A NOTE ON THE PRODUCTS o537, AND 3/7'3,7, IN THE
STABLE HOMOTOPY OF SPHERES

HIROKI OKAJIMA AND KATSUMI SHIMOMURA

ABSTRACT. In the stable homotopy groups of spheres, we have Greek letter
elements due to J. F. Adams [2], L. Smith [12] and H. Toda [13]. Here we
study the non-triviality of products of the first alpha element, the first and the
second beta elements and a gamma element in the homotopy groups.

1. INTRODUCTION

Let S,y denote the stable homotopy category of spectra localized at a prime
number p > 5, and SY € S(p) be the sphere spectrum localized at p. Since S0
is a generator of Sy, in a sense, the homotopy groups m.(S°) play an impor-
tant role to understand the category Sg,). The homotopy groups 7.(S%) form
a commutative graded algebra with multiplication given by composition. Unfor-
tunately, the structure of 7,(S°) is little known. G. Nishida showed that every
element in 7;(S°) for ¢ > 0 is nilpotent. We have generators of the groups called
Greek letter elements. In this paper, we study whether or not a product of the
Greek letter elements a1 € my—1(S°), B1 € mpg—2(S°), B2 € 7r(2p+1)q_2(50) and
v € 7T(tp2+(t—1)p+t—2)q_3(so) for ¢t > 1 is trivial. Hereafter, we put ¢ = 2p — 2 as
usual.

In [1], M. Aubry determined the homotopy groups 7, (S°) through total degree
less than (3p? + 4p)q. In particular, we have the following:

Theorem 1.1 ([1]). ayf27y2 and B Baye for r < p are non-trivial, and oy 81 52y2 =
0.

X. Liu showed the theorems:
Theorem 1.2 ([5]). The products ayfa7ys are non-trivial for 2 < s < p.
Theorem 1.3 ([14]). The products oy 1827s are non-trivial for 2 < s < p.

These two theorems are shown by use of the classical Adams spectral sequence.
Thus, the subscript s of 75 must be greater than two.

Consider the Adams-Novikov spectral sequence {E;*(X)} converging to the
homotopy groups 7.(X) of a spectrum X, and let

a ¢ E;’q(SO), Bl €2E22,pq(50)’ 52 c E22,(2p+1)q(50) and
5, € E1237(tp +(t—1)p+t—2)Q(SO) (t>1)
be the elements detecting the Greek letter elements ay, 51, B2 and 7, respectively.

Observing products of these elements in the Es-term, we obtained the following
theorems:
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Theorem 1.4 ([11, Th. 1.1]). The products o1 S Vup+t # 0 if 1l <t <t+u <p
and r < p—2.

Theorem 1.5 ([3, Th. 1.4]). Let t be a positive integer with p { t(t* — 1). Then,
Barye # 0 € m (S°).

C. -N. Lee showed that

Theorem 1.6 ([4, Th. 4.1, Th. 4.4)). Let p > 7. The products 3~; and 3} Bay:
are non-trivial if 0 <t < p and r < p — 1. The product o157y is non-trivial if
2<t<pandr <p-—2.

By using a result Bf72ﬂ272 # 0 of Lee’s, we deduce the non-triviality of the
product 772 Bayp42:

Theorem 1.7. Lett be an integer with 1 <t < p ort =p+2. Then, the products
B1 B2yt are non-trivial for 0 <r <p—2.

Consider spectra V' (2);, for k& > 1 characterized by the Brown-Peterson homology
BP.(V(2)x) = BP./(p,v1,v%) (see (2.6)). The spectrum V(2) = V/(2); is the
second Smith-Toda spectrum. It is well known that 7, =@13,_4, and so a1y, =0

as well as a;y; = 0. If t =p,p+1, theny, =0 € E;’(tp%(t*l)pﬂd)q(V(Q)) (

(3.5), cf. [4, Lemma 4.3]).
For products @857, in the Adams-Novikov Es-term for computing . (V(2)),
we have

see

Theorem 1.8. @;3,7, =0 € Eg’(tp2+(t+1)p+t)q(V(2)) fort>p.

By use of the May and the Novikov spectral sequences together with Toda’s
calculation [13] on the May Ej-term, we show the non-triviality of an element
— 7 = 6,(p°+3p°+4p+2)q : .
a1B9Yp12 # 0 € Ey (V(2)3) in Lemma 2.20. From this, we extend
non-triviality of products of Theorems 1.1 and 1.2 to the following:

Theorem 1.9. Let t be an integer with 1 <t <p ort =p+ 2. Then, 182y #
0 € m.(S9).

In the next section, we study the Adams-Novikov FEs-term by use of the May and
the Novikov spectral sequences with Toda’s calculation [13] on the May E;-term.
We then show the non-triviality of o; 827yp+2 in Theorem 1.9 and the triviality of
the products in Theorem 1.8 in Section 3. The last section is devoted to show the
non-triviality of the composite 37 _2ﬂ27p+2 in Theorem 1.7.

2. THE ADAMS-NOVIKOV FE5-TERMS

We fix a prime number p > 7. Let BP denote the Brown-Peterson spectrum at
the prime p, and we have a Hopf algebroid

(BP*,BP*(BP)) = (Z(p)[vl,’t}g,...],BP*[tl,tg,...])

with structure maps: the left and the right units nr,ngr: BP. — BP.(BP), the
coproduct A: BP,(BP) — BP,(BP) ®pp, BP,(BP), the counit ¢: BP,(BP) —
BP, and the conjugation ¢: BP,(BP) — BP,(BP). Here, v; and t; are generators
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of degree 2p' — 2 = e(i)q for e(i) = % and ¢ = 2p — 2. We notice here the

following action of the structure maps on the generators:

n—1
Un + ’Un_ltzl) — Up tl mod In—l (Tl Z 2),

) 1
nr(vs) = wvs+ UZthz + ity — tir(vy) + 1w (vz) — o'ty mod (p),
nr(vs) = wvatost] +oath —nr(vy)ts — vy t2 mod I,
(2.1) Alty) = Yl ti® tf:_i +Up—1b1p—2 mod I,—1 (n>1),
Aty) = Z?:o t ® ti:i +vgby 2 + v2ba1  mod I,
)

(
c(ty) = —t1, cty) = 2T —t; and

Ale(z)) = (c®c)TA(x) for x € BP.(BP).
(¢f. [10, Ch. 4]). Here, T: BP.(BP) ® BP.(BP) — BP,(BP) ® BP,(BP) de-
notes the switching map given by T(z ® y) = y ® x, I,—1 denotes the invari-
ant ideal of BP, generated by n — 1 elements vy = p, vy, ..., vp—2 (lo = 0),
wy(v2) = (vg —l—v’ft]fz - vat’f — (v2 + vit] — v{'tl)p) /p, and by g, bay and bsy €
BP « (BP) ®pp, BP.(BP) for k > 0 are the elements fitting in the following
equalities

k1 k41 k1 k2 k1l kol
(2.2) d(tﬁ) ) = pbik, d(tg )= *tﬁ) ® tjlo - ”f bzl),o +pba,  and
. k+1 k+1 k+2 k41 k+3 k+1 k+1 k+1 k+1
ity )=—t7 oty —ty @1 —vy b, —vf b, +pbs,

in which d(z) = 1®z+2®1—A(z) € BP.(BP)®pgp, BP.(BP). By the definition
(2.2) and the formulas on A(t;) and A(ts) in (2.1), we see that

dboy) = bri®t — " @by fori>0, and

(2.3) )
d(b&o) = bl,O (24 tg — tf (24 bg’l + b2,0 X tfs — tg X b172 mod (p)

We have the Adams-Novikov spectral sequence:
B (W) = Bxtyly (5p)(BPe, BP.(W)) = mis(W)

for a spectrum W. In this paper, we use the cobar complex Q**BP,(W) for
studying elements of the Ey-term: E3'(W) = H**(BP,(W)) (cf. [7], [4]). Here,

(2.4) H>'(M) = Ext3p, 5 p) (BP., M)
for a BP,(BP)-comodule M. Furthermore, we consider the k-th Smith-Toda spec-

trum V' (k) for k = 0,1, 2 defined by the cofiber sequences

S0 260 L) LSt mav(0) S V(0) L V(1) L 2tV (0) and

(2.5) ; |
SE+Day (1) L v(1) 2 v(2) 2 nethatiy (1)

for the maps p, a and (3, which induces a multiplication by p, v; and vy on the
BP,-homologies, respectively ([2], [12], ¢f. [10]). We also consider similar spectra
V(2)) for k > 2 defined by the cofiber sequences

k -~ T
(2.6) SkeDay (1) 25 V(1) 2 v(2), 2 sReDery (),

We notice that V(2), is a ring spectrum if k¥ < (p — 2)/2 ([9, Lemma 4.1], where
it is denoted by Lj). Note that BP.(V(k)) = BP./Iy41, and BP.(V(2);) =
BP*/(pa 1}1,’05).
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Consider a Hopf algebra T = Z/p[t1,t2,...] = BP.(BP)/(p,v1,v2,...) with
structure maps obtained from BP,(BP) under the projection BP,(BP) — T.

May [6] constructed spectral sequences:

(2.7) E4=H*(V(L))=H*(T) and E,=P(b ;)@ H* (U(L)) = H*(V(L)).

Here, L denotes the restricted Lie algebra associated to the Hopf algebra 7 and
U(L) and V(L) = U(L)/(&(x) — xP) are the enveloping algebras of L (£ is the “p
operation”). The bidegree of the generator b; ; is (2,p’*e(i)q), and b; ;’s corre-
spond to those given above for i = 1,2,3. The cohomology H*(U (L)) is isomorphic
to the cohomology of the exterior complex E(t; ; : ¢ > 1,4 > 0) over generators t; ;

with bidegree (1,p’¢e(i)q) along with the differential given by

i—1
(2.8) d(tig) = Y tiokjerte,.
k=1

In [13], Toda determined H*!(U(L)) for t — s < (p* + 3p® + 2p + 1)q — 4, which is

additively generated by the unit element 1 and the elements in the table:

ho h1 9o ko koho ha
1 D p+2 2p+ 1 2p + 2 p2
h2ho g1 l1 lo lihy k1
p? +1 p? + 2p p?+2p+3 | p®+3p+1 [ p?+3p+3 2p2 +p
I3 k1h1 liho mi m1ho 14
2p”° +p+2 207 +2p [ 29 +2p+3 [ 207 +4p+2 [ 207 +4p+3 [ 3p° +2p+ 1
laho lahy lago lako lykoho h3
3p2+2p+2 | 3p?+3p+1 |3p?+3p+3 | 3p>+4p+2 | 3p>+4p+3 p°
h3ho h3hi h3g0 hsko h3koho g2
PP+l P +p PP rp+2 | PP +2p+1 | pP+2p+2 | pP+2p?
g2ho ls mo ms lg ma
3 2 3 2 3 2
+2p p° + 2p p° + 3p
31952 41 3 1 9p2 4 3 p 3 1 3p2
AL PR ygppa | aapr1 [PTEP]
Table 2.9

Here, the integer under each element is the degree of it divided by ¢, and

hi=1[t1:], ¢ = [t14t24], ki = [t1i4182,4], (1> 0);
L = [tsote,0t1,0], lo=[t2,1t20t11], I3 = [ts0t1,2t1,0],
(2.10) la = [tsoteitie], Is =[ts1te1t11], lo = [t22ta1t1,2];
my = [tsota,1t2,0t1,1], Mme = [ta0ts,0t2,0t1,0],
mg = [t31t2,1t2,0t1,1], and mg = [t2,2t30t12¢1 0]

Lemma 2.11. The cohomology H>#°+37° 30+ 14 (T) s a subquotient of Z/p{lshshi},

and H5.,(p3+3p2+4p+2)q(7') —0.

Proof. We consider the May spectral sequences (2.7). The module (E(ti,j))S’tq for
t = (p® +3p? +ap+ a —2) with a = 3 or a = 4 is generated by the monomials of

the form

€1,04€1,1,€1,2,€1,3 ,€2,0,€2,1,€2,2,E3,0,€3,1,€4,0
tl,O tl,l t1,2 t1,3 t2,0 t2,1 t2,2 t3,0 tS,l t4,0
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with ¢; ; € {0,1} satisfying equations

(1) 5 €10 €11 +e12 13+ 620+ €21+ €22+ €30+ €31+ €40,
(2) 1 = e13+tez2+e31+¢40,

(3) 3 = €121+ €21+ €22+ €30+ €31+ €40,

4) a = e11+e0+¢e21+e30+eE31+¢E40 and

(5) a—2 €1,0 +€2,0 + €30+ €40

These equations implies

(6) 4 = e1o+e1terateroterrtezp by (1) and (2),

(7) 2 = egpo+teteztezo by (1) and (3),

(8) 2 = e12+€e21+€30—¢€1,3 by (2) and (3), and

(9) 2 = &1+e1+e31—¢€10 by (4) and (5).

The case for €37 = 0: In this case, we see that €11 =¢e21 =1 and e19 =0
by (9). Then,

2= €1,2 t €20+ €30 by (6) and €13+t €20 = 1 by (7)

o Ife;3=1,thenes g =0, andsoe; 2 = €39 = 1, and obtain a monomial
t1,1t2,1t1,2t3,0t1,3 at degree (p3+3p2—|—3p+ 1)q, which yields the element
lyhihs.

o If €1,3 = 0, then €20 = 1, and so €12t €30 = 1.

— Ife1,2 = 1, then the monomial has a factor £ 1t2 1?2 0t1,2 of degree
(2p? + 3p + 1)g, and so we obtain
t1,1t2,1t270t172t272 at a = 3, and
t11t2,1t20t1,2t40 at a =4.
The first monomial gives us the element logs = lgko € H>'(U(L)).
We name the second monomial x;.
— Ife; 2 =0, thenes g = 1, and the monomial has a factor ¢ 12 1t2,0t3,0
of degree (2p*+4p+2)q, and so the monomial is ¢4 1t2,1t2 0t3 0t2,2
at degree (p3 + 3p? + 4p + 2)q. We name it z.
The case for €37 = 1: In this case, €13 = €22 = €40 = 0 by (2). By (9),
l=¢e11+¢e21—€1p0.

e If 190 = 1, then €17 = €21 = 1, and the monomial has a factor
t10t1,1t2,1t3 1 of degree (p®+2p*+3p+1). Therefore, we have monomials
t170t171t271t172t371 at a = 3 and t170t171t271t370t371 at a = 4. The first
monomial corresponds lshohg. By Table 2.9, we see that [shg = 0 and
the monomial yields nothing. We name the second one x3.

o Ife190 =0, then 1 = £11 + e21. This together with (6) implies 3
€12+ €20+ €30, and we obtain €1,2 = €20 = €30 = 1. By (8), €21
0, and so €1,1 = 1. Therefore, we have ti 1t1 2t2,0t3,0t3,1 at degree
(p® + 3p% + 4p + 2)q. We name it 4.

Now put

T1 = tiaitaataotiatsitio To = tiataiteotiatistso
Then,

d(.’l?l) =71+ To, d(.’l?g) = —1Zo, d(.’l?g) = —7; and d($4) = —T1 + Zo,
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and

d(t11t2,1t3,0t0,0) = —x1 —x3 — 2 and  d(t21t2,0t3,0t3,1) = —T2 + T3 — T4.
Thus, the elements x; for ¢ = 1,2, 3, 4 yield no element of H57(1’3+3P2+4p+2)‘1(U(L)).
We also have

d(ti,1te,1t1,9ta0 — taota1t1,2t3,1)
= —tiataati2(tsatio +taata0 + ti3ts,0) — ti1t10t2,1t1283,1
+ta0t2,1t12t22t1,1 = —2l2g2 + l4h3hy.

H5"(V(L)) for t = (p>+3p® +ap+a—2) with a = 3 or 4 also contains elements
obtained from the Fj-term of the May spectral sequence (2.7):

by oH3"' (U (L)) fort!=t—p=(p>+3p*+ (a—1)p+a—2), and

B HYWIU(L)  fort’ =t—2 = (b + 3 + (a—2p+a—2)

The latter module is trivial. We have a monomial of the complex (E(tm-))?”t/q:

t2’1t3’0t4’0 (t/ = p3 + 3p2 + 3p + 2)

on which the differential acts by d(t21t3,0t4,0) = t2,1t2,0t1,2t4,0 + -+ # 0, and this
monomial yields no element of H3*'¢(U(L)). Thus there is no element in these
modules.

From Table (2.9), we find no element of the form xb; ;by; or zb;; for x €
H*(U(L)) in our degree. O

For studying the Adams-Novikov Fs-term, we consider the Novikov spectral
sequences

(2.12) By = Extr (Z/p, Q) = E;" (V(0))

(¢f. [1, Lemme in p. 61]) and

(2.13) Ey = Z/plvn] ® Extr(Z/p,Q(n + 1)) = Extr(Z/p, Q(n))
(cf. [1, (1.4.3)]). Here,

(

2.14) Q =7Z/p[v1,va,...] and Q(n)=Q/(v1,-..,Un-1)
are comodules with coactions given by
(2.15) ) =Y vith_..
i=0

‘We note that
Bxtr(Z/p, Q(5)) = H*(T)
in our range.
Among the generators (2.10) of H*(U(L)), the elements g; and k; for i > 0, I3, 4
and lg survive to the Adams-Novikov Es-term, E3(V(2),) by the Massey products

gi = (hi hiy i) s ki = (hishiga, higa)
lo = (ho,h1,91), la=—2(h2,ho,ho,ko) and Ils= (h1,h2,g2).

These satisfy
(2.17) gi = (hiy1,his hi), 29i = — (his higr, he)  and 2k = — (higa, hiy hiya)
for i > 0. By a juggling theorem of the Massey products, we also see that

(2.16)

higi =0, hiy19; = hk; and  g;h;yo = 0.
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We moreover have elements of the E3™(V(2),):

(2.18) vzhe = (va, ha,ha) and xbyg = <:c, (h1,ha), (_bb1)>
0

for an element x € Ey"(V(2),) with zhy = 0 = xhy. Hereafter, we write b; for
the homology class of by ; (see also (3.3)). For example, z = hy, ha, g2 and kibs.
Indeed, ]{ilbghl = g1h2b2 = glhgbl =0.

Lemma 2.19. For the spectra V(2) in (2.6), some of the Adams-Novikov Es-
terms are given as follows:

5 2
By PV (2)5) = Z/plhabao}  and  EZPCPTPUV(2), 1) = 0.

Proof. For t < 2p* +3p+2, E3"(V(2)3) is a subquotient of Z/p[va, v3] @ H*(T) by
the spectral sequences (2.12) and (2.13), and H*(7T) is a subquotient of P(b; ;) ®
H*(U(L)) by the May spectral sequence.

We pick generators with given bidegrees out of the module Z/p[vs, v3] @ P(b; ;) ®
H*(U(L)) as in the following table, where a, b € {0,1,2} and x € H**(U(L)).

’ bidegree \ \ a,b \ dim x \ x \ generators ‘
(3,27 +p)g) [ vsvhe Ja=b=0] 3 [-— —
vgvgxbi,j a=b=0 1 h2 thQ’O

By (2.18), the element hgbs yields an element of the Adams-Novikov Ea-term.
We easily find only one element ki of bidegree (2,(2p? + p)q) in Z/plva,vs] @
2
P(b; ;) ® H*(U(L)). This is an element of E;,(Zp +p)q(V(2)3), and no differen-
tial hit hobs o in any above spectral sequences. Therefore, hoby ¢ survives to the
2

Es-term E5 7 TP9(y(2),).

Turn to the second. A monomial of bidegree (2p, (3p? + p)q) of Z/plve,vs] ®

P(b; ;)®H*(U(L)) has one of the forms vgvgzbg,obfng% dime, vgvgxbgvobmbﬁ)%% dim e,
vgvgxbilbf;f_% dimw, vgvgmbg,obf;_% dimz, vgvgxbl,lblfgl_% dime nd vgvgfcbf:)% dimz
The degrees of these elements are
monomials degrees
vgvgzbgobfz)%% dim e q((p+a+ (p?+p+1)b+degx + 3p? — £ dimz)
vgvgxbgobmbzfg%% dim q((p+Da+ (p*> +p+1)b+degx + 3p? — p— & dima)
Ugvgxbilbf’f—% dme g (p+1a+ (p*+p+1)b+degz + 3p®> — 2p — Edimz)

—1—21 dim .
AR q((p+ Da+ (p* +p+1)b+degz + 2p? — L dimz)

q((p+1a+ (p*>+p+1)b+degz + 2p* — p— Ldimaz)
qg((p+1a+ (p*+p+1)b+degz+p? — Ldimz)

v§viabs o

—
a. b p—1—5 dimz
v§vsxby 167

T
5 dimz

a,b 1P~
vyvgahy

Since the degree is (3p? + p)q, we see that degx/q = —a—b mod p, and deduce that
a=>b=0. Indeed, degz/g=dmod pwith0<d<3,0<a<p—1and0<b<2.
Thus, x = ¢1, k1, and we have a candidate glb2,0b€52 for a generator. Note that
dgp_l(glbg,ob’fﬁ) = glhgb’ffjl = h1k1b1f51 in the second May spectral sequence in
(2.7). Since h1k; # 0 by Table 2.9, we have no generator at the degree. O

3 2
Lemma 2.20. We have a non-zero element vivibob? € Eg’(p +op +4p+2)q(V(2)3),
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Proof. Put tg = p®+3p®+4p-+2. We consider the element v3vEbob? € ESY(V(2)3)
by the spectral sequences (2.7), (2.12) and (2.13). For this sake, we compute the
Ext group F = Ext?r’toq(Z/p,Q(Q)) for the comodule Q(2) in (2.14). We study
whether or not the element v3vibob? is in the image of a differential of the spectral
sequences, and so it suffices to consider modules

M(a,b,¢) = (v§uhosH> (V(L)) " € (P(v2,v3,04)/(v3) @ HO*(V(L)))™"".
We read off from Table 2.9 and Lemma 2.11, the module

Z/p{v4labi} (a,b,c) =(0,0,1)
Z/p{vsvshab}, v3vsh1boby } (a,b,c¢) =(0,1,1)
Z ] p{vavshaboba,g, v2vah1b1ba o} (a,b,c) = (1,0,1)
Z/p{vslaba 1} (a,b,c) =(0,1,0)
Z/p{vavshsb3 o, vavshi b oba 1, v2v3k1h1ba,
vaush1b1b3 0, v2v3habobs o } (a,b,c) =(1,1,0)
M(a,b,c) T« Z/p{v3hsboba o, v3h1baba o, v3h1boba 1} (a,b,c) = (0,2,0)
Z/p{vavihob o} (a,b,c) = (1,p,0)
Z/p{v3vE haboby, v3vEhy b3} (a,b,¢) = (2,p,0)
Z)p{v8  hoboba o} (a,b,¢) = (0,p+1,0)
Z/p{'0214h3h1} (a7b7 C) = (17070)
Z/p{v3lsbo, v3k1h1ba 1, v3habs obao} (a,b,c) = (2,0,0)
0 otherwise.

Here, we write A C B if A is a subquotient of B. Let E(a, b, c) denote a submodule
of E generated by elements detected by elements of M (a, b, ¢). We first verify which
of the elements on the right hand side of the above relation yields an element of
M(a,b,c), and then evaluate E(a,b, ) by the spectral sequences (2.13).

We consider the second spectral sequence (2.7). Note that the May filtration of
the elements h; ; and b; ; are 2¢ — 1 and p(2i — 1), respectively. Then, the May

differential do,—1: B — E;;_l’lt’u_% 1 of the spectral sequence acts as
(2.21) dop—1(b2;;) = biihito — higib1ip1 for i >0, and

' dap—1(b30) = —hiba1 + bz ohs
by (2.3).

We start from the modules M(0,1,1), M(1,0,1), M(1,1,0) and M(2,p,0). By
(2.21), hgb% = hlbobl, hgbobg’o = hlblbg’o and h2b0b1 = hlb% in H* (V(L)), and

dap-1(h3b3 o) = —2h3(bioha —hibi1)bao = 2hshiby1ba,
dop—1(h1b2ob21) = —hi(b1ohe — hib11)b21 — hibao(b11hs — haby 2)
= hshibi,1020,
dop—1(h1b1,1b3p) = —hibi1(—hiba1 + baohs) = hghibi1bap,
dop—1(habiobsp) = —habio(—hiba1 +baohs) = 0, and
dop—1(b2,0b30) = (b1,0h2 — hib1,1)b3 0 + b2 o(—hiba1 + b2 ohs)

= habiobs,0 — hiby,1bs o — hibagba1 + hsb3 .

These differentials imply that the rank of the module M(1,1,0) is not greater than
three. Therefore, M(O, 1, 1) E Z/p{’[)31)4h2b(2)}7 j\4(1,07 1) E Z/p{vg’ti4h2b27obo},
M(1,1,0) T wousZ/p{habobs o, hibaoba1 — hibibsg,kihibe} and M(2,p,0) T
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Z/p{v%vghzbobl}. Furthermore, we have d4p_3(h2b1706370) = —h2b170(b170h272 -
h2,1b1,2) = *92530+k1b1,051,2, and d4p—3(h1b2,052,1*hlbl,lbg,o) = hlbl,l(bl,OhQ,Q*
ho1b12) = ggbio — g1b1,1b1 2. Therefore, we obtain M (1,1,0) C Z/p{vavskihiba}.

Consider the spectral sequence (2.13). The differentials of the spectral sequences
are read off from the structure map (2.15). For example, dy(v4) = vshs for n = 3
and dj(vs) = vahs for n = 2. For M (0,1, 1), noticing that vshs is represented by a

2 2 2 2
cocycle vgth + vge(th ) + voth t5 in the cobar complex Q(2) ® T, we compute
2 2 2 2
d(vat] +vsc(t] ) +vath t)
p° o 4p° p? o P° p? P’ p° o 4P
= ust) @t sty @ sty ®@c(ty ) —vst] @t
2 2 2 2 292 3 T 2 4p2?
—vat] ®th —vath R —waty? @] —wat] @1 7

2 2 2 3
= 20t @t —upt? @i,

in which the underlined terms with a subscript cancel each other out. The cocycle
Qtfz ® tlj + t?p ’ ® tff appearing in the right hand side of the above computation
represents 2go # 0 € Extr(Z/p, Q(3)) (see (2.14) for Q(3)). It follows that vshs
does not survive to Extr(Z/p, Q(2)) in (2.13). Thus, £(0,1,1) = 0.

For M(1,0,1), we compute

—b
hshabzg = h3 <h2, (h1, h2), ( b 1>>
(2.22) 0 s
= ((ha, h2,h1),(h3, ha, ha)) ( b01> = gaby

by the juggling theorem in the Es,-term of the second spectral sequence in (2.7)
by (2.18) and (2.17). We also note that (hs,ho,h1) = 0 by considering d(t}).
Therefore, dj(vihabagby) = v3g2b3 in the spectral sequence (2.13) for n = 3, and
E(1,0,1) = 0 follows.

In the spectral sequence (2.13) for n = 2, we compute

dl(vgglbg) = 21)2’03hgglbg = 2U21}3k1h1b2 and
dl(vgvg+1b0b1)

where we use the well known relation g1ho = hik;. Therefore, the triviality of
E(1,1,0) and E(2,p,0) follows.

Since hols = 0 = hly by Table 2.9, we see that

—b
l2b2,1 - <l23 (hQ; h3)7 < b12)>

in H*(V(L)) in the same manner as (2.18). Note that (ha,la, ha) = 2i4h; and
(h2,l2,hg) = 0 in H*(V(L)). Therefore, in the spectral sequence (2.13) for n = 2,
we compute dj(vslaba 1) = —2v2l4h1b2 # 0 and so E(0,1,0) = 0.

Since d2p71(b3’0b1’0) = (—h1b2,1 + b2,0h3)b1,0 and

dap—1(h1b2,1b10) = —h1(b1,1hs — hab1 2)b1o = —hshib1,1b1 0,
we see that M (0,2,0) C Z/p{vihibsobs}. In the spectral sequence (2.13) for n = 2,

—b
d1(v3hibay) = 2voushs <h1,(h1,h2), < b01)>

b
= 27}2’(}3 <h27 hh (hh h2)> ( bol> = 27}2’()3(91[?1 — 2k1b0)

by (2.17) and (2.18). It follows that F(0,2,0) = 0.

2,,p
V3V3 h2b0b17
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In the spectral sequence in (27), dgp_l(klb&o) = kl(—h1b2,1+bg70h3) = —klhlbg,l
and k1hibey =0 € H*(V(L)). By (2.3), we compute the differential d(t’l’2 R b ®
b3 ) in the cobar complex for computing H*(V (L)), and deduce that

dap—3(h2b2 0b3,0) = haba (b1 0h22 — h21b12) = g2ba 01,0 — k1b1,2b20

in the spectral sequence. Here, xbs o for © = ga, k1be are given in (2.18). Thus,
M(2, 0, 0) C Z/p{’l)%lﬁbo}.

We have M(1,p,0) =0 and M(0,p +1,0) = 0, since

dap—1(hob2,0) = —ho(b1,0he — h1b1,1) = hahobi 0.

Therefore, E(1,p,0) =0 and E(0,p + 1,0) = 0.

Therefore, Extgltoq(Z/ p,Q(2)) is a subquotient of the module

Z/p{valaby, valshshy, v3lebo}.

We consider the element vyly. By (2.16), I € E5*(V(2)2). Let 5 denote a cocycle
representing l> in the cobar complex for computing Ey*(V(2)2). By Table 2.9
together with (2.16), we see that hola = 0 and hsly = 0, and so we have cochains

y; such that d(y;) = tﬁ’l ® Iy for i = 0,3 in the cobar complex. Then,

d(vyls — Pyo) = ust? @y — 0Bt @Iy + vath @y — vat?
(valz —v3ys +v5yo) = wsty ©ly = vzt @l Valy @lp = oty O Y3
—vst] @Iy +vht; @1y
2 - 2
= vg(tg ®l2—t11] ®y3) mod (p,vl,vé”)-

Since t§2 ®Z2—t1172 ®ys3 represents an element of the Massey product (hg, hs, l2), which
belongs to H* @ +20°+3p+1)a({/(L)). Therefore, we deduce that (hy,hs,ls) = 0 by
Table 2.9, and so we have a cochain z such that d(z) = tgz ® 1y — tﬁ’z ® ys3. Now
the element v,lob; yields an element of E, " (V(2)3) represented by (v4le — v3ys +
vhyo — v22) @by 1.
The other generators of the module are represented by the Massey products
—205 (ha, ha, ha, ko) hshy  and 3 (hy, ha, g2) bo

in the Adams-Novikov Ea-term E3*(V(2)3) (c¢f. (2.16)). Therefore, the differentials
of (2.12) on these generators act trivially, and v3v5bob? is not in the image of any
differentials of the spectral sequences. O

3. ON THE PRODUCT aqf327Yp+2

We recall the definition of the Greek letter elements. The Greek letter elements
in the homotopy groups . (SY) are defined by composites

(3.1) o = ja’i, Bs =jiiB%i  and  ys = jjijey izt

for the maps in (2.5) and a map ~: Z(p2+p+1)qV(2) — V(2) inducing a multiplica-
tion by vs on BP,-homologies given by Toda [13]. We notice that (¢ A V(0))a’i =
v; € BP./(p), f%i1i = (L AV (1))vs € BP. /Iy and (1 AV (2))y%igi1i = v§ € BP, /I3
for the unit map ¢: S° — BP of the ring spectrum BP. Then by the Geometric

Boundary Theorem (cf. [10, Th. 2.3.4]), the Greek letter elements (3.1) are detected
by those in the Adams-Novikov Fs-term defined by

T, = 0o(v) € EX*1(S%), B, = 6001 (v5) € Ex(PT7D4(90)  anq

(3.2) ) c E:;,(sp2+(sfl)p+572)tI(SO)_

o = 000102(v3
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Here 6. E3™(V (k) — E3T"*(V(k — 1)) denotes the connecting homomorphism
associated to the cofiber sequences in (2.5) (V(—1) = SY). Traditionally we put

it+1

(3.3) hi =[] € EM'9(S%) and b = [by] € B2 9(S0),

where [¢] denotes the cohomology class of a cocycle ¢ € Q**BP,. We note that h;
corresponds to h; in Table 2.9. Then, by definition, we have well known relations

(cf- [4], [10]):
(34) o) = ho, Bl = bo and 32 = 2U2b0 + ]CO mod IQ

in the Fs-term. Furthermore, it is also showen in [4, Lemma 4.3] that
— t t—2 t t—3
(3.5) Ve =2 ) vy “haba g + 3 3 vy °ly mod I3 = (p,v1,v2)

in Eg’(tpu(t*l)pﬂﬂ)q(so) = H37(7‘4’24‘(t_1)”‘*‘t_2)q(BP*)7 where habs o and Iy are
given in (2.18) and (2.16). By Lemma 2.19, we have

Lemma 3.6. 7, = 2hobyg # 0 € B 4y (2),).

Lemma 3.7. The element 7,5 € ES’(p3+3p2+2p)q(SO)

mod (p,vy,v3).

satisfies that 7, o = 57,

Proof. The relation 7,5 = vh7, follows from computation:

Ja (U§+2) = 050 (v?) mod (v8).
5152(v§+2) = 51(v§52(v§) +v3z) = 055152(1)%) mod (v?,v3).
506152(v§+2) = Jo(v88102(v3) + viy +v32) = v5600102(v3) mod (p,v1,v3),
for elements = € Ey*(V (1)), and y, z € E3*(V(0)). O

Lemma 3.8. For the spectrum V(2)s in (2.6), we have

hokoT, = 0 € B H3020(17 9y ).

Proof. By the juggling Theorem of the Massey products, (2.18) and Lemma 3.6,
we compute

_ _ —b
hoko¥s = gohi7s = 2go((h1, ha, h1), (h1, ho, ha)) ( bol)
= 4gogib1 + 2gok1b1 = 0

in BESCP D9y 9y Indeed, (A, ho,hi) = —2¢1 by (2.17), and gogy = 0 =
gok1. Therefore, the lemma follows. O

Lemma 3.9. In the Adams-Novikov Es-term,

J— 2
1By, = dvbob? € ES P IRy (),
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Proof. By (3.4) and Lemma 3.8, we see that a1 8,%, = 2voa01 3,75, which is con-
gruent to 4vahgbohabe,o modulo (p,v1,v3) by Lemma 3.6. We compute

= _ —b
%UQalﬁlfyZ = UQhObO <h27 (h’17 h’2)7 ( bol> >
—b
hObO <'U2, h?a (hla h’2)> ( b()l)
b

Robol o2z, ) (o ) 51
hobo (— (va, ha, h1) b1 + (va, ha, he) bo)
—V2 <h2, hl, h0> b()bl + <U2, h2, h2> hObObO
’U%bob% + Ughghobg.

Here, the differential d(c(t3)) (see (2.1)) gives us a relation (hs,h1,hg) = v2by
mod I in the Es-term. We further see that hohob3 = 0 € H*(V(L)), since
dap—1(hob1,0b2,0) = hoh2bi o in the May spectral sequence. O

Theorem 3.10. @1557,,, # 0 € ES’(p3+3p2+4p+2)q(So).

Proof. By Lemma 3.7, we have 7, o = v57, € ES’(I’S—ir‘gp%er)q(V(Z)g)7 and so
5 5 — 6,(p>+3p>+-4p+2
01557y e2 = 50 PyT, = 4uulbobi € By NV (2))

by Lemma 3.9. Now the theorem follows from Lemma 2.20. O

Proof of Theorem 1.8. For t = p and = p+ 1, 7, = 0 by (3.5), and so the propo-
sition holds in these cases. Suppose now ¢ > p + 2. Note that £, = [EO] = ko and
¥e = 2(5)vi 2 habao + 3(5)vs %1y for t > 2 in E3(V(2)) by (3.4) and (3.5) (cf. [4,
p. 234], [4, Lemma 4.3]). Here, BP,(V(2)) = BP,/I5 and 4 denotes the generator
given in [13, p. 55]. This implies that 7, = v37,_, for t > p + 2 in E5(V(2)),
and we also see vihg = vshs in EL(V(2)) by d(vs), where h; € ELYP9(V(2))
is an element represented by a cocycle tzfl. Therefore, @357, is represented by
Ué_p_2h3k0(2(é)’03h2b2,0 + 3(§)l4) Here, we see that h3/€0h2b270 = k092b1,0 by
(2.22). We also see that hskoly = hsham; for the generators in Toda’s calculation
[13, p. 55]. Since both of kogo and hshs are zero by Toda’s calculation (see Table
2.9), these imply the triviality of @; 8,7, for t > p + 2. O

4. NON-TRIVIALITY OF 77 2Byy,10

We begin with a recollection of some results from [4]: Q**BP,{a} denotes a
quotient complex of the cobar complex Q2**BP, by a subcomplex generated by
monomials m ® t¥* @ .-+ ® tF» with Y | E; > (a,0,...). Here, t¥ for a se-
quence F = (e, eq,...) denotes the monomial t{'t5?--- € BP,(BP), and the set
of sequences admits the lexicographical ordering (cf. [4, p.235]).

Then, the gamma elements 7, for ¢ > 2 in the Adams-Novikov Fs-term are
represented by a cocycle

(4.1) Yo = —toh 20t kg ® ¢y mod Js = (p, vy, 08 )

in Q3(P°+(E=Dp+i=2aBp (p2 1} (¢f. [4, p. 239]). In this section, we consider a
spectrum V' (2),-1 in (2.6). Note that BP,(V (2),-1) = BP,/Js.
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Theorem 4.2. B€_2527p+2 #0e EPTH(80) fort = p3 +4p® + 2p + 1.

Proof. Let G € C = Q?PT14BP, be a cocycle representing the element BfﬁBQWHQ.
Then, G = v§G2 mod J; for a cochain

G2 = —208 Susko @ t1 ® (2usb1,0 + ko) ® BPF )

in C = Q2+L.GP*+p+Da B P, {p? + 2} by (3.4) and (4.1). Note that Gy is the cochain
D of [4, p. 240] for ¢ = 2, which is shown not to be a coboundary in C'/J;. We
claim that

(4.3) G has no term with v4 as a factor modulo J3.

Indeed, if G = v} Go+vgw—+w’ mod J; for w,w’ € Q*BP, /(J3+(v4)), then, applying
the differential d to the equality, we obtain 0 = v5d(G2)+d(vs) @w+vad(w)+d(w’).
Since d(G2), d(v4) and d(w') have no term with vy, we deduce that d(w) = 0.
Therefore, [w] € E;p’(3p2+p)q(V(2)p,1), which is zero by Lemma 2.19. It follows
that there is a cochain @ such that w = d(w). So replace v4w by d(v4) ® W so that
G has no term with factor v4 modulo J3.

Suppose that there is a cocycle y € Q"4 BP, such that d(y) = G in C. Put
Yy = y1+vayatosys+zfory; =3, 508y a0 (1 = 1,2,3) with y; 0 € Q*P*BP, /I
and z € J3Q?P*BP,. By a similar argument showing (4.3), we replace v4y2 by a
linear combination of terms without factor vy. Thus we may put y = y; +viys + 2.
By (2.1), we see that d(t;) € Q?BP,/J3{p?+2} has the only one term vab 1 if i = 3,
and vabs 1 if 4 = 4 with factors v and vs. It follows that for x € Q2B P, /I5 with
u < t, d(x) € (Z/p){1,v2} @ Q?*PTLuIBP, /I5{p* + 2} by degree reason. Indeed,
v%b%l =0¢c Q?®app, /,{p*>+2} and v%b%yl has an internal degree greater than

tg. Since d(v}) = bvﬂ)g*lt’fz in QV*BP,/J3{p? + 2} by (2.1), we see that

d(y) = d(y1) +v5d(y3) = v5Gy € Q*PTHBP, [ J3{p* + 2}.
Here, we notice that d(z) = 0 mod J3, since J; is an invariant ideal. From the
equality, we see that d(y;) = 0 and d(y3) = G in 92p+1’(3p2“’+1)’1BP*/Jg{p2 +2}.

Thus, G2(= D in [4, p. 240]) is a coboundary in the complex. This contradicts to
the conclusion of the proof of [4, Th. 4.1]. O

Corollary 4.4. ﬁ{)_2ﬂ2’yp+2 7é 0 e 7T(p3+4p2+2p)q,3(50).

Proof. By virtue of Theorem 4.2, it suffices to show that there is no element
x € Ex719(80) such that do,_y (z) = B]f—zBQ%H_Q in the Adams-Novikov spectral
sequence. In [7, Th. 2.6], it is shown that the Ep-term E3*(S°) is generated by
the elements 3, ;41 for integers p ts>1,4ik>0,7 > 1, subject to j < p* if
s=1,p"|j<airanda;_p_1 <jif p"*' |, where ap =1, a, = p" +p" ! —1
for n > 1. The internal degree of the element B,/ x4y is (sp'(p + 1) — j)g, and
we have an equation ¢t — 1 = sp’(p + 1) — j to find the element z. Note that
sp' — j > 0, and we have 2p® > sp'*! and so i < 2. Thus, we obtain the only
solution (i,7,s) = (1,p,p + 3) of the equation. In this case, k = 0 by the relation

p* | j < a;_x. The element Bp+3)p/p(= B(p+3)p/p)1) is a permanent cycle by [8].

Thus, we have no such element x, and hence B]T 327;) 12 is not in the image of the
differential da,_1 of the spectral sequence. ]
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