_i and t_i are generators

of degree $2p^i - 2 = e(i)q$ for $e(i) = \frac{p^i - 1}{p-1}$ and q = 2p - 2. We notice here the following action of the structure maps on the generators:

$$\begin{aligned} \eta_{R}(v_{n}) &\equiv v_{n} + v_{n-1}t_{1}^{p^{n-1}} - v_{n-1}^{p}t_{1} \mod I_{n-1} \quad (n \geq 2), \\ \eta_{R}(v_{3}) &\equiv v_{3} + v_{2}t_{1}^{p^{2}} + v_{1}t_{2}^{p} - t_{1}\eta_{R}(v_{2}^{p}) + v_{1}w_{1}(v_{2}) - v_{1}^{p^{2}}t_{2} \mod (p), \\ \eta_{R}(v_{4}) &\equiv v_{4} + v_{3}t_{1}^{p^{3}} + v_{2}t_{2}^{p^{2}} - \eta_{R}(v_{3}^{p})t_{1} - v_{2}^{p^{2}}t_{2} \mod I_{2}, \end{aligned}$$

$$(2.1) \qquad \Delta(t_{n}) &\equiv \sum_{i=0}^{n} t_{i} \otimes t_{n-i}^{p^{i}} + v_{n-1}b_{1,n-2} \mod I_{n-1} \quad (n \geq 1), \\ \Delta(t_{4}) &\equiv \sum_{i=0}^{4} t_{i} \otimes t_{4-i}^{p^{i}} + v_{3}b_{1,2} + v_{2}b_{2,1} \mod I_{2}, \\ c(t_{1}) &= -t_{1}, \quad c(t_{2}) &= t_{1}^{p+1} - t_{2} \text{ and} \\ \Delta(c(x)) &= (c \otimes c)T\Delta(x) \quad \text{for } x \in BP_{*}(BP). \end{aligned}$$

(cf. [10, Ch. 4]). Here, $T: BP_*(BP) \otimes BP_*(BP) \to BP_*(BP) \otimes BP_*(BP)$ denotes the switching map given by $T(x \otimes y) = y \otimes x$, I_{n-1} denotes the invariant ideal of BP_* generated by n-1 elements $v_0 = p$, v_1 , ..., v_{n-2} ($I_0 = 0$), $w_1(v_2) = \left(v_2^p + v_1^p t_1^{p^2} - v_1^{p^2} t_1^p - (v_2 + v_1 t_1^p - v_1^p t_1)^p\right)/p$, and $b_{1,k}$, $b_{2,k}$ and $b_{3,k} \in BP * (BP) \otimes_{BP_*} BP_*(BP)$ for $k \geq 0$ are the elements fitting in the following equalities

$$(2.2) \quad \begin{aligned} d(t_1^{p^{k+1}}) &= pb_{1,k}, \quad d(t_2^{p^{k+1}}) = -t_1^{p^{k+1}} \otimes t_1^{p^{k+2}} - v_1^{p^{k+1}} b_{1,0}^{p^{k+1}} + pb_{2,k} \quad \text{and} \\ d(t_3^{p^{k+1}}) &= -t_1^{p^{k+1}} \otimes t_2^{p^{k+2}} - t_2^{p^{k+1}} \otimes t_1^{p^{k+3}} - v_2^{p^{k+1}} b_{1,1}^{p^{k+1}} - v_1^{p^{k+1}} b_{2,0}^{p^{k+1}} + pb_{3,k}, \end{aligned}$$

in which $d(x) = 1 \otimes x + x \otimes 1 - \Delta(x) \in BP_*(BP) \otimes_{BP_*} BP_*(BP)$. By the definition (2.2) and the formulas on $\Delta(t_1)$ and $\Delta(t_2)$ in (2.1), we see that

(2.3)
$$\begin{aligned} d(b_{2,i}) &= b_{1,i} \otimes t_1^{p^{i+2}} - t_1^{p^{i+1}} \otimes b_{1,i+1} & \text{for } i \ge 0, \text{ and} \\ d(b_{3,0}) &\equiv b_{1,0} \otimes t_2^{p^2} - t_1^p \otimes b_{2,1} + b_{2,0} \otimes t_1^{p^3} - t_2^p \otimes b_{1,2} & \text{mod } (p) \end{aligned}$$

We have the Adams-Novikov spectral sequence:

$$E_2^{s,t}(W) = \operatorname{Ext}_{BP_*(BP)}^{s,t}(BP_*, BP_*(W)) \Longrightarrow \pi_{t-s}(W)$$

for a spectrum W. In this paper, we use the cobar complex $\Omega^{*,*}BP_*(W)$ for studying elements of the E_2 -term: $E_2^{s,t}(W) = H^{s,t}(BP_*(W))$ (cf. [7], [4]). Here,

(2.4)
$$H^{s,t}(M) = \operatorname{Ext}_{BP_*(BP)}^{s,t}(BP_*, M)$$

for a $BP_*(BP)$ -comodule M. Furthermore, we consider the k-th Smith-Toda spectrum V(k) for k = 0, 1, 2 defined by the cofiber sequences

(2.5)
$$S^{0} \xrightarrow{p} S^{0} \xrightarrow{i} V(0) \xrightarrow{j} S^{1}, \quad \Sigma^{q} V(0) \xrightarrow{\alpha} V(0) \xrightarrow{i_{1}} V(1) \xrightarrow{j_{1}} \Sigma^{q+1} V(0) \text{ and}$$
$$\Sigma^{(p+1)q} V(1) \xrightarrow{\beta} V(1) \xrightarrow{i_{2}} V(2) \xrightarrow{j_{2}} \Sigma^{(p+1)q+1} V(1)$$

for the maps p, α and β , which induces a multiplication by p, v_1 and v_2 on the BP_* -homologies, respectively ([2], [12], *cf.* [10]). We also consider similar spectra $V(2)_k$ for $k \geq 2$ defined by the cofiber sequences

(2.6)
$$\Sigma^{k(p+1)q}V(1) \xrightarrow{\beta^k} V(1) \xrightarrow{\tilde{i}_k} V(2)_k \xrightarrow{\tilde{j}_k} \Sigma^{k(p+1)q+1}V(1).$$

We notice that $V(2)_k$ is a ring spectrum if $k \leq (p-2)/2$ ([9, Lemma 4.1], where it is denoted by L_k). Note that $BP_*(V(k)) = BP_*/I_{k+1}$, and $BP_*(V(2)_k) = BP_*/(p, v_1, v_2^k)$. Consider a Hopf algebra $\mathcal{T} = \mathbb{Z}/p[t_1, t_2, \ldots] = BP_*(BP)/(p, v_1, v_2, \ldots)$ with structure maps obtained from $BP_*(BP)$ under the projection $BP_*(BP) \to \mathcal{T}$. May [6] constructed spectral sequences:

(2.7)
$$E_1 = H^*(V(L)) \Rightarrow H^*(\mathcal{T})$$
 and $E_2 = P(b_{i,j}) \otimes H^*(U(L)) \Rightarrow H^*(V(L)).$

Here, L denotes the restricted Lie algebra associated to the Hopf algebra \mathcal{T} and U(L) and $V(L) = U(L)/(\xi(x) - x^p)$ are the enveloping algebras of L (ξ is the "p operation"). The bidegree of the generator $b_{i,j}$ is $(2, p^{j+1}e(i)q)$, and $b_{i,j}$'s correspond to those given above for i = 1, 2, 3. The cohomology $H^*(U(L))$ is isomorphic to the cohomology of the exterior complex $E(t_{i,j} : i \ge 1, j \ge 0)$ over generators $t_{i,j}$ with bidegree $(1, p^j e(i)q)$ along with the differential given by

(2.8)
$$d(t_{i,j}) = \sum_{k=1}^{i-1} t_{i-k,j+k} t_{k,j}.$$

In [13], Toda determined $H^{s,t}(U(L))$ for $t-s \leq (p^3 + 3p^2 + 2p + 1)q - 4$, which is additively generated by the unit element 1 and the elements in the table:

h_0	h_1	g_0	k_0	k_0h_0	h_2
1	p	p+2	2p + 1	2p + 2	p^2
h_2h_0	g_1	l_1	l_2	l_1h_1	k_1
$p^2 + 1$	$p^2 + 2p$	$p^2 + 2p + 3$	$p^2 + 3p + 1$	$p^2 + 3p + 3$	$2p^2 + p$
l_3	k_1h_1	l_1h_2	m_1	m_1h_0	l_4
$2p^2 + p + 2$	$2p^2 + 2p$	$2p^2 + 2p + 3$	$2p^2 + 4p + 2$	$2p^2 + 4p + 3$	$3p^2 + 2p + 1$
l_4h_0	l_4h_1	l_4g_0	l_4k_0	$l_4 k_0 h_0$	h_3
$3p^2 + 2p + 2$	$3p^2 + 3p + 1$	$3p^2 + 3p + 3$	$3p^2 + 4p + 2$	$3p^2 + 4p + 3$	p^3
h_3h_0	h_3h_1	h_3g_0	h_3k_0	$h_3k_0h_0$	g_2
$p^3 + 1$	$p^3 + p$	$p^3 + p + 2$	$p^3 + 2p + 1$	$p^3 + 2p + 2$	$p^3 + 2p^2$
g_2h_0	l_5	m_2	m_3	l_6	m_4
$p^3 + 2p^2 + 1$	$p^3 + 2p^2 + 3p$	$p^3 + 2p^2 + 3p + 4$	$p^3 + 2p^2 + 4p + 1$	$p^3 + 3p^2 + p$	$p^3 + 3p^2 + p + 2$

Table 2.9

Here, the integer under each element is the degree of it divided by q, and

$$(2.10) \begin{array}{l} h_{i} = [t_{1,i}], \quad g_{i} = [t_{1,i}t_{2,i}], \quad k_{i} = [t_{1,i+1}t_{2,i}], \quad (i \geq 0); \\ l_{1} = [t_{3,0}t_{2,0}t_{1,0}], \quad l_{2} = [t_{2,1}t_{2,0}t_{1,1}], \quad l_{3} = [t_{3,0}t_{1,2}t_{1,0}], \\ l_{4} = [t_{3,0}t_{2,1}t_{1,2}], \quad l_{5} = [t_{3,1}t_{2,1}t_{1,1}], \quad l_{6} = [t_{2,2}t_{2,1}t_{1,2}]; \\ m_{1} = [t_{3,0}t_{2,1}t_{2,0}t_{1,1}], \quad m_{2} = [t_{4,0}t_{3,0}t_{2,0}t_{1,0}], \\ m_{3} = [t_{3,1}t_{2,1}t_{2,0}t_{1,1}], \quad \text{and} \quad m_{4} = [t_{2,2}t_{3,0}t_{1,2}t_{1,0}]. \end{array}$$

Lemma 2.11. The cohomology $H^{5,(p^3+3p^2+3p+1)q}(\mathcal{T})$ is a subquotient of $\mathbb{Z}/p\{l_4h_3h_1\}$, and $H^{5,(p^3+3p^2+4p+2)q}(\mathcal{T}) = 0$.

Proof. We consider the May spectral sequences (2.7). The module $(E(t_{i,j}))^{5,tq}$ for $t = (p^3 + 3p^2 + ap + a - 2)$ with a = 3 or a = 4 is generated by the monomials of the form

$$t_{1,0}^{\varepsilon_{1,0}}t_{1,1}^{\varepsilon_{1,1}}t_{1,2}^{\varepsilon_{1,2}}t_{1,3}^{\varepsilon_{1,3}}t_{2,0}^{\varepsilon_{2,0}}t_{2,1}^{\varepsilon_{2,1}}t_{2,2}^{\varepsilon_{2,2}}t_{3,0}^{\varepsilon_{3,0}}t_{3,1}^{\varepsilon_{3,1}}t_{4,0}^{\varepsilon_{4,0}}$$

with $\varepsilon_{i,j} \in \{0,1\}$ satisfying equations

 $\begin{array}{rcl} (1) & 5 & = & \varepsilon_{1,0} + \varepsilon_{1,1} + \varepsilon_{1,2} + \varepsilon_{1,3} + \varepsilon_{2,0} + \varepsilon_{2,1} + \varepsilon_{2,2} + \varepsilon_{3,0} + \varepsilon_{3,1} + \varepsilon_{4,0}, \\ (2) & 1 & = & \varepsilon_{1,3} + \varepsilon_{2,2} + \varepsilon_{3,1} + \varepsilon_{4,0}, \\ (3) & 3 & = & \varepsilon_{1,2} + \varepsilon_{2,1} + \varepsilon_{2,2} + \varepsilon_{3,0} + \varepsilon_{3,1} + \varepsilon_{4,0}, \\ (4) & a & = & \varepsilon_{1,1} + \varepsilon_{2,0} + \varepsilon_{2,1} + \varepsilon_{3,0} + \varepsilon_{3,1} + \varepsilon_{4,0} \\ (5) & a - 2 & = & \varepsilon_{1,0} + \varepsilon_{2,0} + \varepsilon_{3,0} + \varepsilon_{4,0}. \end{array}$

These equations implies

- (6) $4 = \varepsilon_{1,0} + \varepsilon_{1,1} + \varepsilon_{1,2} + \varepsilon_{2,0} + \varepsilon_{2,1} + \varepsilon_{3,0} \quad \text{by (1) and (2),}$
- (7) $2 = \varepsilon_{1,0} + \varepsilon_{1,1} + \varepsilon_{1,3} + \varepsilon_{2,0}$ by (1) and (3),
- (8) $2 = \varepsilon_{1,2} + \varepsilon_{2,1} + \varepsilon_{3,0} \varepsilon_{1,3}$ by (2) and (3), and
- (9) $2 = \varepsilon_{1,1} + \varepsilon_{2,1} + \varepsilon_{3,1} \varepsilon_{1,0}$ by (4) and (5).

The case for $\varepsilon_{3,1} = 0$: In this case, we see that $\varepsilon_{1,1} = \varepsilon_{2,1} = 1$ and $\varepsilon_{1,0} = 0$ by (9). Then,

 $2 = \varepsilon_{1,2} + \varepsilon_{2,0} + \varepsilon_{3,0}$ by (6) and $\varepsilon_{1,3} + \varepsilon_{2,0} = 1$ by (7).

- If $\varepsilon_{1,3} = 1$, then $\varepsilon_{2,0} = 0$, and so $\varepsilon_{1,2} = \varepsilon_{3,0} = 1$, and obtain a monomial $t_{1,1}t_{2,1}t_{1,2}t_{3,0}t_{1,3}$ at degree $(p^3+3p^2+3p+1)q$, which yields the element $l_4h_1h_3$.
- If $\varepsilon_{1,3} = 0$, then $\varepsilon_{2,0} = 1$, and so $\varepsilon_{1,2} + \varepsilon_{3,0} = 1$.

- If $\varepsilon_{1,2} = 1$, then the monomial has a factor $t_{1,1}t_{2,1}t_{2,0}t_{1,2}$ of degree $(2p^2 + 3p + 1)q$, and so we obtain

- $t_{1,1}t_{2,1}t_{2,0}t_{1,2}t_{2,2}$ at a = 3, and
- $t_{1,1}t_{2,1}t_{2,0}t_{1,2}t_{4,0}$ at a = 4.

The first monomial gives us the element $l_2g_2 = l_6k_0 \in H^{5,tq}(U(L))$. We name the second monomial x_1 .

- If $\varepsilon_{1,2} = 0$, then $\varepsilon_{3,0} = 1$, and the monomial has a factor $t_{1,1}t_{2,1}t_{2,0}t_{3,0}$ of degree $(2p^2 + 4p + 2)q$, and so the monomial is $t_{1,1}t_{2,1}t_{2,0}t_{3,0}t_{2,2}$ at degree $(p^3 + 3p^2 + 4p + 2)q$. We name it x_2 .

The case for $\varepsilon_{3,1} = 1$: In this case, $\varepsilon_{1,3} = \varepsilon_{2,2} = \varepsilon_{4,0} = 0$ by (2). By (9), $1 = \varepsilon_{1,1} + \varepsilon_{2,1} - \varepsilon_{1,0}$.

- If $\varepsilon_{1,0} = 1$, then $\varepsilon_{1,1} = \varepsilon_{2,1} = 1$, and the monomial has a factor $t_{1,0}t_{1,1}t_{2,1}t_{3,1}$ of degree (p^3+2p^2+3p+1) . Therefore, we have monomials $t_{1,0}t_{1,1}t_{2,1}t_{1,2}t_{3,1}$ at a = 3 and $t_{1,0}t_{1,1}t_{2,1}t_{3,0}t_{3,1}$ at a = 4. The first monomial corresponds $l_5h_2h_0$. By Table 2.9, we see that $l_5h_0 = 0$ and the monomial yields nothing. We name the second one x_3 .
- If $\varepsilon_{1,0} = 0$, then $1 = \varepsilon_{1,1} + \varepsilon_{2,1}$. This together with (6) implies $3 = \varepsilon_{1,2} + \varepsilon_{2,0} + \varepsilon_{3,0}$, and we obtain $\varepsilon_{1,2} = \varepsilon_{2,0} = \varepsilon_{3,0} = 1$. By (8), $\varepsilon_{2,1} = 0$, and so $\varepsilon_{1,1} = 1$. Therefore, we have $t_{1,1}t_{1,2}t_{2,0}t_{3,0}t_{3,1}$ at degree $(p^3 + 3p^2 + 4p + 2)q$. We name it x_4 .

Now put

$$\widetilde{x}_1 = t_{1,1}t_{2,1}t_{2,0}t_{1,2}t_{3,1}t_{1,0}$$
 $\widetilde{x}_2 = t_{1,1}t_{2,1}t_{2,0}t_{1,2}t_{1,3}t_{3,0}$

Then,

$$d(x_1) = \widetilde{x}_1 + \widetilde{x}_2, \quad d(x_2) = -\widetilde{x}_2, \quad d(x_3) = -\widetilde{x}_1 \quad \text{and} \quad d(x_4) = -\widetilde{x}_1 + \widetilde{x}_2,$$

and

$$d(t_{1,1}t_{2,1}t_{3,0}t_{4,0}) = -x_1 - x_3 - x_2$$
 and $d(t_{2,1}t_{2,0}t_{3,0}t_{3,1}) = -x_2 + x_3 - x_4$

Thus, the elements x_i for i = 1, 2, 3, 4 yield no element of $H^{5,(p^3+3p^2+4p+2)q}(U(L))$. We also have

$$\begin{array}{rl} d(t_{1,1}t_{2,1}t_{1,2}t_{4,0}-t_{2,0}t_{2,1}t_{1,2}t_{3,1}) \\ = & -t_{1,1}t_{2,1}t_{1,2}(t_{3,1}t_{1,0}+t_{2,2}t_{2,0}+t_{1,3}t_{3,0})-t_{1,1}t_{1,0}t_{2,1}t_{1,2}t_{3,1} \\ & +t_{2,0}t_{2,1}t_{1,2}t_{2,2}t_{1,1} = -2l_2g_2+l_4h_3h_1. \end{array}$$

 $H^{5,tq}(V(L))$ for $t = (p^3 + 3p^2 + ap + a - 2)$ with a = 3 or 4 also contains elements obtained from the E_1 -term of the May spectral sequence (2.7):

$$b_{1,0}H^{3,t'q}(U(L)) \qquad \text{for } t' = t - p = (p^3 + 3p^2 + (a - 1)p + a - 2), \text{ and} \\ b_{1,0}^2H^{1,t''q}(U(L)) \qquad \text{for } t'' = t - 2p = (p^3 + 3p^2 + (a - 2)p + a - 2).$$

The latter module is trivial. We have a monomial of the complex $(E(t_{i,j}))^{3,t'q}$:

$$t_{2,1}t_{3,0}t_{4,0}$$
 $(t' = p^3 + 3p^2 + 3p + 2).$

on which the differential acts by $d(t_{2,1}t_{3,0}t_{4,0}) = t_{2,1}t_{2,0}t_{1,2}t_{4,0} + \cdots \neq 0$, and this monomial yields no element of $H^{3,t'q}(U(L))$. Thus there is no element in these modules.

From Table (2.9), we find no element of the form $xb_{i,j}b_{k,l}$ or $xb_{i,j}$ for $x \in H^*(U(L))$ in our degree.

For studying the Adams-Novikov $E_2\text{-}\mathrm{term},$ we consider the Novikov spectral sequences

(2.12)
$$E_1 = \operatorname{Ext}_{\mathcal{T}}(\mathbb{Z}/p, Q) \Longrightarrow E_2^{*,*}(V(0))$$

(cf. [1, Lemme in p. 61]) and

$$(2.13) E_1 = \mathbb{Z}/p[v_n] \otimes \operatorname{Ext}_{\mathcal{T}}(\mathbb{Z}/p, Q(n+1)) \Longrightarrow \operatorname{Ext}_{\mathcal{T}}(\mathbb{Z}/p, Q(n))$$

(cf. [1, (1.4.3)]). Here,

(2.14)
$$Q = \mathbb{Z}/p[v_1, v_2, \dots]$$
 and $Q(n) = Q/(v_1, \dots, v_{n-1})$

are comodules with coactions given by

(2.15)
$$\eta(v_n) = \sum_{i=0}^n v_i t_{n-i}^{p^i}$$

We note that

$$\operatorname{Ext}_{\mathcal{T}}(\mathbb{Z}/p, Q(5)) = H^*(\mathcal{T})$$

in our range.

Among the generators (2.10) of $H^*(U(L))$, the elements g_i and k_i for $i \ge 0, l_2, l_4$ and l_6 survive to the Adams-Novikov E_2 -term, $E_2^*(V(2)_p)$ by the Massey products

(2.16)
$$g_{i} = \langle h_{i}, h_{i}, h_{i+1} \rangle, \quad k_{i} = \langle h_{i}, h_{i+1}, h_{i+1} \rangle, \\ l_{2} = \langle h_{0}, h_{1}, g_{1} \rangle, \quad l_{4} = -2 \langle h_{2}, h_{2}, h_{2}, k_{0} \rangle \quad \text{and} \quad l_{6} = \langle h_{1}, h_{2}, g_{2} \rangle$$

These satisfy

(2.17)
$$g_i = \langle h_{i+1}, h_i, h_i \rangle$$
, $2g_i = -\langle h_i, h_{i+1}, h_i \rangle$ and $2k_i = -\langle h_{i+1}, h_i, h_{i+1} \rangle$
for $i \ge 0$. By a juggling theorem of the Massey products, we also see that

$$h_i g_i = 0$$
, $h_{i+1} g_i = h_i k_i$ and $g_i h_{i+2} = 0$.

 $\mathbf{6}$

We moreover have elements of the $E_2^{*,*}(V(2)_p)$:

(2.18)
$$v_3h_2 = \langle v_2, h_2, h_2 \rangle$$
 and $xb_{2,0} = \left\langle x, (h_1, h_2), \begin{pmatrix} -b_1 \\ b_0 \end{pmatrix} \right\rangle$

for an element $x \in E_2^{*,*}(V(2)_p)$ with $xh_1 = 0 = xh_2$. Hereafter, we write b_i for the homology class of $b_{1,i}$ (see also (3.3)). For example, $x = h_1$, h_2 , g_2 and k_1b_2 . Indeed, $k_1b_2h_1 = g_1h_2b_2 = g_1h_3b_1 = 0$.

Lemma 2.19. For the spectra $V(2)_k$ in (2.6), some of the Adams-Novikov E_2 -terms are given as follows:

$$E_2^{3,(2p^2+p)q}(V(2)_3) = \mathbb{Z}/p\{h_2b_{2,0}\}$$
 and $E_2^{2p,(3p^2+p)q}(V(2)_{p-1}) = 0.$

Proof. For $t \leq 2p^2 + 3p + 2$, $E_2^{*,tq}(V(2)_3)$ is a subquotient of $\mathbb{Z}/p[v_2, v_3] \otimes H^*(\mathcal{T})$ by the spectral sequences (2.12) and (2.13), and $H^*(\mathcal{T})$ is a subquotient of $P(b_{i,j}) \otimes H^*(U(L))$ by the May spectral sequence.

We pick generators with given bidegrees out of the module $\mathbb{Z}/p[v_2, v_3] \otimes P(b_{i,j}) \otimes H^*(U(L))$ as in the following table, where $a, b \in \{0, 1, 2\}$ and $x \in H^{*,*}(U(L))$.

bidegree		a, b	$\dim x$	x	generators
$(3,(2p^2+p)q)$	$v_2^a v_3^b x$	a = b = 0	3	—	_
	$v_2^a v_3^b x b_{i,j}$	a = b = 0	1	h_2	$h_2 b_{2,0}$

By (2.18), the element $h_2b_{2,0}$ yields an element of the Adams-Novikov E_2 -term. We easily find only one element k_1 of bidegree $(2, (2p^2 + p)q)$ in $\mathbb{Z}/p[v_2, v_3] \otimes P(b_{i,j}) \otimes H^*(U(L))$. This is an element of $E_2^{2,(2p^2+p)q}(V(2)_3)$, and no differential hit $h_2b_{2,0}$ in any above spectral sequences. Therefore, $h_2b_{2,0}$ survives to the E_2 -term $E_2^{3,(2p^2+p)q}(V(2)_3)$.

 $\begin{array}{l} \text{furt } h_2 v_{2,0} \text{ in any above spectral sequences. Therefore, } h_2 v_{2,0} = 1 \\ E_2 \text{-term } E_2^{3,(2p^2+p)q}(V(2)_3). \\ \text{Turn to the second. A monomial of bidegree } (2p,(3p^2+p)q) \text{ of } \mathbb{Z}/p[v_2,v_3] \otimes \\ P(b_{i,j}) \otimes H^*(U(L)) \text{ has one of the forms } v_2^a v_3^b x b_{2,0}^2 b_{1,0}^{p-2-\frac{1}{2}\dim x}, v_2^a v_3^b x b_{2,0} b_{1,1} b_{1,0}^{p-2-\frac{1}{2}\dim x}, v_2^a v_3^b x b_{2,0} b_{1,1} b_{1,0}^{p-1-\frac{1}{2}\dim x}, v_2^a v_3^b x b_{1,1} b_{1,0}^{p-1-\frac{1}{2}\dim x} \text{ and } v_2^a v_3^b x b_{1,0}^{p-\frac{1}{2}\dim x}. \\ \text{The degrees of these elements are} \end{array}$

monomials	degrees		
$v_2^a v_3^b x b_{2,0}^2 b_{1,0}^{p-2-\frac{1}{2}\dim x}$	$q((p+1)a + (p^2 + p + 1)b + \deg x + 3p^2 - \frac{p}{2}\dim x)$		
$v_2^a v_3^b x b_{2,0} b_{1,1} b_{1,0}^{p-2-\frac{1}{2}\dim x}$	$q((p+1)a + (p^{2} + p + 1)b + \deg x + 3p^{2} - p - \frac{p}{2}\dim x)$		
$v_2^a v_3^b x b_{1,1}^2 b_{1,0}^{p-2-\frac{1}{2}\dim x}$	$q((p+1)a + (p^{2} + p + 1)b + \deg x + 3p^{2} - 2p - \frac{p}{2}\dim x)$		
$v_2^a v_3^b x b_{2,0} b_{1,0}^{p-1-\frac{1}{2}\dim x}$	$q((p+1)a + (p^{2} + p + 1)b + \deg x + 2p^{2} - \frac{p}{2}\dim x)$		
$v_2^a v_3^b x b_{1,1} b_{1,0}^{p-1-\frac{1}{2}\dim x}$	$q((p+1)a + (p^{2} + p + 1)b + \deg x + 2p^{2} - p - \frac{p}{2}\dim x)$		
$v_2^a v_3^b x b_{1,0}^{p-\frac{1}{2}\dim x}$	$q((p+1)a + (p^{2} + p + 1)b + \deg x + p^{2} - \frac{p}{2}\dim x)$		

Since the degree is $(3p^2 + p)q$, we see that deg $x/q \equiv -a-b \mod p$, and deduce that a = b = 0. Indeed, deg $x/q \equiv d \mod p$ with $0 \le d \le 3$, $0 \le a < p-1$ and $0 \le b \le 2$. Thus, $x = g_1$, k_1 , and we have a candidate $g_1b_{2,0}b_{1,0}^{p-2}$ for a generator. Note that $d_{2p-1}(g_1b_{2,0}b_{1,0}^{p-2}) = g_1h_2b_{1,0}^{p-1} = h_1k_1b_{1,0}^{p-1}$ in the second May spectral sequence in (2.7). Since $h_1k_1 \ne 0$ by Table 2.9, we have no generator at the degree.

Lemma 2.20. We have a non-zero element $v_2^2 v_3^p b_0 b_1^2 \in E_2^{6,(p^3+3p^2+4p+2)q}(V(2)_3)$.

Proof. Put $t_0 = p^3 + 3p^2 + 4p + 2$. We consider the element $v_2^2 v_3^p b_0 b_1^2 \in E_2^{6,t_0q}(V(2)_3)$ by the spectral sequences (2.7), (2.12) and (2.13). For this sake, we compute the Ext group $E = \text{Ext}_{\mathcal{T}}^{5,t_0q}(\mathbb{Z}/p,Q(2))$ for the comodule Q(2) in (2.14). We study whether or not the element $v_2^2 v_3^2 b_0 b_1^2$ is in the image of a differential of the spectral sequences, and so it suffices to consider modules

$$M(a,b,c) = \left(v_2^a v_3^b v_4^c H^{5,*}(V(L))\right)^{5,t_0q} \subset \left(P(v_2,v_3,v_4)/(v_2^3) \otimes H^{5,*}(V(L))\right)^{5,t_0q}.$$

We read off from Table 2.9 and Lemma 2.11, the module

$$M(a,b,c) \subseteq \begin{cases} \mathbb{Z}/p\{v_4l_2b_1\} & (a,b,c) = (0,0,1) \\ \mathbb{Z}/p\{v_3v_4h_2b_0^2, v_3v_4h_1b_0b_1\} & (a,b,c) = (0,1,1) \\ \mathbb{Z}/p\{v_2v_4h_2b_0b_{2,0}, v_2v_4h_1b_1b_{2,0}\} & (a,b,c) = (1,0,1) \\ \mathbb{Z}/p\{v_3l_2b_{2,1}\} & (a,b,c) = (0,1,0) \\ \mathbb{Z}/p\{v_2v_3h_3b_{2,0}^2, v_2v_3h_1b_{2,0}b_{2,1}, v_2v_3k_1h_1b_2, \\ v_2v_3h_1b_1b_{3,0}, v_2v_3h_2b_0b_{3,0}\} & (a,b,c) = (1,1,0) \\ \mathbb{Z}/p\{v_3^2h_3b_0b_{2,0}, v_3^2h_1b_2b_{2,0}, v_3^2h_1b_0b_{2,1}\} & (a,b,c) = (0,2,0) \\ \mathbb{Z}/p\{v_2v_3^ph_0b_{2,0}^2\} & (a,b,c) = (1,p,0) \\ \mathbb{Z}/p\{v_2v_3^ph_2b_0b_1, v_2^2v_3^ph_1b_1^2\} & (a,b,c) = (2,p,0) \\ \mathbb{Z}/p\{v_2l_4h_3h_1\} & (a,b,c) = (1,0,0) \\ \mathbb{Z}/p\{v_2l_6b_0, v_2^2k_1h_1b_{2,1}, v_2^2h_2b_{3,0}b_{2,0}\} & (a,b,c) = (2,0,0) \\ 0 & \text{otherwise.} \end{cases}$$

Here, we write $A \sqsubseteq B$ if A is a subquotient of B. Let E(a, b, c) denote a submodule of E generated by elements detected by elements of M(a, b, c). We first verify which of the elements on the right hand side of the above relation yields an element of M(a, b, c), and then evaluate E(a, b, c) by the spectral sequences (2.13).

We consider the second spectral sequence (2.7). Note that the May filtration of the elements $h_{i,j}$ and $b_{i,j}$ are 2i - 1 and p(2i - 1), respectively. Then, the May differential $d_{2p-1} \colon E_{2p-1}^{s,t,u} \to E_{2p-1}^{s+1,t,u-2p+1}$ of the spectral sequence acts as

(2.21)
$$\begin{aligned} d_{2p-1}(b_{2,i}) &= b_{1,i}h_{i+2} - h_{i+1}b_{1,i+1} & \text{for } i \ge 0, \text{ and} \\ d_{2p-1}(b_{3,0}) &= -h_1b_{2,1} + b_{2,0}h_3 \end{aligned}$$

by (2.3).

We start from the modules M(0, 1, 1), M(1, 0, 1), M(1, 1, 0) and M(2, p, 0). By (2.21), $h_2b_0^2 = h_1b_0b_1$, $h_2b_0b_{2,0} = h_1b_1b_{2,0}$ and $h_2b_0b_1 = h_1b_1^2$ in $H^*(V(L))$, and

$$\begin{array}{rcl} d_{2p-1}(h_3b_{2,0}^2) &=& -2h_3(b_{1,0}h_2 - h_1b_{1,1})b_{2,0} &=& 2h_3h_1b_{1,1}b_{2,0}, \\ d_{2p-1}(h_1b_{2,0}b_{2,1}) &=& -h_1(b_{1,0}h_2 - h_1b_{1,1})b_{2,1} - h_1b_{2,0}(b_{1,1}h_3 - h_2b_{1,2}) \\ &=& h_3h_1b_{1,1}b_{2,0}, \\ d_{2p-1}(h_1b_{1,1}b_{3,0}) &=& -h_1b_{1,1}(-h_1b_{2,1} + b_{2,0}h_3) &=& h_3h_1b_{1,1}b_{2,0}, \\ d_{2p-1}(h_2b_{1,0}b_{3,0}) &=& -h_2b_{1,0}(-h_1b_{2,1} + b_{2,0}h_3) &=& 0, \quad \text{and} \\ d_{2p-1}(b_{2,0}b_{3,0}) &=& (b_{1,0}h_2 - h_1b_{1,1})b_{3,0} + b_{2,0}(-h_1b_{2,1} + b_{2,0}h_3) \\ &=& h_2b_{1,0}b_{3,0} - h_1b_{1,1}b_{3,0} - h_1b_{2,0}b_{2,1} + h_3b_{2,0}^2. \end{array}$$

These differentials imply that the rank of the module M(1,1,0) is not greater than three. Therefore, $M(0,1,1) \sqsubseteq \mathbb{Z}/p\{v_3v_4h_2b_0^2\}$, $M(1,0,1) \sqsubseteq \mathbb{Z}/p\{v_2v_4h_2b_{2,0}b_0\}$, $M(1,1,0) \sqsubseteq v_2v_3\mathbb{Z}/p\{h_2b_0b_{3,0}, h_1b_{2,0}b_{2,1} - h_1b_1b_{3,0}, k_1h_1b_2\}$ and $M(2,p,0) \sqsubseteq$ $\mathbb{Z}/p\{v_2^2v_3^ph_2b_0b_1\}.$ Furthermore, we have $d_{4p-3}(h_2b_{1,0}b_{3,0}) = -h_2b_{1,0}(b_{1,0}h_{2,2} - h_{2,1}b_{1,2}) = -g_2b_{1,0}^2 + k_1b_{1,0}b_{1,2},$ and $d_{4p-3}(h_1b_{2,0}b_{2,1} - h_1b_{1,1}b_{3,0}) = h_1b_{1,1}(b_{1,0}h_{2,2} - h_{2,1}b_{1,2}) = g_2b_{1,0}^2 - g_1b_{1,1}b_{1,2}.$ Therefore, we obtain $M(1,1,0) \sqsubseteq \mathbb{Z}/p\{v_2v_3k_1h_1b_2\}.$

Consider the spectral sequence (2.13). The differentials of the spectral sequences are read off from the structure map (2.15). For example, $d_1(v_4) = v_3h_3$ for n = 3and $d_1(v_3) = v_2h_2$ for n = 2. For M(0, 1, 1), noticing that v_4h_2 is represented by a cocycle $v_4t_1^{p^2} + v_3c(t_2^{p^2}) + v_2t_1^{p^2}t_2^{p^2}$ in the cobar complex $Q(2) \otimes \mathcal{T}$, we compute

$$\begin{split} d(v_4 t_1^{p^2} + v_3 c(t_2^{p^2}) + v_2 t_1^{p^2} t_2^{p^2}) \\ &= \underbrace{v_3 t_1^{p^3} \otimes t_{1-1}^{p^2} + v_2 t_2^{p^2} \otimes t_{1-2}^{p^2} + v_2 t_1^{p^2} \otimes c(t_2^{p^2}) - \underbrace{v_3 t_1^{p^3} \otimes t_1^{p^2}}_{-v_2 t_1^{p^2} \otimes t_2^{p^2} - \underbrace{v_2 t_2^{p^2} \otimes t_1^{p^2}}_{-v_2 t_1^{p^2} \otimes t_1^{p^3} - v_2 t_1^{p^2} \otimes t_1^{p^3} + p^2} \\ &= -2 v_2 t_1^{p^2} \otimes t_2^{p^2} - v_2 t_1^{2p^2} \otimes t_1^{p^3}, \end{split}$$

in which the underlined terms with a subscript cancel each other out. The cocycle $2t_1^{p^2} \otimes t_2^{p^2} + t_1^{2p^2} \otimes t_1^{p^3}$ appearing in the right hand side of the above computation represents $2g_2 \neq 0 \in \operatorname{Ext}_{\mathcal{T}}(\mathbb{Z}/p, Q(3))$ (see (2.14) for Q(3)). It follows that v_4h_2 does not survive to $\operatorname{Ext}_{\mathcal{T}}(\mathbb{Z}/p, Q(2))$ in (2.13). Thus, E(0, 1, 1) = 0.

For M(1,0,1), we compute

(2.22)
$$\begin{array}{rcl} h_{3}h_{2}b_{2,0} &=& h_{3}\left\langle h_{2},(h_{1},h_{2}),\begin{pmatrix}-b_{1}\\b_{0}\end{pmatrix}\right\rangle \\ &=& \left(\left\langle h_{3},h_{2},h_{1}\right\rangle,\left\langle h_{3},h_{2},h_{2}\right\rangle\right)\begin{pmatrix}-b_{1}\\b_{0}\end{pmatrix} =& g_{2}b_{0} \end{array}$$

by the juggling theorem in the E_{2p} -term of the second spectral sequence in (2.7) by (2.18) and (2.17). We also note that $\langle h_3, h_2, h_1 \rangle = 0$ by considering $d(t_3^p)$. Therefore, $d_1(v_4h_2b_{2,0}b_0) = v_3g_2b_0^2$ in the spectral sequence (2.13) for n = 3, and E(1,0,1) = 0 follows.

In the spectral sequence (2.13) for n = 2, we compute

$$\begin{array}{rcl} d_1(v_3^2g_1b_2) &=& 2v_2v_3h_2g_1b_2 &=& 2v_2v_3k_1h_1b_2 \quad \text{and} \\ d_1(v_2v_3^{p+1}b_0b_1) &=& v_2^2v_3^ph_2b_0b_1, \end{array}$$

where we use the well known relation $g_1h_2 = h_1k_1$. Therefore, the triviality of E(1, 1, 0) and E(2, p, 0) follows.

Since $h_2 l_2 = 0 = h_3 l_2$ by Table 2.9, we see that

$$l_2b_{2,1} = \left\langle l_2, (h_2, h_3), \begin{pmatrix} -b_2 \\ b_1 \end{pmatrix} \right\rangle$$

in $H^*(V(L))$ in the same manner as (2.18). Note that $\langle h_2, l_2, h_2 \rangle = 2l_4h_1$ and $\langle h_2, l_2, h_3 \rangle = 0$ in $H^*(V(L))$. Therefore, in the spectral sequence (2.13) for n = 2, we compute $d_1(v_3l_2b_{2,1}) = -2v_2l_4h_1b_2 \neq 0$ and so E(0, 1, 0) = 0.

Since $d_{2p-1}(b_{3,0}b_{1,0}) = (-h_1b_{2,1} + b_{2,0}h_3)b_{1,0}$ and

$$d_{2p-1}(h_1b_{2,1}b_{1,0}) = -h_1(b_{1,1}h_3 - h_2b_{1,2})b_{1,0} = -h_3h_1b_{1,1}b_{1,0}$$

we see that $M(0,2,0) \subseteq \mathbb{Z}/p\{v_3^2h_1b_{2,0}b_2\}$. In the spectral sequence (2.13) for n=2,

$$d_1(v_3^2h_1b_{2,0}) = 2v_2v_3h_2 \left\langle h_1, (h_1, h_2), \begin{pmatrix} -b_1 \\ b_0 \end{pmatrix} \right\rangle$$

= $2v_2v_3 \left\langle h_2, h_1, (h_1, h_2) \right\rangle \begin{pmatrix} -b_1 \\ b_0 \end{pmatrix} = 2v_2v_3(g_1b_1 - 2k_1b_0)$

by (2.17) and (2.18). It follows that E(0, 2, 0) = 0.

In the spectral sequence in (2.7), $d_{2p-1}(k_1b_{3,0}) = k_1(-h_1b_{2,1}+b_{2,0}h_3) = -k_1h_1b_{2,1}$ and $k_1h_1b_{2,1} = 0 \in H^*(V(L))$. By (2.3), we compute the differential $d(t_1^{p^2} \otimes b_{2,0} \otimes b_{3,0})$ in the cobar complex for computing $H^*(V(L))$, and deduce that

$$d_{4p-3}(h_2b_{2,0}b_{3,0}) = h_2b_{2,0}(b_{1,0}h_{2,2} - h_{2,1}b_{1,2}) = g_2b_{2,0}b_{1,0} - k_1b_{1,2}b_{2,0}$$

in the spectral sequence. Here, $xb_{2,0}$ for $x = g_2$, k_1b_2 are given in (2.18). Thus, $M(2,0,0) \subseteq \mathbb{Z}/p\{v_2^2 l_6 b_0\}.$

We have M(1, p, 0) = 0 and M(0, p + 1, 0) = 0, since

$$d_{2p-1}(h_0b_{2,0}) = -h_0(b_{1,0}h_2 - h_1b_{1,1}) = h_2h_0b_{1,0}.$$

Therefore, E(1, p, 0) = 0 and E(0, p + 1, 0) = 0.

Therefore, $\operatorname{Ext}_{\mathcal{T}}^{5,t_0q}(\mathbb{Z}/p,Q(2))$ is a subquotient of the module

 $\mathbb{Z}/p\{v_4l_2b_1, v_2l_4h_3h_1, v_2^2l_6b_0\}.$

We consider the element v_4l_2 . By (2.16), $l_2 \in E_2^{*,*}(V(2)_2)$. Let \overline{l}_2 denote a cocycle representing l_2 in the cobar complex for computing $E_2^{*,*}(V(2)_2)$. By Table 2.9 together with (2.16), we see that $h_0l_2 = 0$ and $h_3l_2 = 0$, and so we have cochains y_i such that $d(y_i) = t_1^{p^i} \otimes \overline{l}_2$ for i = 0, 3 in the cobar complex. Then,

$$d(v_4 \bar{l}_2 - v_3 y_3 + v_3^p y_0) \equiv v_3 t_1^{p^3} \otimes \bar{l}_2 - v_3^p t_1 \otimes \bar{l}_2 + v_2 t_2^{p^2} \otimes \bar{l}_2 - v_2 t_1^{p^2} \otimes y_3 - v_3 t_1^{p^3} \otimes \bar{l}_2 + v_3^p t_1 \otimes \bar{l}_2 \equiv v_2 (t_2^{p^2} \otimes \bar{l}_2 - t_1^{p^2} \otimes y_3) \mod (p, v_1, v_2^3).$$

Since $t_2^{p^2} \otimes \bar{l}_2 - t_1^{p^2} \otimes y_3$ represents an element of the Massey product $\langle h_2, h_3, l_2 \rangle$, which belongs to $H^{4,(p^3+2p^2+3p+1)q}(U(L))$. Therefore, we deduce that $\langle h_2, h_3, l_2 \rangle = 0$ by Table 2.9, and so we have a cochain z such that $d(z) = t_2^{p^2} \otimes \bar{l}_2 - t_1^{p^2} \otimes y_3$. Now the element $v_4 l_2 b_1$ yields an element of $E_2^{*,*}(V(2)_3)$ represented by $(v_4 \bar{l}_2 - v_3 y_3 + v_3^p y_0 - v_2 z) \otimes b_{1,1}$.

The other generators of the module are represented by the Massey products

$$-2v_2 \langle h_2, h_2, h_2, k_0 \rangle h_3 h_1$$
 and $v_2^2 \langle h_1, h_2, g_2 \rangle b_0$

in the Adams-Novikov E_2 -term $E_2^{*,*}(V(2)_3)$ (cf. (2.16)). Therefore, the differentials of (2.12) on these generators act trivially, and $v_2^2 v_3^p b_0 b_1^2$ is not in the image of any differentials of the spectral sequences.

3. On the product $\alpha_1\beta_2\gamma_{p+2}$

We recall the definition of the Greek letter elements. The Greek letter elements in the homotopy groups $\pi_*(S^0)$ are defined by composites

(3.1)
$$\alpha_s = j\alpha^s i, \qquad \beta_s = jj_1\beta^s i_1 i \qquad \text{and} \qquad \gamma_s = jj_1j_2\gamma^s i_2i_1 i$$

for the maps in (2.5) and a map $\gamma: \Sigma^{(p^2+p+1)q}V(2) \to V(2)$ inducing a multiplication by v_3 on BP_* -homologies given by Toda [13]. We notice that $(\iota \wedge V(0))\alpha^s i = v_1^s \in BP_*/(p), \ \beta^s i_1 i = (\iota \wedge V(1))v_2^s \in BP_*/I_2$ and $(\iota \wedge V(2))\gamma^s i_2 i_1 i = v_3^s \in BP_*/I_3$ for the unit map $\iota: S^0 \to BP$ of the ring spectrum BP. Then by the Geometric Boundary Theorem (cf. [10, Th. 2.3.4]), the Greek letter elements (3.1) are detected by those in the Adams-Novikov E_2 -term defined by

(3.2)
$$\overline{\alpha}_s = \delta_0(v_1^s) \in E_2^{1,sq}(S^0), \quad \overline{\beta}_s = \delta_0\delta_1(v_2^s) \in E_2^{2,(sp+s-1)q}(S^0) \quad \text{and} \\ \overline{\gamma}_s = \delta_0\delta_1\delta_2(v_3^s) \in E_2^{3,(sp^2+(s-1)p+s-2)q}(S^0).$$

Here $\delta_k \colon E_2^{*,*}(V(k)) \to E_2^{*+1,*}(V(k-1))$ denotes the connecting homomorphism associated to the cofiber sequences in (2.5) $(V(-1) = S^0)$. Traditionally we put

(3.3)
$$h_i = [t_1^{p^i}] \in E_2^{1, p^i q}(S^0) \text{ and } b_i = [b_{1,i}] \in E_2^{2, p^{i+1}q}(S^0),$$

where [c] denotes the cohomology class of a cocycle $c \in \Omega^{*,*}BP_*$. We note that h_i corresponds to h_i in Table 2.9. Then, by definition, we have well known relations (*cf.* [4], [10]):

(3.4).
$$\overline{\alpha}_1 = h_0, \quad \overline{\beta}_1 \equiv b_0 \quad \text{and} \quad \overline{\beta}_2 \equiv 2v_2b_0 + k_0 \mod I_2$$

in the E_2 -term. Furthermore, it is also showen in [4, Lemma 4.3] that

(3.5)
$$\overline{\gamma}_t = 2 \binom{t}{2} v_3^{t-2} h_2 b_{2,0} + 3 \binom{t}{3} v_3^{t-3} l_4 \mod I_3 = (p, v_1, v_2)$$

in $E_2^{3,(tp^2+(t-1)p+t-2)q}(S^0) = H^{3,(tp^2+(t-1)p+t-2)q}(BP_*)$, where $h_2b_{2,0}$ and l_4 are given in (2.18) and (2.16). By Lemma 2.19, we have

Lemma 3.6. $\overline{\gamma}_2 = 2h_2b_{2,0} \neq 0 \in E_2^{3,(2p^2+p)q}(V(2)_3).$

Lemma 3.7. The element $\overline{\gamma}_{p+2} \in E_2^{3,(p^3+3p^2+2p)q}(S^0)$ satisfies that $\overline{\gamma}_{p+2} \equiv v_3^p \overline{\gamma}_2 \mod (p, v_1, v_2^3)$.

Proof. The relation $\overline{\gamma}_{p+2} \equiv v_3^p \overline{\gamma}_2$ follows from computation:

$$\begin{array}{rcl} \delta_2(v_3^{p+2}) &\equiv& v_3^p \delta_2(v_3^2) \mod (v_2^6).\\ \delta_1 \delta_2(v_3^{p+2}) &=& \delta_1(v_3^p \delta_2(v_3^2) + v_2^5 x) \equiv v_3^p \delta_1 \delta_2(v_3^2) \mod (v_1^2, v_2^4).\\ \delta_0 \delta_1 \delta_2(v_3^{p+2}) &=& \delta_0(v_3^p \delta_1 \delta_2(v_3^2) + v_1^2 y + v_2^4 z) \equiv v_3^p \delta_0 \delta_1 \delta_2(v_3^2) \mod (p, v_1, v_2^3), \end{array}$$

for elements $x \in E_2^{1,*}(V(1))$, and $y, z \in E_2^{2,*}(V(0))$.

Lemma 3.8. For the spectrum $V(2)_3$ in (2.6), we have

$$h_0 k_0 \overline{\gamma}_2 = 0 \in E_2^{6,(2p^2 + 3p + 2)q}(V(2)_3)$$

Proof. By the juggling Theorem of the Massey products, (2.18) and Lemma 3.6, we compute

$$h_0 k_0 \overline{\gamma}_2 = g_0 h_1 \overline{\gamma}_2 = 2g_0(\langle h_1, h_2, h_1 \rangle, \langle h_1, h_2, h_2 \rangle) \begin{pmatrix} -b_1 \\ b_0 \end{pmatrix}$$

= $4g_0 g_1 b_1 + 2g_0 k_1 b_1 = 0$

in $E_2^{6,(2p^2+3p+2)q}(V(2)_3)$. Indeed, $\langle h_1, h_2, h_1 \rangle = -2g_1$ by (2.17), and $g_0g_1 = 0 = g_0k_1$. Therefore, the lemma follows.

Lemma 3.9. In the Adams-Novikov E_2 -term,

$$\overline{\alpha}_1\overline{\beta}_2\overline{\gamma}_2 = 4v_2^2b_0b_1^2 \in E_2^{6,(2p^2+3p+2)q}(V(2)_3).$$

Proof. By (3.4) and Lemma 3.8, we see that $\overline{\alpha}_1 \overline{\beta}_2 \overline{\gamma}_2 = 2v_2 \overline{\alpha}_1 \overline{\beta}_1 \overline{\gamma}_2$, which is congruent to $4v_2h_0b_0h_2b_{2,0}$ modulo (p, v_1, v_2^3) by Lemma 3.6. We compute

$$\begin{split} \frac{1}{4}v_2\overline{\alpha}_1\overline{\beta}_1\overline{\gamma}_2 &\equiv v_2h_0b_0\left\langle h_2, (h_1, h_2), \begin{pmatrix} -b_1\\b_0 \end{pmatrix} \right\rangle \\ &\equiv h_0b_0\left\langle v_2, h_2, (h_1, h_2)\right\rangle \begin{pmatrix} -b_1\\b_0 \end{pmatrix} \\ &\equiv h_0b_0(\left\langle v_2, h_2, h_1\right\rangle, \left\langle v_2, h_2, h_2\right\rangle) \begin{pmatrix} -b_1\\b_0 \end{pmatrix} \\ &\equiv h_0b_0\left(-\left\langle v_2, h_2, h_1\right\rangle b_1 + \left\langle v_2, h_2, h_2\right\rangle b_0\right) \\ &\equiv -v_2\left\langle h_2, h_1, h_0\right\rangle b_0b_1 + \left\langle v_2, h_2, h_2\right\rangle h_0b_0b_0 \\ &\equiv v_2^2b_0b_1^2 + v_3h_2h_0b_0^2. \end{split}$$

Here, the differential $d(c(t_3))$ (see (2.1)) gives us a relation $\langle h_2, h_1, h_0 \rangle \equiv v_2 b_1 \mod I_2$ in the E_2 -term. We further see that $h_2 h_0 b_0^2 = 0 \in H^*(V(L))$, since $d_{2p-1}(h_0 b_{1,0} b_{2,0}) = h_0 h_2 b_{1,0}^2$ in the May spectral sequence.

Theorem 3.10. $\overline{\alpha}_1\overline{\beta}_2\overline{\gamma}_{p+2}\neq 0\in E_2^{6,(p^3+3p^2+4p+2)q}(S^0).$

Proof. By Lemma 3.7, we have $\overline{\gamma}_{p+2} = v_3^p \overline{\gamma}_2 \in E_2^{3,(p^3+3p^2+2p)q}(V(2)_3)$, and so

$$\overline{\alpha}_1\overline{\beta}_2\overline{\gamma}_{p+2} = v_3^p\overline{\alpha}_1\overline{\beta}_2\overline{\gamma}_2 = 4v_2^2v_3^pb_0b_1^2 \in E_2^{6,(p^3+3p^2+4p+2)q}(V(2)_3)$$

by Lemma 3.9. Now the theorem follows from Lemma 2.20.

Proof of Theorem 1.8. For t = p and = p + 1, $\overline{\gamma}_t = 0$ by (3.5), and so the proposition holds in these cases. Suppose now $t \ge p + 2$. Note that $\overline{\beta}_2 = [\widetilde{k}_0] = k_0$ and $\overline{\gamma}_t = 2\binom{t}{2}v_3^{t-2}h_2b_{2,0} + 3\binom{t}{3}v_3^{t-3}l_4$ for $t \ge 2$ in $E_2^*(V(2))$ by (3.4) and (3.5) (cf. [4, p. 234], [4, Lemma 4.3]). Here, $BP_*(V(2)) = BP_*/I_3$ and l_4 denotes the generator given in [13, p. 55]. This implies that $\overline{\gamma}_t = v_3^p \overline{\gamma}_{t-p}$ for $t \ge p + 2$ in $E_2^*(V(2))$, and we also see $v_3^p h_0 = v_3 h_3$ in $E_2^1(V(2))$ by $d(v_4)$, where $h_i \in E_2^{1,p^i q}(V(2))$ is an element represented by a cocycle $t_1^{p^i}$. Therefore, $\overline{\alpha}_1 \overline{\beta}_2 \overline{\gamma}_t$ is represented by $v_3^{t-p-2}h_3k_0(2\binom{t}{2}v_3h_2b_{2,0} + 3\binom{t}{3}l_4)$. Here, we see that $h_3k_0h_2b_{2,0} = k_0g_2b_{1,0}$ by (2.22). We also see that $h_3k_0l_4 = h_3h_2m_1$ for the generators in Toda's calculation [13, p. 55]. Since both of k_0g_2 and h_3h_2 are zero by Toda's calculation (see Table 2.9), these imply the triviality of $\overline{\alpha}_1\overline{\beta}_2\overline{\gamma}_t$ for $t \ge p + 2$.

4. Non-triviality of $\beta_1^{p-2}\beta_2\gamma_{p+2}$

We begin with a recollection of some results from [4]: $\Omega^{*,*}BP_*\{a\}$ denotes a quotient complex of the cobar complex $\Omega^{*,*}BP_*$ by a subcomplex generated by monomials $m \otimes t^{E_1} \otimes \cdots \otimes t^{E_n}$ with $\sum_{i=1}^n E_i > (a, 0, \ldots)$. Here, t^E for a sequence $E = (e_1, e_2, \ldots)$ denotes the monomial $t_1^{e_1} t_2^{e_2} \cdots \in BP_*(BP)$, and the set of sequences admits the lexicographical ordering (cf. [4, p.235]).

Then, the gamma elements $\overline{\gamma}_t$ for $t \geq 2$ in the Adams-Novikov E_2 -term are represented by a cocycle

(4.1)
$$\widetilde{\gamma}_t \equiv -tv_2^{p-3}v_3^{t-1}\widetilde{k}_0 \otimes t_1 \mod J_3 = (p, v_1, v_2^{p-1})$$

in $\Omega^{3,(tp^2+(t-1)p+t-2)q}BP_*\{p^2-1\}$ (cf. [4, p. 239]). In this section, we consider a spectrum $V(2)_{p-1}$ in (2.6). Note that $BP_*(V(2)_{p-1}) = BP_*/J_3$.

Theorem 4.2. $\overline{\beta}_1^{p-2} \overline{\beta}_2 \overline{\gamma}_{p+2} \neq 0 \in E_2^{2p+1,tq}(S^0) \text{ for } t = p^3 + 4p^2 + 2p + 1.$

Proof. Let $G \in C = \Omega^{2p+1,tq} BP_*$ be a cocycle representing the element $\overline{\beta}_1^{p-2} \overline{\beta}_2 \overline{\gamma}_{p+2}$. Then, $G \equiv v_3^p G_2 \mod J_3$ for a cochain

$$G_2 = -2v_2^{p-3}v_3\widetilde{k}_0 \otimes t_1 \otimes (2v_2b_{1,0} + \widetilde{k}_0) \otimes b_{1,0}^{\otimes (p-2)}$$

in $\overline{C} = \Omega^{2p+1,(3p^2+p+1)q}BP_*\{p^2+2\}$ by (3.4) and (4.1). Note that G_2 is the cochain \mathcal{D} of [4, p. 240] for t = 2, which is shown not to be a coboundary in \overline{C}/J_3 . We claim that

(4.3) G has no term with v_4 as a factor modulo J_3 .

Indeed, if $G = v_3^p G_2 + v_4 w + w' \mod J_3$ for $w, w' \in \Omega^* BP_*/(J_3 + (v_4))$, then, applying the differential d to the equality, we obtain $0 = v_3^p d(G_2) + d(v_4) \otimes w + v_4 d(w) + d(w')$. Since $d(G_2)$, $d(v_4)$ and d(w') have no term with v_4 , we deduce that d(w) = 0. Therefore, $[w] \in E_2^{2p,(3p^2+p)q}(V(2)_{p-1})$, which is zero by Lemma 2.19. It follows that there is a cochain \overline{w} such that $w = d(\overline{w})$. So replace v_4w by $d(v_4) \otimes \overline{w}$ so that G has no term with factor v_4 modulo J_3 .

Suppose that there is a cocycle $y \in \Omega^{2p,tq}BP_*$ such that d(y) = G in C. Put $y = y_1 + v_4 y_2 + v_3^p y_3 + z$ for $y_i = \sum_{a,b} v_2^a v_3^b y_{i,a,b}$ (i = 1, 2, 3) with $y_{i,a,b} \in \Omega^{2p,*}BP_*/I_5$ and $z \in J_3 \Omega^{2p,*}BP_*$. By a similar argument showing (4.3), we replace $v_4 y_2$ by a linear combination of terms without factor v_4 . Thus we may put $y = y_1 + v_3^p y_3 + z$. By (2.1), we see that $d(t_i) \in \Omega^2 BP_*/J_3\{p^2+2\}$ has the only one term $v_2 b_{1,1}$ if i = 3, and $v_2 b_{2,1}$ if i = 4 with factors v_2 and v_3 . It follows that for $x \in \Omega^{2p,uq} BP_*/I_5$ with $u \leq t, d(x) \in (\mathbb{Z}/p)\{1, v_2\} \otimes \Omega^{2p+1,uq} BP_*/I_5\{p^2+2\}$ by degree reason. Indeed, $v_2^2 b_{1,1}^2 = 0 \in \Omega^{4,2e(3)q} BP_*/I_2\{p^2+2\}$ and $v_2^2 b_{2,1}^2$ has an internal degree greater than tq. Since $d(v_3^b) = bv_2 v_3^{b-1} t_1^{p^2}$ in $\Omega^{1,*} BP_*/J_3\{p^2+2\}$ by (2.1), we see that

$$d(y) = d(y_1) + v_3^p d(y_3) = v_3^p G_2 \in \Omega^{2p+1, tq} BP_* / J_3\{p^2 + 2\}.$$

Here, we notice that $d(z) \equiv 0 \mod J_3$, since J_3 is an invariant ideal. From the equality, we see that $d(y_1) = 0$ and $d(y_3) = G_2 \operatorname{in} \Omega^{2p+1,(3p^2+p+1)q} BP_*/J_3\{p^2+2\}$. Thus, $G_2(=\mathcal{D} \operatorname{in} [4, p. 240])$ is a coboundary in the complex. This contradicts to the conclusion of the proof of [4, Th. 4.1].

Corollary 4.4. $\beta_1^{p-2}\beta_2\gamma_{p+2} \neq 0 \in \pi_{(p^3+4p^2+2p)q-3}(S^0).$

Proof. By virtue of Theorem 4.2, it suffices to show that there is no element $x \in E_2^{2,(t-1)q}(S^0)$ such that $d_{2p-1}(x) = \overline{\beta}_1^{p-2} \overline{\beta}_2 \overline{\gamma}_{p+2}$ in the Adams-Novikov spectral sequence. In [7, Th. 2.6], it is shown that the E_2 -term $E_2^{2,*}(S^0)$ is generated by the elements $\overline{\beta}_{sp^i/j,k+1}$ for integers $p \nmid s \ge 1$, $i, k \ge 0, j \ge 1$, subject to $j \le p^i$ if $s = 1, p^k \mid j \le a_{i-k}$ and $a_{i-k-1} < j$ if $p^{k+1} \mid j$, where $a_0 = 1, a_n = p^n + p^{n-1} - 1$ for $n \ge 1$. The internal degree of the element $\overline{\beta}_{sp^i/j,k+1}$ is $(sp^i(p+1) - j)q$, and we have an equation $t - 1 = sp^i(p+1) - j$ to find the element x. Note that $sp^i - j \ge 0$, and we have $2p^3 > sp^{i+1}$ and so $i \le 2$. Thus, we obtain the only solution (i, j, s) = (1, p, p+3) of the equation. In this case, k = 0 by the relation $p^k \mid j \le a_{i-k}$. The element $\overline{\beta}_{(p+3)p/p} (= \overline{\beta}_{(p+3)p/p,1})$ is a permanent cycle by [8]. Thus, we have no such element x, and hence $\overline{\beta}_1^{p-2} \overline{\beta}_2 \overline{\gamma}_{p+2}$ is not in the image of the differential d_{2p-1} of the spectral sequence. □

HIROKI OKAJIMA AND KATSUMI SHIMOMURA

References

- 1. M. Aubry, Calculs de groupes d'homotopie stables de la sphère, par la suite spectrale d'Adams-Novikov, Math. Z. **185** (1984), 45–92.
- 2. J. F. Adams, On the groups J(X)—IV, Topology 5 (1966), 21–71.
- 3. R. Kato and K. Shimomura, Products of greek letter elements dug up from the third Morava stabilizer algebra, Algebraic and Geometric Topology **12** (2012), 951–961.
- 4. C. -N. Lee, Detection of some elements in the stable homotopy groups of spheres, Math. Z. **222** (1996), 231–246.
- 5. X. Liu, A new family $\alpha_1 \beta_2 \gamma_s$ in $\pi_*(S)$, JP J. Geom. Topol. 7 (2007), 51–63.
- P. May, The cohomology of restricted Lie algebras and of Hopf algebras, J. Algebra 3 (1966). 123–146.
- H. R. Miller, D. C. Ravenel, and W. S. Wilson, Periodic phenomena in Adams-Novikov spectral sequence, Ann. of Math. 106 (1977), 469–516.
- S. Oka, A new family in the stable homotopy groups of spheres II, Hiroshima Math. J. 6 (1976), 331–342.
- 9. S. Oka, Multiplicative structure of finite ring spectra and stable homotopy of spheres, Lecture Notes in Mathematics **1051** (1984), 418–441.
- 10. D. C. Ravenel, *Complex cobordism and stable homotopy groups of spheres*, AMS Chelsea Publishing, Providence, 2004.
- 11. K. Shimomura and K. Yoshizawa, On the product $\alpha_1 \beta_1^r \gamma_t$ in the stable homotopy groups of spheres, Kochi J. Math. 9 (2014), 169–172.
- L. Smith, On realizing complex bordism modules, IV, Applications to the stable homotopy groups of spheres, Amer. J. Math. 99 (1971), 418–436.
- H. Toda, On spectra realizing exterior parts of the Steenrod algebra, Topology 10 (1971), 53–65.
- 14. L. Zhong and X. Liu, On homotopy element $\alpha_1\beta_1\beta_2\gamma_s$, Chin. Ann. Math., Ser. A, **34** (2013), 487–498.

Department of Mathematics, Faculty of Science, Kochi University, Kochi, 780-8520, Japan

E-mail address: gg1122cc@gmail.com

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, KOCHI UNIVERSITY, KOCHI, 780-8520, JAPAN

E-mail address: katsumi@kochi-u.ac.jp

14