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Abstract. Consider Hopkins’ Picard group of the stable homotopy category
of E(2)-local spectra at the prime three, consisting of homotopy classes of

invertible spectra [1]. Then, it is isomorphic to the direct sum of an infinite
cyclic group and two cyclic groups of order three. We consider the Smith-Toda
spectrum V (1) and the cofiber V2 of the square α2 of the Adams map, which is
a ring spectrum. In this paper, we introduce imaginary elements which make

computation clearer, and determine the module structures of the Picard group
graded homotopy groups π⋆(V (1)) and π⋆(V2).

1. Introduction

We work on the stable homotopy category S(3) of spectra localized at the prime
three. Consider the Brown-Peterson spectrum BP with coefficient algebra
Z(3)[v1, v2, . . . ] on the generators vi of degree 2× 3i− 2 for i ≥ 1. Then, the second
Johnson-Wilson spectrum E(2) ∈ S(3) is the spectrum representing the Landweber

exact functor E(2)∗(X) = E(2)∗ ⊗BP∗ BP∗(X) for E(2)∗ = Z(3)[v1, v2, v
−1
2 ] on

X ∈ S(3). Let L2 denote the full subcategory of S(3) consisting of spectra localized
with respect to E(2) in the sense of Bousfield. Then, we have the Bousfield local-
ization functor L2 : S(3) → L2, which is a retraction. A spectrum X ∈ L2 is called

invertible if there is a spectrum Y such that X ∧Y = L2S
0 for the sphere spectrum

S0. Hopkins’ Picard group Pic(L2) is defined to be a group consisting of the ho-
motopy equivalence classes of invertible spectra with multiplication defined by the
smash product. For an element λ ∈ Pic(L2), S

λ denotes an invertible spectrum
that represents λ. Note that E(2)∗(S

λ) = E(2)∗ shown by Hovey and Sadofsky
[2]. In [1], Goerss, Henn, Mahowald and Rezk showed that Pic(L2) is isomorphic
to Z⊕Z/3⊕Z/3. The generator of the summand Z is represented by S1 = ΣL2S

0.
Let ωi for i = 1, 2 denote a generator of the i-th summand of Z/3⊕Z/3 ⊂ Pic(L2).
The Picard group graded homotopy groups π⋆(X) of a spectrum X is

π⋆(X) =
⊕

λ∈Pic(L2)

[Sλ, L2X]

Note that Sa+bω1+cω2 for a ∈ Z and b, c ∈ Z/3 is represented by the invertible
spectrum Σa(Sω1)∧b ∧ (Sω2)∧c.

Let M denote the mod 3 Moore spectrum fitting in the cofiber sequence

(1.1) S0 3−→ S0 i−→M
j−→ S1.
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For an integer e ∈ {1, 2}, we have spectra Ve given by the cofiber sequence

(1.2) Σ4eM
αe

−→M
ie−→ Ve

je−→ Σ4e+1M,

for the Adams map α satisfying E(2)∗(α) = v1. Then,

(1.3) E(2)∗(Ve) = E(2)∗/(3, v
e
1).

Note that E(2)∗(V1) = K(2)∗, the coefficient algebra of the second Morava K-
theory. The spectrum V1 is the first Smith-Toda spectrum V (1). We note that
Toda [10] showed that V1 is not a ring spectrum, while Oka [6] showed that V2
is a ring spectrum. We tried to determine homotopy groups of L2V1 = L2V (1),
V1∧Sω1 and V1∧Sω2 ([8], [4], [3]). Unfortunately, there are some missing relations
on the differential d9 in [3], and the result is not correct. In this paper, we correct
the result (see Remark 2.23), and furthermore, determine the additive structure
of the homotopy groups of L2V2, V2 ∧ S±ω1 and V2 ∧ S±ω2 . Our main tool is the
E(2)-based Adams spectral sequence

Es,t
2 (X) = Exts,tE(2)∗(E(2))(E(2)∗, E(2)∗(X)) =⇒ πt−s(L2X)

for a spectrum X. The generators of the E2-terms behave very complicated in the
spectral sequences. To make the behavior clearer, we introduce some imaginary
generators. In order to compute Er-terms, we consider differential algebras Ce for
e ∈ {1, 2}, whose cohomologies are easily determined, so that the E∞-terms for Ve
are obtained from the cohomologies.

In the next section, we state our main theorem, the homotopy groups π∗(Ve ∧
Slω2) for l ∈ Z/3, after introducing the elements. We determine the E2-terms

E∗,∗+lω2

2 (Ve) in section three, and the Adams-Novikov differentials d5 and d9 for
π∗+lω2(Ve) in section four. Sections five and six are devoted to compute the coho-
mologies of the differential algebras C1g

l and C2g
l for l ∈ Z/3, respectively. Here,

g denotes a generator of E(2)∗(S
ω2). In the last section, we deduce our main the-

orems Theorems 2.22 and 2.24 from the results of the cohomologies of C1g
l and

C2g
l.

2. Statement of results

By the 3 × 3 lemma, the cofiber sequences in (1.2) give rise to another cofiber
sequence

(2.1) Σ4V1
α−→ V2

i−→ V1
j−→ Σ5V1.

On the generator ω1 ∈ Pic(L2), we have the following

Theorem 2.2 ([4, Th. A]). There is a homotopy equivalence v32 : Σ
48V1 ≃ V1∧Sω1 .

Since π−5(L2V1) = 0 by [8, Th. 10.6] (see (4.10)), this theorem implies that
π43(V1 ∧ Sω1) = 0. It follows that (j ∧ 1)v32i1i = 0 for v32 in Theorem 2.2, and so
v32i1i ∈ π48(V1 ∧Sω1) is pulled back to π48(V2 ∧Sω1) under (i∧ 1)∗. Notice that V2
is a ring spectrum, and we obtain the following

Proposition 2.3. There is a homotopy equivalence v32 : Σ
48V2 ≃ V2 ∧ Sω1 .

Consider the E(2)-based Adams spectral sequence

Es,t
2 (X) = Exts,tE(2)∗(E(2))(E(2)∗, E(2)∗(X)) =⇒ πt−s(L2X)
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for a spectrum X. The E2-term is given by the cohomology of the cobar complex
Ω∗E(2)∗(X) of the E(2)∗(E(2))-comodules. Here,

E(2)∗(E(2)) = E(2)∗[t1, t2, . . . ]⊗BP∗ E(2)∗

with |ti| = 2(3i − 1). Note that

E(2)∗(S
ωi) = E(2)∗{gi}

for i ∈ {1, 2} and generators gi ∈ E(2)0(S
ωi) (see [2, Th. 2.4]).

Proposition 2.4. Let e ∈ {1, 2}. The Picard graded homotopy groups πs+l1ω1+l2ω2(L2Ve)
for s ∈ Z and l1, l2 ∈ Z/3 is isomorphic to πs+48l1+l2ω2(L2Ve).

We concentrate the determination of the homotopy groups πs+lω2(L2Ve) for s ∈
Z, l ∈ Z/3 and e ∈ {1, 2}, and abbreviate ω2 and g2 to ω and g, respectively.

For the homotopy equivalences v32 in Theorem 2.2 and Proposition 2.3, consider

the composite map Be : Σ
144Ve

v3
2−→ Σ96Ve ∧ Sω1

v3
2∧1−−−→ Σ48Ve ∧ Sω1 ∧ Sω1

v3
2∧1−−−→

Ve ∧ Sω1 ∧ Sω1 ∧ Sω1 = Ve, in which Sω1 ∧ Sω1 ∧ Sω1 = L2S
0 since 3ω1 = 0.

Proposition 2.5. There exist self maps Be : Σ
144Ve → Ve for e ∈ {1, 2} such that

E(2)∗(Be) = v92 : E(2)∗(Ve) → E(2)∗(Ve).

The maps Be induce the isomorphisms (Be)∗ : π∗+lω(L2Ve) → π∗+lω(L2Ve) of the
homotopy groups as well as the isomorphisms v92 : E

∗,∗+lω
r (Ve) → E∗,∗+lω

r (Ve) of the
Adams-Novikov Er-terms, and so it suffices to determine E∗,∗+lω

r (Ve)⊗K(2) Z/3 for
r ≥ 2 for the homotopy groups π∗+lω(L2S

0). Here,

(2.6) K(k) = Z/3[v3
k

2 , v−3k

2 ]

for k ∈ {0, 1, 2}. Note that K(0) = K(2)∗. Moreover, Z/3 is considered to be a
K(2) = Z/3[v92 , v

−9
2 ]-module by sending v92 to 1. Hereafter, we abuse notation, and

a K(2)-module M denotes

(2.7) M ⊗K(2) Z/3.

So degrees run over Z/144, and K(2) is considered to be Z/3. We also consider the
algebra

(2.8) P (k) = K(k)[b]

for a generator b corresponding to b0 ∈ E2,12
2 (Ve), which detects ieiβ1 ∈ π10(Ve) for

the well known generator β1 ∈ π10(S
0).

(2.9) ([8, Th. 5.8]) The E2-term E∗,∗
2 (V1) is isomorphic to a free P (0)-module

K(0) ⊗
(
F b ⊕ Fh ⊕ Fhφ ⊕ F bφ

)
⊗ Λ(ζ2)

for
F b = P (2){1, b1}, Fh = P (2){h1, h0},

F bφ = P (2){ψ0, ψ1} and Fhφ = P (2){ξ, ξb1}.

Here, ζ2 ∈ E1,0
2 (V1), h1 ∈ E1,12

2 (V1) and

h0 = v52h0 ∈ E1,84
2 (V1), b1 = v32b1 ∈ E2,84

2 (V1),

ξ = −v72ξ ∈ E2,120
2 (V1), ψ0 = v22ψ0 ∈ E3,48

2 (V1) and ψ1 = −v62ψ1 ∈ E3,120
2 (V1)

for the generators h0, b1, ξ, ψ0 and ψ1 in [8]. The generators satisfy the relations:
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(2.10) ([8, Prop. 5.9])

h0h1 = 0, h0ξ = 0, h1ξ = 0,

h0b0 = h1b1, h1b0 = −h0b1,
b1ξ = h0ψ1 = −h1ψ0, b0ξ = h0ψ0 = h1ψ1,

v92b
2
0 = −b21, b0ψ1 = b1ψ0 and b0ψ0 = −b1ψ1,

as well as

(2.11) h
2

0 = 0, h21 = 0, ξ
2
= 0, ψ

2

0 = 0, ψ
2

1 = 0 and ζ2 = 0.

We introduce imaginary generators u and φ such that

(2.12) u2 = −v92 = −1, ψ0 = bφ and ψ1 = ubφ,

and put h = h1 and ζ = ζ2. We further identify the elements as follows:

(2.13) h0 = uh, b1 = ub, ξ = uhφ.

Here, the bidegrees of the generators are

(2.14)
∥v1∥ = (0, 4), ∥v2∥ = (0, 16), ∥u∥ = (0, 72), ∥h∥ = (1, 12),

∥φ∥ = (1, 36), ∥ζ∥ = (1, 0) and ∥b∥ = (2, 12).

3 bφ, uhb ubζ, uhφζ, ubφ, hb bζ
2 uhζ, ub uhφ hζ, b
1 ζ uh h
0 1

s ↑ /t→ 0 4 8 12 (mod 16 = |v2|)
In the table, we notice that

(2.15) hφ ̸∈ E2,48
2 (V1) and hbφ ∈ E4,60

2 (V1).

The modules in (2.9) are rewritten as

(2.16)
F b = K(2) ⊕ bP

(2)
u , Fh = hP

(2)
u , F bφ = bφP

(2)
u and

Fhφ = uhφK(2) ⊕ hφbP
(2)
u = uhφF b

for

(2.17) K
(k)
u = Z/3[v3k2 , v−3k

2 , u]/(u2 + 1) and P
(k)
u = K

(k)
u [b],

where k ∈ {0, 1, 2}, and so

(2.18) E∗,∗
2 (V (1)) ∼=

(
K(0){1, uh, h, uhφ} ⊕ bP (0)

u ⊗ Λ(h, φ)
)
⊗ Λ(ζ).

We notice that the relations (2.10) follow from the two relations

u2 = −1 and h2 = 0.

Furthermore, we consider the element

(2.19) ς = uφζ (∈ E2,108
2 (Ve)),

and modules

(2.20) K = Z/3{1, v2, v52} and K ′ = Z/3{1, v52},
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and

(2.21)

P (k) = P (2)/(bk) = Z/3[b]/(bk),
Pu(k) = P

(2)
u /(bk) = P (k)⊕ uP (k),

P (k, l) = P (k)⊕ v32P (l),
P (k, bil) = P (k)⊕ v32b

iP (l) and
P (k, l,m) = P (k)⊕ v32P (l)⊕ v62P (m)

for i ∈ {1, 2}, k, l,m ∈ {−} ∪ {n ∈ Z | n ≥ 0}, where

P (−) = P (2) and P (0) = 0.

We also note that

ubt = (ub)bt−1 = b1b
t−1 for t ≥ 1.

By use of these notation, we determine the homotopy groups:

Theorem 2.22. The homotopy groups π∗+lω(L2V1) for l ∈ Z/3 are given by:

π∗(L2V1) = K ⊗ Λ(ζ)⊗
[
(P (5)⊕ ubP (4)⊕ v2h (P (2, 2)⊕ uP (3, 3)))

⊕φ (b (P (4)⊕ uP (5))⊕ v2h (bP (2, 2)⊕ uP (3, 3)))
]

and

π∗±ω(L2V1) =
[
b2 (P (3)⊕ uP (3))⊕ v2h

(
P (2, b1)⊕ uP (3, b21)

)
⊕ς

(
b (P (3)⊕ uP (3))⊕ v2h (P (1, 3)⊕ ubP (1, 2))

)
⊕φ (b (P (4)⊕ uP (5))⊕ v2h (bP (2, 2)⊕ uP (3, 3)))

⊕ζ
(
(P (5)⊕ ubP (4))⊕ v2h (P (2, 2)⊕ uP (3, 3))

)]
⊗Kg±1.

Remark 2.23. From the structure, we find missing differentials in the paper [3]:

d9(v
j−2
2 h11gq) ≡ vj−4

2 ψ0b
3
10ζ2gq j ≡ 2, 6, 7 (9),

d9(v
j
2h10gq) ≡ vj+6

2 ψ1b
3
10ζ2gq j ≡ 0, 1, 5 (9),

d9(v
j
2h10b10gq) ≡ vj+6

2 ψ1b
4
10ζ2gq j ≡ 0, 1, 5 (9)

up to sign. Here, the notations are those used in [3].

Theorem 2.24. The homotopy groups π∗+lω(L2V2) for l ∈ Z/3 are given by:

π∗(L2V2) = (M⊕ φMφ)⊗ Λ(ζ)⊕ S2

for

M = v1v
6
2 (P (3, 3)⊕ ubP (2, 2))⊗K ′ ⊕ (P (5)⊕ ubP (4))⊗ Λ(v1v2)

⊕h (P (4)⊕ uP (5))⊗K ′ ⊕ v2h (P (2, 2)⊕ uP (3, 3))⊗ Λ(v1v2),
Mφ = v1v

6
2b (P (2, 2)⊕ uP (3, 3))⊗K ′ ⊕ b (P (4)⊕ uP (5))⊗ Λ(v1v2)

⊕h (bP (4)⊕ uP (5))⊗K ′ ⊕ v2h (bP (2, 2)⊕ uP (3, 3))⊗ Λ(v1v2), and
S2 = uv1v2hK

(1) ⊗K ′ ⊗ Λ(φ, ζ); and

π∗±ω(L2V2) =
[
(M⊕ ςM

φ
)⊕ ζM⊕ φMφ ⊕ S2

]
g±1

for

M = v1v
6
2

(
P (3, b21)⊕ ubP (2, b1)

)
⊗K ′ ⊕ b2Pu(3)⊗ Λ(v1v2)

⊕hb2 (P (2)⊕ uP (3))⊗K ′ ⊕ v2h
(
P (2)⊕ uP (3, b21)

)
⊗ Λ(v1v2),

M
φ
= v1v

6
2b (P (1, 3)⊕ uP (1, 2))⊗K ′ ⊕ bPu(3)⊗ Λ(v1v2)

⊕h (P (3, 1)⊕ ubP (3))⊗K ′ ⊕ v2h (P (1, 3, 1)⊕ ubP (1, 2))⊗ Λ(v1v2).
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We notice that these are isomorphism of modules, and so the modules are not
expressed uniquely. For example, in the summands of π∗+ω(L2V2),

g
[ (
hb2P (2)⊕ hςP (3, 1)

)
⊗K ′ ⊕ (v2hP (2)⊕ v2hςP (1, 3, 1))⊗ Λ(v1v2)

= (hbP (3)⊕ hςP (3))⊗K ′ ⊕ (v2hP (2, b1)⊕ v2hςP (1, 3))⊗ Λ(v1v2)
]
.

Indeed, these are isomorphic to(
hb2gP (2)⊕ hςgP (3)⊕ h ⟨bg⟩P (1)

)
⊗K ′

⊕
(
v2hgP (2)⊕ v2hςgP (1, 3)⊕ v42h ⟨bg⟩P (1)

)
⊗ Λ(v1v2)

for the element ⟨bg⟩ = bg + v32ςg in (5.11).

3. The Adams-Novikov E2-terms for π∗(Ve)

By (2.18), we rewrite the E2-term as follows:

(3.1) E∗,∗
2 (V1) = E(1) ⊗K ⊗ Λ(ζ)

for

E(1) = K(1) ⊗
(
F b ⊕ Fh ⊕ F bφ ⊕ Fhφ

)
.

Consider the exact sequence

(3.2) Es,t−4
2 (V1)

v1−→ Es,t
2 (V2)

i∗−→ Es,t
2 (V1)

δ−→ Es+1,t−4
2 (V1)

associated to the cofiber sequence (2.1). Recall Landweber’s formula ηR(v2) ≡
v2 + v1t

3
1 − v31t1 mod (3) in BP∗(BP ). Then, we see that

(3.3) δ(vs2) = svs−1
2 h.

Indeed, h = [t31] ∈ E1,12
2 (V1). Hereafter, [c] ∈ E∗,∗

2 (Ve) for a cocycle c ∈ Ω∗,∗E(2)∗(Ve)
denotes the homology class of c. Under the exact sequence (3.2), (3.3) implies

(3.4) v1v
s
2h = 0 ∈ E1,∗

2 (V2) unless s ≡ 2 (3).

We also recall (1.3) that

E(2)∗(V1) = K(2)∗ and E(2)∗(V2) = E(2)∗/(3, v
2
1).

For a cocycle c ∈ Ωs,4tK(2)∗, we have a cocycle c9 ∈ Ωs,36tE(2)∗/(3, v
2
1). Further-

more, we see that

i∗([c
9]) = [v2t2 c] ∈ Es,36t

2 (V1),

since t9k = v3
k−1

2 tk ∈ Ω1,∗K(2)∗.

Lemma 3.5. The connecting homomorphism δ acts trivially on the submodule E(1)

of E∗,∗
2 (V1).

Proof. It suffices to show that, for each element x ∈ E(1), we have an element
(x)∼ ∈ E∗,∗

2 (V2) such that i∗((x)
∼) = x. For the generators of E(1), we may put

(3.6)
(b)∼ = [b1,0], (ub)∼ = [v32b1,1], (h)∼ = [t31], (uh)∼ = [v32t

9
1]

(uhφ)∼ = [v32X
9], (bφ)∼ = [v32Y

9
0 ] and (ubφ)∼ = [v32Y

9
1 ].

Here, b1,k = (t1⊗t21+t21⊗t1)3
k

, and X ∈ Ω2,∗K(2)∗, Y0 and Y1 ∈ Ω3,∗K(2)∗ denote

cocycles representing ξ = uhφ, ψ0 = bφ and ψ1 = ubφ, respectively. □
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The exact sequence (3.2) together with an isomorphism (3.1) gives rise to the
the exact sequences

(3.7)
v52E

(1) v1−→ Ẽ
(1)
0

i∗−→ E(1) δ−→ v52E
(1), E(1) v1−→ Ẽ

(1)
1

i∗−→ v2E
(1) δ−→ E(1) and

v2E
(1) v1−→ Ẽ

(1)
5

i∗−→ v52E
(1) δ−→ v2E

(1),

and we obtain

(3.8) E∗,∗
2 (V2) =

(
Ẽ

(1)
0 ⊕ Ẽ

(1)
1 ⊕ Ẽ

(1)
5

)
⊗ Λ(ζ).

The homomorphism i∗ induces an isomorphism

Z/3{(vs2h)∼} = E1,16s+12
2 (V2)

i∗−→∼= E1,16s+12
2 (V1) = Z/3{vs2h}

for vs2 ∈ K (see the chart below (2.14)). The representatives for (vs2h)
∼ are given

by

(3.9) (vs2h)
∼ = [vs2t

3
1 − sv1v

s−1
2 t61].

It follows that

Lemma 3.10. In E∗,∗
2 (V2), the generators satisfy the relations:

h(v2h)
∼ = v1v

−3
2 ub, h(v22h)

∼ = −v1v−2
2 ub and (v2h)

∼(v22h)
∼ = v1v

−1
2 ub.

In other words, (vs2h)
∼(vt2h)

∼ = (t− s)v1v
s+t−4
2 ub.

Proof. This follows from computation

h(v2h)
∼ = [t31 ⊗ v2t

3
1 − v1t1 ⊗ t61] = [v2t

3
1 ⊗ t31 + v1t

6
1 ⊗ t31 − v1t

3
1 ⊗ t61]

= [d(v2t
6
1)− v1t

3
1 ⊗ t61 + v1t

6
1 ⊗ t31 − v1t1 ⊗ t61] = v1v

−3
2 ub,

h(v22h)
∼ = [t31 ⊗ v22t

3
1 + v1v2t1 ⊗ t61] = [v22t

3
1 ⊗ t31 − v1v2t

6
1 ⊗ t31 + v1v2t

3
1 ⊗ t61]

= [d(v22t
6
1) + v1v2t

3
1 ⊗ t61 − v1v2t

6
1 ⊗ t31 + v1v2t1 ⊗ t61] = −v1v−2

2 ub,
(v2h)

∼(v22h)
∼ = [v2t

3
1 ⊗ v22t

3
1 + v1v

2
2t1 ⊗ t61 − v1v

2
2t

6
1 ⊗ t31]

= [v32t
3
1 ⊗ t31 − v1v

2
2t

6
1 ⊗ t31 + v1v

2
2t1 ⊗ t61 − v1v

2
2t

6
1 ⊗ t31]

= [d(v32t
6
1) + v1v

2
2t

3
1 ⊗ t61 + v1v

2
2t1 ⊗ t61] = v1v

−1
2 ub. □

We note that the multiplication by b (resp. ub) defines the monomorphism

b : E∗,∗
2 (Ve) → E∗+2,∗+12

2 (Ve) (resp. ub : E
∗,∗
2 (Ve) → E∗+2,∗+84

2 (Ve)).

Lemma 3.11. We have an element (vs2uh)
∼ ∈ E∗,∗

2 (V2) satisfying

(vs2uh)
∼b = (vs2h)

∼ub for vs2 ∈ K.

Proof. Since δ(vs2uh) = 0, we have an element (vs2uh)
′ ∈ E∗,∗

2 (V2) such that
i∗((v

s
2uh)

′) = vs2uh. Then, i∗((v
s
2uh)

′b) = vs2uhb = i∗((v
s
2h)

∼ub). Thus, (vs2uh)
′b−

(vs2h)
∼ub is an image of v1. By degree reason, (vs2uh)

′b− (vs2h)
∼ub = kv1v

s−4
2 bζ for

some k ∈ Z/3. Thus the lemma follows by setting (vs2uh)
∼ = (vs2uh)

′ − kv1v
s−4
2 ζ.

□

We also have

(3.12) (vs2uhφ)
∼ = [v3+s

2 X9 − sv1v
s−4
2 Z9] ∈ E∗,∗

2 (V2)

for a cochain Z ∈ Ω2K(2)∗ such that d(Z) = t31 ⊗ X. Since v2ψ0 ∈ ⟨h1, h1, ξ⟩ ∈
E∗,∗

2 (V1), we may put

(bφ)∼ =
[
v62t

6
1 ⊗X9 + t31 ⊗ Z9

]
∈ E∗,∗

2 (V2).
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We note that v2Y0 = t61 ⊗X + t31 ⊗ Z for Y0 in the proof of Lemma 3.5.

Lemma 3.13. In E∗,∗
2 (V2), the generators satisfy the relations:

(vs2h)
∼(vt2uhφ)

∼ = (t− s)v1v
5+s+t
2 bφ and (vs2h)

∼(bφ)∼ = (vs2uhφ)
∼ub

for s, t ∈ {1, 2}.

Proof. The first relation follows from

(vs2h)
∼(vt2uhφ)

∼ =
[
(vs2t

3
1 − sv1v

s−1
2 t61)⊗ (v3+t

2 X9 − tv1v
t−4
2 Z9)

]
=

[
v3+s+t
2 t31 ⊗X9

(1)
+ tv1v

2+s+t
2 t61 ⊗X9 − tv1v

s+t−4
2 t31 ⊗ Z9

::::::::::::::

]
−
[
sv1v

2+s+t
2 t61 ⊗X9

]
= (t− s)v1v

5+s+t
2 bφ(

∵ −d(vs+t−3
2 Z9) = −(s+ t)v1v

s+t−4
2 t31 ⊗ Z9

:::::::::::::::::::
− vs+t+3

2 t31 ⊗X9

(1)

)
Here, the underlined terms with subscript (1) cancel each other out, and the coef-
ficient of the sum of the waved under lined terms is t− s.

Similarly, we verify the second relation by computing

(vs2h)
∼(bφ)∼ =

[
(vs2t

3
1 − sv1v

s−1
2 t61)⊗ (v62t

6
1 ⊗X9 + t31 ⊗ Z9)

]
=

[
vs+6
2 t31 ⊗ t61 ⊗X9 + vs2t

3
1 ⊗ t31 ⊗ Z9

]
−sv1vs−1

2

[
t61 ⊗ (v62t

6
1 ⊗X9 + t31 ⊗ Z9)

]
=

[
vs+6
2 b1,1 ⊗X9 − vs+6

2 t61 ⊗ t31 ⊗X9

(1)
+ vs2t

3
1 ⊗ t31 ⊗ Z9

(2)

]
−sv1vs−1

2

[
t61 ⊗ (v62t

6
1 ⊗X9 + t31 ⊗ Z9

::::::
)

]
=

[
vs+6
2 b1,1 ⊗X9 − sv1v

s+5
2 t61 ⊗ t61 ⊗X9 − sv1v

s−1
2 b1,1 ⊗ Z9

::::::::::::::

]
=

[
b1,1 ⊗ vs+6

2 X9 − sv1v
s+5
2

(
t31b1,1 + b1,1t

3
1

)
⊗X9

]
−s

[
v1v

s+5
2 t61 ⊗ t61 ⊗X9 + v1v

s−1
2 b1,1 ⊗ Z9

]
=

[
b1,1 ⊗ vs+6

2 X9 − sv1v
s+5
2

(
−t61 ⊗ t61(3) + t91 ⊗ t31 + t31 ⊗ t91(4)

)
⊗X9

]
−s

[
v1v

s+5
2 t61 ⊗ t61 ⊗X9

(3)
+ v1v

s−1
2 b1,1 ⊗ Z9

]
= (vs2uhφ)

∼ub.

Indeed,

−d(vs2t61 ⊗ Z9) = −sv1vs−1
2 t31 ⊗ t61 ⊗ Z9

:::::::::::::::::
− vs2t

3
1 ⊗ t31 ⊗ Z9

(2)
+ vs+6

2 t61 ⊗ t31 ⊗X9

(1)

−sd(v1vs+5
2 t121 ⊗X9)

= sv1v
s+5
2

(
t31 ⊗ t91 + t91 ⊗ t31(4))⊗X9

)
. □

By (3.3) and (3.7), we see that

Im (δ : vs2E
(1) → vs−1

2 E(1)) = vs−1
2 K(1) ⊗ (bFh ⊕ F

hφ
)⊕ vs−1

2 hK(1) and
Ker (δ : vs2E

(1) → vs−1
2 E(1)) = vs2K

(1) ⊗ (Fh ⊕ Fhφ)

for s ∈ {1, 5}, where Fhφ
= hφbP

(1)
u such that K(1)⊗Fhφ = uhφK(1)⊕Fhφ

. From
this, we obtain the following

Lemma 3.14. The submodules Ẽ
(1)
s for s ∈ {0, 1, 5} are:

Ẽ
(1)
0 = E(1) ⊗ Λ(v1v

5
2) and

Ẽ
(1)
s =

(
F̃h
s ⊕ F̃hφ

s

)
⊕ v1v

s−1
2 K(1) ⊗

(
F b ⊕ F bφ ⊕ uhK(2) ⊗ Λ(φ)

)
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for s ∈ {1, 5}. Here,

F̃h
s = P (1){(vs2h)∼, (uvs2h)∼} and F̃hφ

s = P (1){(vs2uhφ)∼, (vs2uhφ)∼ub}.

Hereafter, we abbreviate (x)∼ to x. Then, we may identify F̃h
s = vs2K

(1) ⊗ Fh

and F̃hφ
s = vs2K

(1) ⊗ Fhφ.

Corollary 3.15. E∗,∗
2 (V2) is isomorphic to the tensor product of K(1), Λ(ζ) and

the direct sum of (
F b ⊕ F bφ ⊕ Fh ⊕ Fhφ

)
⊗ Λ(v1v

5
2)

and

v52K
′ ⊗

(
Fh ⊕ Fhφ ⊕ v1v

5
2

(
F b ⊕ F bφ ⊕ uhK(2) ⊗ Λ(φ)

))
.

The generators satisfy h2 = 0. Therefore, the relations in (2.10) also hold in
E∗,∗

2 (V2).

We note that

(3.16)
E∗,∗

2 (V2) = K(1) ⊗ Λ(ζ)⊗
( (
F b ⊕ F bφ ⊕ v1(F

b ⊕ F bφ)⊗K
)

⊕
((
Fh ⊕ Fhφ

)
⊗K ⊕ v1v

5
2

(
Fh ⊕ Fhφ

))
⊕ v1v2uhK

(2) ⊗ Λ(φ)⊗K ′
)
.

By Lemmas 3.10 and 3.13, we have

(vs2h)(v
t
2hφ) = (t− s)v1v

s+t−4
2 ubφ = (vs2h)(v

t
2h)φ.

4. The Adams-Novikov differentials on E∗,∗+lω
r (Ve)

for e ∈ {1, 2} and l ∈ Z/3

Let β1 ∈ π10(S
0) be the well known generator. Note that it is detected by

b = b0 ∈ E2,12
2 (S0). Consider a spectrum W fitting in the cofiber sequence

(4.1) S10 β1−→ S0 ι−→W
κ−→ S11.

Then, E(2)∗(W ) = E(2)∗ ⊕ E(2)∗−11b for a generator b ∈ E(2)11(W ) such that
κ∗(b) = 1 ∈ E(2)0.

Hereafter, we abbreviate the generators ω2 of Pic(L2) and g2 of E(2)0(S
ω2) to

ω and g, respectively. We set

V (l)
e = Ve ∧ Slω for e ∈ {1, 2} and l ∈ Z/3.

Then, E∗,∗−lω
2 (Ve) = E∗,∗

2 (V
(l)
e ) for e ∈ {1, 2}. Note that Es,t

2 (V
(l)
e ) = Es,t

2 (Ve) for

l ∈ Z/3, and β1 induces a monomorphism b : Es,t
2 (V

(l)
e ) → Es+2,t+12

2 (V
(l)
e ) by (2.9)

and Corollary 3.15. For the next lemma, we recall an exact couple defining the
Adams-Novikov spectral sequence:

∗ E ∧X E2 ∧X E3 ∧X · · ·

E ∧X E ∧ E ∧X E ∧ E∧2 ∧X · · ·
u u

i1

u

u
i2

u

k1
u

k2
u

[
[
[
[]

j0 [
[
[[]

j1 [
[
[[]

j2

for a spectrum X. Here, E = E(2), and S0 i−→ E
j−→ E is a cofiber sequence.

Lemma 4.2. The Adams-Novikov E3-term Es,∗
3 (V

(l)
e ∧W ) is trivial for e ∈ {1, 2},

l ∈ Z/3 and s ≥ 6.
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Proof. The cofiber sequence (4.1) induces a short exact sequence

(4.3) 0 → Es,t
2 (V (l)

e )
ι∗−→ Es,t

2 (V (l)
e ∧W )

κ∗−→ Es,t−11
2 (V (l)

e ) → 0.

Consider the generator gl ∈ E(2)0(V
(l)
e ), and let i(l) ∈ π2(E3 ∧ V (l)

e ) be an element

such that k1k2(i
(l)) = gl. Let b′ ∈ π12(E∧E∧2∧V (l)

e ) be an element representing b.

Since (E3 ∧ ι)∗(j2)∗(b′) = 0, the element ι∗(b) in the E2-term E2,12
2 (V

(l)
e ∧W ) is in

the image of a differential dr of the spectral sequence. By degree reason, we have

d2(bg
l) = b ∈ E2,12

2 (V
(l)
e ∧W ). Therefore, the induced connecting homomorphism

from (4.3) of the d2-differential modules is the multiplication by b and so we obtain
an exact sequence of the Adams-Novikov-E3-terms

(4.4) Es,t
3 (V (l)

e )
b−→ Es+2,t+12

3 (V (l)
e )

ι∗−→ Es+2,t+12
3 (V (l)

e ∧W )
κ∗−→ Es+1,t

3 (V (l)
e ).

Here, note that Es,t
3 (V

(l)
e ) = Es,t

2 (V
(l)
e ) by degree reason.

Consider a commutative diagram

Es−1,t
2 Es,t−4

2 Es,t
2 (V

(l)
2 ) Es,t

2 Es+1,t−4
2

Es+1,t+12
2 Es+2,t+8

2 Es+2,t+12
2 (V

(l)
2 ) Es+2,t+12

2 Es+3,t+8
2

w
δ

u
b

w
v1

u
b

w
i∗

u
b

w
δ

u
b

u
b

w
δ

w
v1

w
i∗

w
δ

associated to the cofiber sequence (2.1), where Es,t
2 denotes Es,t

2 (V
(l)
1 ). By (2.9),

we see that b : Es,t
2 (V

(l)
1 ) → Es+2,t+12

2 (V
(l)
1 ) is an isomorphism if s ≥ 4, and a

monomorphism with Coker b = K(0){hbφζ} if s = 3 (see (2.15)). The Five Lemma

shows that b : Es,t
2 (V

(l)
2 ) → Es+2,t+12

2 (V
(l)
2 ) is an isomorphism if s ≥ 5 and an

epimorphism if s = 4. Therefore, the lemma follows from the exact sequence (4.4).
□

Lemma 4.5. In E∗,∗
r (V

(l)
e ) for e ∈ {1, 2} and l ∈ Z/3, if dr(xb) = yb for elements

x, y ∈ E∗,∗
r (V

(l)
e ), then dr(x) = y. Similarly, a relation dr(xub) = yub also implies

dr(x) = y.

Proof. Since Es,t
3 (V

(l)
e ) = 0 unless 4 ∤ t, we see that E∗,∗

2 (V
(l)
e ) = E∗,∗

5 (V
(l)
e ).

By (2.9) and (3.8), we see that b in (4.4) is a monomorphism on the E2-terms.
Therefore, the lemma holds for r = 5.

Suppose inductively that the lemma holds for s with 5 ≤ s < r. Suppose also

dr(xb) = yb ∈ Ek,m
r (V

(l)
e ) and put dr(x) = y′. Then by = by′ ∈ Ek,m

r (V
(l)
e ), and so

we have an integer s < r and an element z ∈ Ek−s,m−s+1
s (V

(l)
e ) such that ds(z) =

b(y − y′). Note that r − s ≥ 4. Since k ≥ r + 2, we see that k − s ≥ r + 2− s ≥ 6.
Therefore, ι∗(z) = 0 in (4.4) by Lemma 4.2 and we have z̃ such that bz̃ = z. It
follows that ds(z̃b) = ds(z) = b(y − y′), and by the inductive hypothesis we have
ds(z̃) = y − y′ and dr(x) = y as desired.

Since ub is a permanent cycle (see 4.13), multiplying the relation dr(xub) =
yub by ub implies dr(x(ub)

2) = y(ub)2. Therefore, dr(xb
2) = yb2, and we obtain

dr(x) = y. □

Corollary 4.6. In E∗,∗
2 (V

(l)
e ) for e ∈ {1, 2} and l ∈ Z/3, if xb (resp. xub) is a

permanent cycle, then so is x.
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By [5] and [1], the differential d5 : E
∗,∗
2 (Sω) → E∗+5,∗+4

2 (Sω) acts on g by

(4.7) d5(g) = ωg (≡ v2uhbφζg ∈ E∗,∗
2 (Ve ∧ Sω) for e ∈ {1, 2}).

By [8, Prop.s 8.4, 9.9, 9.10], we deduce that

(4.8) d5(v
3t+s
2 gl) = −tv3t+s−2

2 hb2gl + lv3t+s
2 u(v2h)bφζg

l ∈ E∗,∗
2 (V1 ∧ Slω),

for l ∈ Z/3 and s ∈ {0, 1, 5}, and

d5(v
3t+s
2 xgl) = d5(v

3t+s
2 gl)x ∈ E∗,∗

2 (V1 ∧ Slω)

for x ∈ {b, h, uh, ub, uhφ, bφ, ubφ, hbφ, ζ} = {b, h0, h1, b1, ξ, ψ0, ψ1, b1ξ, ζ2}. In par-
ticular,

d5(v
3t+s
2 hgl) = 0 ∈ E∗,∗

2 (V1 ∧ Slω)

by (4.8) together with (2.11). We also have

(4.9) ([8, Prop. 10.5]). For s ∈ {0, 1, 5}, we have an integer σ(s) ∈ {1, 2} such that

d9(v
7+s
2 h) = σ(s)vs2ub

5 ∈ E10,∗
9 (V1) (ub5 = b1b

4).

The integer σ(s) is not determined in [8]. We determine it to be two in Lemma
4.15.

(4.10) ([8, Th. 10.6]) The E10-term for V1 is isomorphic to the tensor product of
Λ(ζ), K and

P (2)/(b4){ub, bφ} ⊕ P (2)/(b5){1, ubφ}
⊕
(
P (2)/(b2){v2h, v2hbφ} ⊕ P (2)/(b3){v2uh, v2uhφ}

)
⊗ Z/3{1, v32}.

See (2.20) for K.

In particular, we have:

(4.11) Every element of K ⊂ E0,∗
2 (V1) and v1K ⊂ E0,∗

2 (V2) is a permanent cycle in
the spectral sequences.

(4.12) The elements vs2h ∈ E1,∗
2 (V1) for s ∈ {0, 1, 2, 4, 5, 6} and v1v

s
2h ∈ E1,∗

2 (V1)
for s ∈ {2, 5} are permanent cycles in the spectral sequences. (see (3.4).)

The following is well known (cf. [7]):

(4.13) For e ∈ {1, 2}, the elements h and v2h in E1,∗
2 (Ve) and b and ub in E

2,∗
2 (Ve)

are permanent cycles detecting ieβ
′
1 and ieβ

′
2 in π∗(Ve) and ieiβ1 and ieiβ6/3 in

π∗(Ve), respectively. Here, i and ie are the maps in (1.1) and (1.2), the element
β1 is the one in (4.1), β2 ∈ π26(S

0) is the generator, and β′
s ∈ π16s−5(M) for

s ∈ {1, 2} denotes an element such that jβ′
s = βs for the map j in (1.1).

Among the Adams-Novikov differentials for V
(l)
e for e ∈ {1, 2} and l ∈ Z/3, the

following relation is also well known (cf. [9]):

(4.14) Consider the exact sequence of the E2-terms

E∗,∗
2 (V1∧Slω)

δ−→ E∗,∗
2 (V1∧Slω)

v1−→ E∗,∗
2 (V2∧Slω)

i∗−→ E∗,∗
2 (V1∧Slω)

δ−→ E∗,∗
2 (V1∧Slω),

and let E
f−→ F

g−→ G
h−→ E be a part of the exact sequence. Then, we have a relation

described below:



12 IPPEI ICHIGI AND KATSUMI SHIMOMURA

E F G Ew
f

w
g

w
h

xB
BM
a

d5

-w

BBM y
d5

z-

xB
BM
a

d5

c

d9

D
DD

-

CCO

Lemma 4.15. Let s ∈ {0, 1, 5} and t ∈ Z/3. Then, the integers σ(s) for s ∈
{0, 1, 5} in (4.9) are all two. Furthermore, in E∗,∗

2 (V2),

d5(v
3t
2 ) = −tv3t−3

2 (v2h)b
2,

d5(v
3t+s
2 h) = t(1− s)v1v

3t+s−6
2 ub3,

d5(v1v
3t+s
2 ) =

{
−tv1v3t−1

2 hb2 s = 1

0 s ∈ {0, 5}
and

d5(v1v
3t+2
2 h) = 0.

Proof. We read off E5,48
2 (V1) = Z/3{v−3

2 ub2ζ} by (2.9), and may put d5(v
3
2) =

−v2hb2 + kv1v
−3
2 ub2ζ ∈ E5,52

2 (V2) for k ∈ Z/3 by (4.8). Since the differential d5 is
a derivation, we have

(4.16)
d5(v

3t
2 ) = −tv3t−3

2 (v2h)b
2 + tkv1v

3t+3
2 ub2ζ, and

d5(v
3t+s
2 h) = −tv3t−3

2 (v2h)(v
s
2h)b

2 + tkv1v
3t+3+s
2 uhb2ζ + v3t2 d5(v

s
2h).

It follows that d5(v
3t+1
2 ) = 0 by Lemma 3.10, (3.4) and (4.13). Thus, we have

d5(v
3t+s
2 h) for s = 1 in the lemma.

Suppose that s ∈ {0, 5}. Put

a = (s− 1)σ(s− 4)vs−5
2 uhb5, c = σ(s− 4)vs−4

2 ub5, x = (s− 1)σ(s− 4)vs−3
2 ub3,

y = v3+s
2 h, z = i∗(y), w = v1x,

and we have d9(z) = c by (4.9), δ(c) = a by (3.4) and d5(x) = a by (4.8). Therefore,
we have d5(y) = w by (4.14), that is,

(4.17) d5(v
3+s
2 h) = (s− 1)σ(s− 4)v1v

s−3
2 ub3.

Similarly, put

a = v1c, c = (1− s)σ(s)vs2ub
5, x = v6+s

2 hb2,

y = −v8+s
2 , z = (1− s)v7+s

2 h, w = i∗(x),

and we have d5(y) = w by (4.8), δ(y) = z by (3.3) and d9(z) = c by (4.9). Thus,
we have d5(x) = a. By Lemma 4.5,

(4.18) d5(v
6+s
2 h) = (1− s)σ(s)v1v

s
2ub

3.

Since (v2h)(v
s
2h) = (s − 1)v1v

s−3
2 ub by Lemma 3.10, the second relation of (4.16)

is:

d5(v
3t+s
2 h) =

{
tv1v

3t−6
2 ub3 s = 0

−tv1v3t−1
2 ub3 + tkv1v

3t+8
2 uhb2ζ + v3t2 d5(v

5
2h) s = 5

by (3.4) and (4.13). Compare it with (4.17) and (4.18), we obtain

σ(5) = −1 = σ(0); v32d5(v
5
2h) = (1 + σ(1))v1v

2
2ub

3 − kv1v
2
2uhb

2ζ and
v62d5(v

5
2h) = kv1v

5
2uhb

2ζ.
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The last two relations show σ(1) = −1 and k = 0, and then d5(v
5
2) = 0. Thus the

top two relations of the lemma follow from (4.16).
The third relation of the lemma follows from the first one together with (3.4)

and (4.11). Multiplying the permanent cycle v1 in (4.11) to the second relation of
the lemma implies the last one. □

Lemma 4.19. The elements uh, uhφ = ξ, v62uhφ = v62ξ, bφ = ψ0, v
6
2bφ = v62ψ0,

ubφ = ψ1, v
6
2ubφ = v62ψ1 and ζ = ζ2 of E∗,∗

2 (V2) are permanent cycles.

Proof. Let V3 denote the cofiber of α3 : Σ12M → M , and consider the cofiber se

quence Σ4V2
α′

−→ V3
i
′

−→ V1
j
′

−→ Σ5V2 obtained similarly to (2.1). Let δ2 : E
∗,∗
2 (V1) →

E∗+1,∗−8
2 (V2) denote the associated connecting homomorphism. In the cobar com-

plex Ω∗E(2)∗(V3), we compute d(v52t
3
1 + v1v

4
2t

6
1) = −v1v42t31 ⊗ t31 + v21v

3
2t

6
1 ⊗ t31 +

v21v
3
2t

3
1 ⊗ t61 + v1v

4
2t

3
1 ⊗ t31 = v21v

3
2b1,1. It follows that δ2(v

5
2hζ) = ubζ, and so ubζ

is a permanent cycle by the Geometric Boundary Theorem, since v52hζ ∈ E∗,∗
2 (V1)

is a permanent cycle by (4.10). Therefore, ζ is a permanent cycle by (4.13) and
Corollary 4.6. Since (uh)b = h(ub) by Corollary 3.15 ((2.10)) and h is a permanent
cycle by (4.13), the element uh is a permanent cycle.

We also compute δ2(v
3t−4
2 ξ) = v3t2 ψ0 by [9, Lemma 4.4], which is δ2(v

3t−4
2 uhφ) =

v3t2 bφ in our notation. Since v22uhφ and v52uhφ are permanent cycles of E∗,∗
r (V1)

by (4.10), their δ2-images v62bφ and bφ are permanent cycles of E∗,∗
r (V2) by the

Geometric Boundary Theorem. By (4.13) and Corollary 3.15 ((2.10)), we have
uh(vs2bφ) = b(vs2uhφ) and ub(v

s
2bφ) = b(vs2ubφ) in E

∗,∗
2 (V2) for s ∈ {0, 6}. Noticing

that uh and ub are permanent cycles, these show that uhφ, v62uhφ, ubφ and v62ubφ
are all permanent cycles by Corollary 4.6. □

Here, consider an element

(4.20) gl = b2gl + lv32ubφζg
l ∈ E4,24

2 (Ve ∧ Slω) for l ∈ Z/3 and e ∈ {1, 2}.

We notice that the element v32ubφζg is not divisible by b in the E2-term.

Lemma 4.21. Let s ∈ {0, 1, 5}. In E∗,∗
9 (V1 ∧ Sω), we have

d9(v
3t+s
2 (v2h)g) =


0 t = 0

−vs2b4φζg t = 1

−vs2ub3g t = 2

.

In particular, g(= g1) is a permanent cycle.

Proof. We notice that

d5(xg) = d5(x)g + (−1)|x|x(v2h)ubφζg ∈ E∗,∗+kω
2 (Ve)

for e ∈ {1, 2} by (4.7). Suppose that s ∈ {0, 5} and put

a = v1c, c = (t− 1)tv3t+s−6
2 ub5g − tv3t+s−3

2 b4φζg, y = (s− 1)v3t+s+2
2 g,

w = i∗(x), x = (1− s)
(
(t− 1)v3t+s

2 hb2g − v3t+s+3
2 uhbφζg

)
, z = v3t+s+1

2 hg.

Then, d5(x) = a ∈ E10,∗
2 (V2 ∧ Sω) by Lemmas 4.15, 4.19 and 3.10, d5(y) = w ∈

E5,∗
2 (V1 ∧ Sω) by (4.8), and δ(y) = z by (3.3). By (4.14), we have d9(z) = c. For
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the case for s = 1, we set

a = δ(c), c = (t− 1)tv3t−5
2 ub5 − tv3t−2

2 b4φζg, y = v3t+2
2 hg

w = v1x, x = (1− t)v3t−4
2 ub3g − v3t−1

2 b2φζg, z = i∗(y).

Then, d5(x) = a ∈ E10,∗
2 (V1 ∧ Sω) by (4.8) and Lemmas 4.19, and d5(y) = w ∈

E5,∗
2 (V2 ∧ Sω) by Lemmas 4.15 and 3.10. By (4.14), we also have d9(z) = c in this

case. □

Corollary 4.22. In the spectral sequence E∗,∗
r (V1 ∧ Sω), vs2bφg and vs2ubφg are

permanent cycles for s ∈ {0, 1, 5}.

Proof. Since we have a pairing V1∧V2 → V1, we have d9(v
7+s
2 uεhbφg) = −vs2u1−εb6φg

in E∗,∗
9 (V1)g for ε ∈ {0, 1} by Lemmas 4.19 and 4.21. This shows that vs2u

1−εb6φg
is a permanent cycle, and hence the corollary follows from Corollary 4.6. □

By Lemma 4.15, among the elements of (v1K
(0) ⊕K(1)) ⊗ F b and (v1v

2
2K

(1) ⊕
K(0))⊗ Fh in the E2-term E∗,∗

2 (V2), the following elements survive to E9-term

v1v
3t+s
2 for s ∈ {0, 5}, v1v2,

v1v
3t+2
2 h, h, v3t+1

2 h and v52h

for t ∈ Z/3.

Lemma 4.23. In E∗,∗
9 (V2), we have

d9(v1v
3
2) = hb4, d9(v1v

8
2) = −v52hb4,

d9(v1v
8
2h) = −v1v2ub5 and d9(v

7
2h) = −ub5.

The following generators are permanent cycles:

v1v
j
2 for j ∈ {0, 1, 2, 5, 6}, v1v

j
2h for j ∈ {2, 5}, and

vj2h for j ∈ {0, 1, 4, 5}.

Proof. We begin with verifying the permanent cycles. The elements v1v
j
2 for j ∈

{0, 1, 5} and v1v
j
2h for j ∈ {2, 5} are permanent cycles by (4.11) and (4.12). The

second relation in Lemma 4.15 with (t, s) = (1, 0) and = (1, 5) shows that v1v
−3
2 ub3

and v1v
2
2ub

3 are permanent cycles. Corollary 4.6 implies that v1v
j
2 for j ∈ {2, 6} are

permanent. Similarly, the first relation in Lemma 4.15 with t = 1 and = 2 implies
that v2hb

2 and v42hb
2 are permanent, and so vj2h for j ∈ {1, 4} is a permanent cycle

by Corollary 4.6. By the same argument, the top two relations of this lemma imply
that vj2h for j ∈ {0, 5} is permanent.

Turn to the top two relations. For s ∈ {0, 5}, put
a = i∗(c) c = (s− 1)t(t+ 1)v3t+s−3

2 hb4 w = −tv3t+s−2
2 hb2

x = −(s− 1)tv3t+s−1
2 b2 y = v3t+s

2 z = v1v
3t+s
2 .

Then, these satisfy the relations in (4.14) other than d9(z) = c by (4.8) and (3.3).
Hence, d9(z) = c:

(4.24) d9(v1v
3t+s
2 ) = (s− 1)t(t+ 1)v3t+s−3

2 hb4 ∈ E∗,∗
2 (V2).

This with t = 1 shows the first two equalities.
Multiply by h to the second equality, and Lemma 3.10 implies

d9(v1v
8
2h) = −(v52h)hb

4 = −v1v2ub5,
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which is the third one. Since i∗(v
7
2h) = v72h ∈ E1,∗

9 (V1) and d9(v
7
2h) = −ub5 ∈

E10,∗
9 (V1) by (4.9) and Lemma 4.15, we see that d9(v

7
2h) = −ub5 + kv1v

−7
2 hφb2 =

−ub5 − d5(kv1v
4
2b

2φ) for k ∈ Z/3 by (4.8). Thus, the fourth d9-differential follows.
□

Now, the next lemma follows from Lemma 4.15 (see also Lemma 3.10).

Lemma 4.25. Let s ∈ {0, 1, 5} and t, l ∈ Z/3. Then, in E∗,∗
2 (V2 ∧ Slω),

d5(v
3t
2 g

l) = −tv3t−3
2 (v2h)b

2gl + lv3t2 (v2h)ubφζg
l,

d5(v
3t+s
2 hgl) = t(1− s)v1v

3t+s−6
2 ub3gl + l(1− s)v1v

3t+s−3
2 b2φζgl,

d5(v1v
3t+s
2 gl) =

{
−tv1v3t−1

2 hb2gl + lv1v
3t+2
2 uhbφζgl s = 1

0 s ∈ {0, 5}
and

d5(v1v
3t+2
2 hgl) = 0.

By Lemma 4.25, among the elements of
(
(v1K

(0) ⊕ K(1)) ⊗ F b ⊕ (v1v
2
2K

(1) ⊕

K(0)) ⊗ Fh
)
g in the E2-term E∗,∗

2 (V2 ∧ Sω), the following elements survive to

E9-term
v1v

3t+s
2 g for s ∈ {0, 5}, v1v

3t+2
2 hg and v3t+1

2 hg

for t ∈ Z/3.
The relation with (t, s) = (2, 0) in Lemma 4.21 is d9(v

7
2hg) = −ub3g ∈ E10,132

2 (V1∧
Sω). We see that v1E

10,128
2 (V1) = v1b

3E4,92
2 (V1) = Z/3{v1v22hb4φ} ⊂ E10,132

2 (V2)
by (2.9). The generator is zero in the E9-term by d5(v

8
2uhbφg) = v1v

2
2b

4φg, which
follows from the last relation in Lemma 4.25 multiplied by the permanent cycle ubφ
(Lemma 4.19). Thus, the relation in E∗,∗

2 (V1) is pulled back to the one in E∗,∗
2 (V2):

(4.26) d9(v
7
2hg) = −ub3g ∈ E10,132

9 (V2 ∧ Sω).

It follows from Corollary 4.6 that

(4.27) g = b2g + v32ubφζg ∈ E4,24
9 (V2 ∧ Sω) is a permanent cycle

for the element g = g1 in (4.20).

Lemma 4.28. In E∗,∗
9 (V2 ∧ Sω), we have

d9(v1v
3t+s
2 g) =


(s− 1)vs2uhb

3φζg t = 0

(1− s)vs2hb
2g t = 1

0 t = 2

for s ∈ {0, 5}, and

d9(v
3t+1
2 hg) =


0 t = 0

−b4φζg t = 1

−ub3g t = 2

.

Proof. For a permanent cycle x of E∗,∗
2 (V2) with d5(xg) = 0, we have d9(xg) = 0 ∈

E∗,∗
9 (V2 ∧ Sω), and so

(4.29) d9(xb
2g) = −d9(xv32ubφζg) = −d9(xv32g)ubφζ ∈ E∗,∗

9 (V2 ∧ Sω).

Put x
(0)
t = v1v

3t+s
2 and x

(1)
t = v3t+4

2 h. By Lemma 4.25, d5(x
(ε)
t g) = 0 for ε ∈ {0, 1},

and so x
(ε)
t g ∈ E∗,∗

9 (V2 ∧ Sω). Furthermore, Lemma 4.23 shows that x
(ε)
t for ε ∈

{0, 1} is a permanent cycle unless t = 1. Therefore, by (4.29), we compute

d9(x
(ε)
0 b2g) = −d9(x(ε)1 g)ubφζ, and

d9(x
(ε)
2 b4g) = −d9(x(ε)0 b2g)ubφζ = d9(x

(ε)
1 g)(ubφζ)2 = 0.
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Thus, the relations for t = 0 follow from those for t = 1, and the relations for t = 2
follow from Corollary 4.6.

Now we cosider the differential d9 on x
(ε)
1 g. Lemma 4.25 together with Lemma

4.19 also shows that

(4.30) v2uhbφζg, v1v
6
2b

2φζg and v1v
2
2b

2φζg

are zero in E∗,∗
9 (V2 ∧ Sω). Therefore,

d9(x
(0)
1 b3g) =

(4.30)
d9(x

(0)
1 (b3g + v32ub

2φζg)) = d9(v1v
3+s
2 bg) =

4.23
(1− s)vs2hb

5g, and

d9(x
(1)
1 b2g) =

(4.30)
d9(x

(1)
1 (b2g + v32ubφζg)) = d9(v

7
2hg) =

4.23
−ub5g

for s ∈ K ′. By Corollary 4.6, we obtain the relations for d9(x
(ε)
1 ). □

5. The cohomology of a differential algebra C1

Consider algebras K(k), K
(k)
u , P (k) and P

(k)
u in (2.6) and (2.17) and

(5.1) A
(k)
1 = P

(k)
u ⊗ Λ(v2h)

for k ∈ {0, 1, 2}. Recall that these algebras are considered to be the tensor products
with Z/3 over K(2) (see (2.7)). In this section, we consider the module

(5.2) C1g
l =

(
A

(0)
1 ⊗ Λ(φ, ζ)

)
gl

for l ∈ Z/3, which contains E∗,∗
2 (V1)g

l = E∗,∗
2 (V1 ∧ Slω). We use the relation

(5.3) glgm = gl+m for l,m ∈ Z/3.
In order to consider a differential algebra, we consider the subalgebra

(5.4) C
(1)
1 = A(1)(1) ⊗ Λ(φ, ζ) ⊂ C1.

We begin with introducing a differential algebra structure on C
(1)
1 [g]/(g3) so that

the inclusion E∗,∗
2 (V )[g]/(g3) → C1[g]/(g

3) is the one of differential C
(1)
1 -modules

with differential ∂5:

(5.5)
∂5(x) = 0 for x ∈ {1, u, b, v2h, φ, ζ},

∂5(v
3t
2 ) = −tv3t−3

2 (v2h)b
2 for t ∈ Z/3, and

∂5(g) = ωg

on the generators, where

(5.6) ω = uv2hbφζ = v2hbς ∈ ςA(1)(2) (ς = uφζ).

We make C1 = C
(1)
1 ⊗K a differential module by setting

(5.7) ∂5(v
s
2) = 0 and ∂9(v

s
2) = 0 for vs2 ∈ K,

and we obtain
H∗(C1g

l, ∂5) = H∗(C
(1)
1 gl, ∂5)⊗K.

In addition to (2.21), we consider P
(2)
u -algebras

(5.8)
Pu(b

e1k) = be1Pu(k), Pu(b
e1k, be2 l) = be1Pu(k)⊕ v32b

e2Pu(l) and
Pu(b

e1k, be2 l, be3m) = be1Pu(k)⊕ v32b
e2Pu(l)⊕ v62b

e3Pu(m)

for k, l,m, ei ∈ {−} ∪ {n ∈ Z | n > 0}, and we set b− = 0. We notice that

P (1)
u = Pu(−,−,−).
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Since ∂5 acts as Pu(−,−,−) → v2hPu(b
2−, b2−) ⊂ v2hPu(−,−,−), we immediately

obtain the following lemma from the second equality of (5.5):

Lemma 5.9. The cohomology H∗(A
(1)
1 , ∂5) is isomorphic to

A(1)
1 = P (2)

u ⊕ v2hPu(2, 2,−)

as an algebra.

Put

(5.10) B
(1)
1 = A

(1)
1 ⊗ Λ(ς) for ς = uφζ.

Consider an element

(5.11)
⟨
bgl

⟩
= bgl + lv32ςg

l,

and we see that this is a ∂5-cocycle. Note that the element g in (4.20) equals b ⟨bg⟩,
but that

∂5(v
3
2g) = −v2hb2g + v32(v2h)bςg ̸= −v2hb ⟨bg⟩

by (5.5).

Lemma 5.12. The cohomology H∗(B
(1)
1 g±1, ∂5) is isomorphic to

B(1)
1 g±1 =

⟨
bg±1

⟩
P (2)
u ⊕

(
v2hPu(2, 2,−)⊕ ς

(
P (2)
u ⊕ v2hPu(1, 2,−)

))
g±1.

Then, Lemmas 5.9 and 5.12 imply the following:

Corollary 5.13. The cohomology H∗(C
(1)
1 gl, ∂5) for l ∈ Z/3 is isomorphic to

C(1)
1 gl =

{
A(1)

1 ⊗ Λ(φ, ζ) l = 0(
B(1)
1 ⊕ A(1)

1 {φ, ζ}
)
gl l = ±1

,

and H∗(C1g
l, ∂5) is isomorphic to C1g

l = C(1)
1 gl ⊗K.

Now, we introduce C1g
l for l ∈ Z/3 a differential module structure with differ-

ential ∂9 given by

(5.14) ∂9(v
3t+s+1
2 hgl) =


0 t = 0

−luvs2b4ςgl t = 1

−uvs2b4
⟨
bgl

⟩
t = 2

for t ∈ Z/3 and s ∈ {0, 1, 5}. In particular, we assume that

(5.15) ∂9(
⟨
bgl

⟩
) = 0 = ∂9(ςg

l) for l ∈ Z/3.
By definition, we immediately obtain the following:

Lemma 5.16.
H∗(A(1)

1 , ∂9) = A
(1)
1 and

H∗(B(1)
1 gl, ∂9) = A

(1)
1 gl ⊕ ςA

(1)

1 gl

for l ∈ {1, 2}. Here,

A
(1)
1 = Pu(5)⊕ v2hPu(2, 2),

A
(1)
1 = bPu(4)⊕ v2hPu(2, b1) and A

(1)

1 = Pu(4)⊕ v2hPu(1, 2).

Since H∗(C1g
l, ∂9) = H∗(C(1)

1 gl, ∂9)⊗K, we obtain
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Corollary 5.17. The cohomology H∗(C1g
l, ∂9) for l ∈ Z/3 is isomorphic to

C1g
l =

{
A

(1)
1 ⊗K ⊗ Λ(φ, ζ) l = 0[(
A

(1)
1 ⊕ ςA(1)(1)

)
⊕A

(1)
1 ⊗ Z/3{φ, ζ}

]
⊗Kg±1 l = ±1.

Corollary 5.18. On H∗,∗(C1g
l, ∂5), there is no more non-trivial differential ∂9

other than those in (5.14). Furthermore, no more differential ∂r for r ≥ 10 can be
defined on the cohomologies on them.

Proof. Since the submodule with the homology dimension of C
(1)
1 gl greater than

ten is trivial, ∂r is trivial for each r ≥ 10. For r = 9, ∂9 originates Hs,∗(C1g, ∂5)
for s ∈ {0, 1}, on which the differential ∂9 is defined. □

6. The cohomology of the differential algebra C

We consider an algebra E = Z/3[v1, v2, v−1
2 ]/(v21) and E-algebras

(6.1) Qu = v1P
(0)
u ⊕ P

(1)
u , and Qh

u = v1v
2
2hP

(1)
u ⊕ hP

(0)
u ,

in which h is an element with bidegree ||h|| = (1, 12), and the E-action and the
multiplication on Qh

u satisfies

(6.2)
v1v

s
2h = 0 unless s ≡ 2 (3),

xy = 0 for x ∈ v1v
2
2hP

(1)
u and y ∈ Qh

u, and

(6.3) (vs2h)(v
t
2h) = (t− s)v1v

s+t−4
2 ub.

We notice that Qh
u has a Qu-module structure by (6.2). In this section, we consider

the algebras

(6.4) A = Qu ⊕Qh
u, C = A⊗ Λ(φ, ζ) and Cg = C[g]/(g3 − 1)

for generators φ, ζ (cf. above (2.12)) and g with g3 = 1 . We introduce differen-
tials ∂5 : Cg → Cg and ∂9 : H

∗(Cg, ∂5) → H∗(Cg, ∂5) so that H∗(H∗(Cg, ∂5), ∂9) is
closely related to E∗,∗

10 (V2). We moreover assume that ∂r is a derivation. For the
generators u, φ, ζ, v1v

s
2, v

s
2h, b and g, we set

(6.5)
∂r(u) = 0, ∂r(φ) = 0, ∂r(ζ) = 0, ∂r(v1v

s
2) = 0, ∂r(b) = 0,

∂r(v
s
2h) = 0 and ∂5(g) = ωg = v2hbςg.

for r ∈ {5, 9}, s ∈ {0, 1, 5}, and ω and ς of (5.6). We define the differential ∂5 by

(6.6) ∂5(v
3t
2 ) = −tv3t−2

2 hb2 for v3t2 ∈ K(1),

We notice that the relations in Lemma 4.25 hold after replacing d5 with ∂5 by (6.2)
and (6.3). We define differential ∂9 on the algebra Cg = H∗(Cg, ∂5) by

(6.7)

∂9(v1v
3t+s
2 gl) =


(s− 1)lvs2hb

3ςgl t = 0

(1− s)vs2hb
3
⟨
bgl

⟩
t = 1

0 t = 2

for s ∈ {0, 5},

∂9(v
3t+1
2 hgl) =


0 t = 0

−lub4ςgl t = 1

−ub4
⟨
bgl

⟩
t = 2

,
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for l ∈ Z/3 and
⟨
bgl

⟩
in (5.11). We also assume that the relations in (5.15) hold in

Cg. We further notice that

Qu = v1v
3
2P

(1)
u ⊗K ′ ⊕ P

(1)
u ⊗ Λ(v1v2) and

Qh
u = hP

(1)
u ⊗K ′ ⊕ v2hP

(1)
u ⊗ Λ(v1v2).

By (6.5), (6.6) and (6.7), we easily obtain the following:

Lemma 6.8. The cohomology H∗(A, ∂5) is isomorphic to

A =
(
v1v

6
2Pu(3, 3,−)⊗K ′ ⊕ P

(2)
u ⊗ Λ(v1v2)

)
⊕
(
hP

(2)
u ⊗K ′ ⊕ v2hPu(2, 2,−)⊗ Λ(v1v2)

)
.

The cohomology H∗(A, ∂9) is isomorphic to

A =
(
v1v

6
2Pu(3, 3)⊗K ′ ⊕ Pu(5)⊗ Λ(v1v2)

)
⊕
(
hPu(4)⊗K ′ ⊕ v2hPu(2, 2)⊗ Λ(v1v2)

)
.

Consider a differential subalgebra of C

B = A⊗ Λ(ς),

Then, in the same manner as the proof of Lemma 6.8, we verify the following lemma
easily by (6.2), (6.3), (6.5), (6.6) and (6.7) (cf. Lemma 4.25):

Lemma 6.9. The cohomology H∗(Bg±1, ∂5) is isomorphic to

Bg±1 =
(
A⊕ ςA

)
g±1,

where

A =
(
v1v

6
2Pu(3, 3,−)⊗K ′ ⊕ bP

(2)
u ⊗ Λ(v1v2)

)
⊕
(
hbP

(2)
u ⊗K ′ ⊕ v2hPu(2, 2,−)⊗ Λ(v1v2)

)
and

A =
(
v1v

6
2Pu(2, 3,−)⊗K ′ ⊕ P

(2)
u ⊗ Λ(v1v2)

)
⊕
(
hP

(2)
u ⊗K ′ ⊕ v2hPu(1, 2,−)⊗ Λ(v1v2)

)
The cohomology H∗(Bg±1, ∂9) is isomorphic to

Bg±1 =
(
A⊕ ςA

)
g±1,

where

A =
(
v1v

6
2Pu(3, b2)⊗K ′ ⊕ bPu(4)⊗ Λ(v1v2)

)
⊕
(
hbPu(3)⊗K ′ ⊕ v2hPu(2, b1)⊗ Λ(v1v2)

)
and

A =
(
v1v

6
2Pu(2, 3)⊗K ′ ⊕ Pu(4)⊗ Λ(v1v2)

)
⊕
(
hPu(3)⊗K ′ ⊕ v2hPu(1, 2)⊗ Λ(v1v2)

)
.

Remark 6.10. In Ag±1, the elements v1b
kg±1, bkg±1, hbkg±1 and v42hbg

±1 are
the classes of v1b

kg±1 + v1v
3
2b

k−1ςg±1 = v1b
k−1

⟨
bg±1

⟩
, bkg±1 ± v32b

k−1ςg±1 =

bk−1
⟨
bg±1

⟩
, hbkg±1+v32hb

k−1ςg±1 = hbk−1
⟨
bg±1

⟩
and v42hb−v72hςg±1 = v42h

⟨
bg±1

⟩
,

respectively.

Corollary 6.11. The cohomology H∗(H∗(Cgl, ∂5), ∂9) for l ∈ Z/3 is isomorphic
to

Cgl =

{
A⊗ Λ(φ, ζ) l = 0

(B⊕A{φ, ζ}) gl l = ±1
.
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Corollary 6.12. The other differentials ∂r : Cs
g → Cs+r

g for r ≥ 9 are all trivial.

Proof. By Corollary 6.11, the submodules of Cgl for l ∈ Z/3 with the homology
dimension greater than nine are:

C10,∗ = v1v2b
4ςK

(2)
u ⊕ b4ςK

(2)
u and

Cs,∗gl = 0 for s = 10 and l = ±1 or s ≥ 11.

Therefore, ∂r = 0 for r ≥ 10. The differential ∂9 is defined on each element of
Cε,∗gl for ε ∈ {0, 1} and l ∈ Z/3, and no more differential can be defined.

7. The Er-terms from the cohomologies of C1 and C

In this section, we show a lemma by which the E∞-terms E∗,∗
∞ (Ve)g

l for l ∈ Z/3
are deduced from Ceg

l for e ∈ {1, 2}. Hereafter, C2 = C, C2 = C and C2 = C. Let
Re and Se denote modules fitting in the diagram

(7.1)

Seg
l

bCeg
l E∗,∗

2 (Ve)g
l Reg

l

Ceg
l

v

u
i

v w
⊂

'
'')
j

ww
p

u
j

in which the row and the column are exact. Then, j and pi are monomorphisms.
Indeed, if pi(x) = 0, then we have an element bc ∈ bCeg

l such that bc = i(x).
bc = j(bc) = ji(x) = 0 and so i(x) = 0. Since i is a monomorphism, x = 0 as
desired. Here, S1g

l = 0, S2g
l = S2 ⊗ Λ(ζ)gl and Reg

l = Re ⊗ Λ(ζ)gl for

(7.2)

S2 = uv1v2hK
(1) ⊗ Λ(φ)⊗K ′,

R1 = K(0){1, h, uh, uhφ}
= (P (1, 1, 1)⊕ v2hPu(1, 1, 1)⊕ uv2hφP (1, 1, 1))⊗K and

R2 = K(0){v1, h} ⊕K(1) ⊗ Λ(v1v
2
2h)

⊕uh
(
K(0) ⊕ v1v

2
2K

(1)
)
⊗ Λ(φ)⊕ S2

=
(
v1v

6
2P (1, 1, 1)⊗K ′ ⊕ P (1, 1, 1)⊗ Λ(v1v2)

)
⊕
(
hPu(1, 1, 1)⊗K ′ ⊕ v2hPu(1, 1, 1)⊗ Λ(v1v2)

)
⊕uφ

(
hP (1, 1, 1)⊗K ′ ⊕ v2hP (1, 1, 1)⊗ Λ(v1v2)

)
⊕ S2.

Indeed, we deduce S2 and R2 from (3.16), (6.4) and isomorphisms

(7.3)

bQu ⊕K(1) ⊕ v1K
(0) = (K(1) ⊕ v1K

(0))⊗ F b,
bQuφ = (K(1) ⊕ v1K

(0))⊗ F bφ,

bQh
u ⊕ h(K

(0)
u ⊕ v1v

2
2K

(1)
u ) = (K(0) ⊕ v1v

2
2K

(1))⊗ Fh and
bQhφ

u ⊕ uhφ(K(0) ⊕ v1v
2
2K

(1)) = (K(0) ⊕ v1v
2
2K

(1))⊗ Fhφ.

obtained by (2.16) and (6.1).
We see that

(7.4) p(
⊕

s≥4E
s,∗
2 (Ve)g

l) = 0.

Lemma 7.5. Every element of S2g
l ⊂ E∗,∗

2 (V2)g
l is a permanent cycle.
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Proof. Since v1v
s
2uhbg

l = 0 ∈ E∗,∗
2 (V2)g

l (by (3.3)) unless s ≡ 2 mod 3, we see that
bS2g

l = 0, and so the lemma follows from Corollary 4.6. □

Put

(7.6) b∗Cl
e = H∗(bCeg

l, ∂5) and b∗C
l
e = H∗(b∗Cl

e, ∂9).

We notice that the generator b induces isomorphisms Ceg
l → b∗Ceg

l and Ceg
l →

b∗Ceg
l. Since p in (7.1) is an epimorphism, for each x ∈ Re, we have an element

x̃ ∈ E∗,∗
2 (Ve) such that p(x̃) = x.

Lemma 7.7. There is an isomorphism

E∗,∗+lω
10 (Ve) ∼= b∗C

l
e/D

l
e ⊕ Zl

e for l ∈ Z/3

of modules. Here,

Dl
e = {[[xgl]] ∈ b∗C

l
e | xgl = d5(w̃g

l) or [xgl] = d9([w̃g
l]) for w ∈ Re} and

Zl
e = {xgl ∈ Reg

l | d5(x̃gl) = 0 and d9([x̃g
l]) = 0}.

Proof. Note that the differentials d5 and d9 act on Reg
l trivially by (7.2) (and

(7.4)). Indeed, it has no element of cohomology dimension greater than two. The
short exact sequence in (7.1) induces the long exact sequence

Reg
l δ5−→ b∗Cl

e
inc⋆−−−→ E∗,∗

6 (Ve)g
l p⋆−→ Reg

l

of d5-cohomologies. Hereafter, inc⋆ denotes an homomorphism induced from the
inclusion. This gives rise to the short exact sequence

0 → b∗Cl
e/(Im δ5)

inc⋆−−−→ E∗,∗
6 (Ve)g

l p⋆−→ Ker δ5 → 0.

Here, δ5(x) = d5(x̃) ∈ E∗,∗
2 (Ve), and so Im δ5 = {[x] | x = d5(w), w ∈ Re}. For

d9-cohomologies, we obtain a long exact sequence

Ker δ5
δ9−→ H∗(bCl

e/(Im δ5), ∂9)
inc⋆−−−→ E∗,∗

10 (Ve)g
l p⋆−→ Ker δ5

δ9−→ · · · ,

which splits into a short exact sequence

0 → H∗(bCl
e/(Im δ5), ∂9)/(Im δ9)

inc⋆−−−→ E∗,∗
10 (Ve)g

l p⋆−→ Ker δ9 → 0.

Now we deduce the lemma by verifying thatH∗(bCl
e/(Im δ5), ∂9)/(Im δ9) = b∗C

l
e/D

l
e

and Ker δ9 = Zl
e. □

Since Ve is an M -module spectrum, the homotopy groups π∗(L2Ve) are Z/3-
modules, and hence πt−s(L2Ve) ∼=

⊕
Es,t

10 (Ve). So it suffices to determine the
structures of E10-terms.

Proof of Theorem 2.22. The structure of E∗,∗
10 (V1) follows from (4.10).

For E∗,∗±ω
10 (V1), we obtain

Z±1
1 =

[
v2hPu(1)⊕ uv2hφP (1, 1)

⊕ζ (P (1)⊕ v2hPu(1, 1))⊕ v2hςP (1, 1, 1)
]
⊗Kg±1 and

D±1
1 =

[
v2hbςP (1)⊕ v2hb

2P (1, 1)⊕ b5Pu(1)⊕ b4ςPu(1)⊕ b5φP (1)
⊕ζ

(
v2hb

2P (1, 1)⊕ b5Pu(1)
) ]

⊗Kg±1

from R1 in (7.2) by (4.8) and Lemma 4.21 (cf. (5.5) and (5.14)). We notice that
the last summand of Z±1

1 is given by the permanent cycles of (5.14) by setting
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ṽ72hςg
±1 = (v72hς±v42hb)g±1. Therefore, by Corollary 5.17, the module b∗C

±1
1 /D±1

1

is isomorphic to the tensor product of Kg±1 and

b2Pu(3)⊕ v2hbP (1)⊕ uv2hbP (2, b1)⊕ ς
(
bPu(3)⊕ v42hbP (2)⊕ uv2hbP (1, 2)

)
⊕φ (bP (4)⊕ ubP (5)⊕ v2hbPu(2, 2))⊕ ζ (bPu(4)⊕ v2hbP (1, 1)⊕ uv2hbP (2, 2)) ,

and the structure of the E10-terms follow from Lemma 7.7. We add the summand
v42hbP (1)⊗Kg±1 to the E10-term instead of the last summand v72hςP (1)⊗Kg±1 of
Z±1
1 , since both of the generators of the modules represent the generator v42h

⟨
bg±1

⟩
.
□

Proof of Theorem 2.24. By (4.13), Lemmas 4.15, 4.19, 4.23 and 7.5, we read off
from (7.2):

Z0
2 = (Z2 ⊕ uφZ

φ

2 ⊕ S2)⊗ Λ(ζ) and D0
2 = (D2 ⊕ φD

φ

2 )⊗ Λ(ζ),

for

Z2 = v1v
6
2P (1, 1)⊗K ′ ⊕ P (1)⊗ Λ(v1v2)⊕ hPu(1)⊗K ′ ⊕ v2hPu(1, 1)⊗ Λ(v1v2),

Z
φ

2 = hP (1)⊗K ′ ⊕ v2hP (1, 1)⊗ Λ(v1v2),
D2 = hb4P (1)⊗K ′ ⊕ v2hb

2P (1, 1)⊗ Λ(v1v2)
⊕v1v62b3Pu(1, 1)⊗K ′ ⊕ b5Pu(1)⊗ Λ(v1v2) and

D
φ

2 = v1v
6
2b

3P (1, 1)⊗K ′ ⊕ b5P (1)⊗ Λ(v1v2).

By Lemmas 4.25, 4.28 and 7.5,

Z±1
2 = v1v

6
2P (1)⊗K ′ ⊕ v2hPu(1)⊗ Λ(v1v2)⊕ ζZ2 ⊕ uφZ

φ

2

⊕ς
(
hP (1, 1)⊗K ′ ⊕ v2hP (1, 1, 1)⊗ Λ(v1v2)

)
⊕ S2 and

D±1
2 =

(
hb3ςP (1)⊕ hb4P (1)

)
⊗K ′ ⊕

(
v2hb

2P (1, 1)⊕ v2hbςP (1)
)
⊗ Λ(v1v2)

⊕
(
v1v

6
2b

3Pu(1, 1)⊕ v1v
6
2ςb

2Pu(1)
)
⊗K ′ ⊕

(
b5Pu(1)⊕ b4ςPu(1)

)
⊗ Λ(v1v2)

⊕ζD2 ⊕ φD
φ

2 ⊕ uς
(
v1b

3P (1)⊗K ′) .
Here, every element of ςZ

ς
g±1 for

Z
ς
= v32hP (1)⊗K ′ ⊕ v72hP (1)⊗ Λ(v1v2)

is a permanent cycle. Indeed, v7+s
2 hςg±1 for s ∈ {0, 1, 5} denotes a permanent cycle

(v7+s
2 hς ∓ v4+s

2 hb)g±1. Furthermore, for

Z
g
= v1v

6
2P (1)⊗K ′ ⊕ v2hPu(1)⊗ Λ(v1v2),

we have

Z±1
2 = Z

g ⊕ ζZ2 ⊕ uφZ
φ

2 ⊕ ς
(
Z

φ

2 ⊕ Z
ς
)
⊕ S2.

Put

D
±1,φ

2 =
(
v1v

6
2b

2Pu(1)⊕ uv1b
3P (1)

)
⊗K ′ ⊕ b4Pu(1)⊗ Λ(v1v2)

⊕hb3P (1)⊗K ′ ⊕ v2hbP (1)⊗ Λ(v1v2),

and we see that

D±1
2 = D2 ⊕ ςD

±1,φ

2 ⊕ ζD2 ⊕ φD
φ

2 .

Then, we notice that

b∗C
0/D0

2 =
(
b∗A/D2 ⊕ φ

(
b∗A/D

φ

2

))
⊗ Λ(ζ), and

b∗C
±1/D±1

2 =
(
b∗A/D2 ⊕ ς

(
b∗A/D

±1,φ

2

))
⊕

(
ζ
(
b∗A/D2

)
⊕ φ

(
b∗A/D

φ

2

))
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by Corollary 6.11. Furthermore, we read off the summands:

b∗A/D2 =
(
v1v

6
2bPu(2, 2)⊗K ′ ⊕ bPu(4)⊗ Λ(v1v2)

)
⊕
(
hb (P (3)⊕ uP (4))⊗K ′ ⊕ v2hb (P (1, 1)⊕ uP (2, 2))⊗ Λ(v1v2)

)
,

b∗A/D
φ

2 =
(
v1v

6
2b (P (2, 2)⊕ uP (3, 3))⊗K ′ ⊕ b (P (4)⊕ uP (5))⊗ Λ(v1v2)

)
⊕
(
hbPu(4)⊗K ′ ⊕ v2hbPu(2, 2)⊗ Λ(v1v2)

)
,

b∗A/D2 =
(
v1v

6
2bPu(2, b1)⊗K ′ ⊕ b2Pu(3)⊗ Λ(v1v2)

)
⊕
(
hb2 (P (2)⊕ uP (3))⊗K ′ ⊕ v2hb (P (1)⊕ uP (2, b1))⊗ Λ(v1v2)

)
and

b∗A/D
±1,φ

2 = v1v
6
2b (P (1, 3)⊕ uP (1, 2))⊗K ′ ⊕ bPu(3)⊗ Λ(v1v2)

⊕
(
hb (P (2)⊕ uP (3))⊗K ′ ⊕ v2hb

(
v32P (2)⊕ uP (1, 2)

)
⊗ Λ(v1v2)

)
.

Put that M = b∗A/D2 ⊕ Z2, Mφ = b∗A/D
φ

2 ⊕ uZ
φ

2 , M = b∗A/D2 ⊕ Z
g
and

M
φ
= b∗A/D

±1,φ

2 ⊕
(
Z

φ

2 ⊕ Z
ς
)
, and we obtain the E10-terms from Lemma 7.7,

and the homotopy groups of the M -module spectrum V2 are isomorphic to the
corresponding E10-terms. □
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