ON THE PICARD GROUP GRADED HOMOTOPY GROUPS OF
A FINITE TYPE TWO K(2)-LOCAL SPECTRUM AT THE
PRIME THREE

IPPEI ICHIGI AND KATSUMI SHIMOMURA

ABSTRACT. Consider Hopkins’ Picard group of the stable homotopy category
of E(2)-local spectra at the prime three, consisting of homotopy classes of
invertible spectra [1]. Then, it is isomorphic to the direct sum of an infinite
cyclic group and two cyclic groups of order three. We consider the Smith-Toda
spectrum V(1) and the cofiber V2 of the square o of the Adams map, which is
a ring spectrum. In this paper, we introduce imaginary elements which make
computation clearer, and determine the module structures of the Picard group
graded homotopy groups 7, (V (1)) and 74 (V2).

1. INTRODUCTION

We work on the stable homotopy category 83 of spectra localized at the prime
three.  Consider the Brown-Peterson spectrum BP with coefficient algebra
Z3)[v1,v2, . ..] on the generators v; of degree 2 x 3¢ —2 for i > 1. Then, the second
Johnson-Wilson spectrum FE(2) € 83y is the spectrum representing the Landweber
exact functor E(2).(X) = E(2), ®pp, BP.(X) for B(2), = Z[v1,v2,v5 '] on
X € 8(3). Let Lo denote the full subcategory of 83y consisting of spectra localized
with respect to E(2) in the sense of Bousfield. Then, we have the Bousfield local-
ization functor La: 8(3)y — L2, which is a retraction. A spectrum X € Ly is called
invertible if there is a spectrum Y such that X AY = LS for the sphere spectrum
SY. Hopkins’ Picard group Pic(£Lz) is defined to be a group consisting of the ho-
motopy equivalence classes of invertible spectra with multiplication defined by the
smash product. For an element A € Pic(L2), S* denotes an invertible spectrum
that represents A. Note that E(2).(S*) = E(2). shown by Hovey and Sadofsky
[2]. In [1], Goerss, Henn, Mahowald and Rezk showed that Pic(L3) is isomorphic
to Z®7Z/3®7Z/3. The generator of the summand Z is represented by S! = ¥ L,5°.
Let w; for i = 1,2 denote a generator of the i-th summand of Z/3®Z/3 C Pic(L2).
The Picard group graded homotopy groups m(X) of a spectrum X is

mn(X)= @ [5 L2X]
A€EPic(Lo)
Note that Sotbtwitews for q € Z and b,c € Z/3 is represented by the invertible
spectrum X4 (S@1)N A (Sw2)Ne,
Let M denote the mod 3 Moore spectrum fitting in the cofiber sequence
(1.1) S0 360 L 2 gt
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For an integer e € {1,2}, we have spectra V, given by the cofiber sequence
(1.2) she M 25 M As v, ey wietiy

for the Adams map « satisfying F(2).(a) = vy. Then,

(1.3) E(2).(Ve) = E(2)./(3,v7).

Note that E(2).(V1) = K(2)., the coefficient algebra of the second Morava K-
theory. The spectrum V; is the first Smith-Toda spectrum V(1). We note that
Toda [10] showed that V; is not a ring spectrum, while Oka [6] showed that V5
is a ring spectrum. We tried to determine homotopy groups of LoV; = LoV (1),
Vi AS“t and Vi A Sz ([8], [4], [3]). Unfortunately, there are some missing relations
on the differential dg in [3], and the result is not correct. In this paper, we correct
the result (see Remark 2.23), and furthermore, determine the additive structure
of the homotopy groups of LyVa, Vo A St and Va A S*2. Our main tool is the
E(2)-based Adams spectral sequence
Ey'(X) = Extiy) (m2)) (B2 E(2)+(X)) = T s(LaX)

for a spectrum X. The generators of the F>-terms behave very complicated in the
spectral sequences. To make the behavior clearer, we introduce some imaginary
generators. In order to compute E,-terms, we consider differential algebras C. for
e € {1,2}, whose cohomologies are easily determined, so that the E..-terms for V,
are obtained from the cohomologies.

In the next section, we state our main theorem, the homotopy groups m.(Ve A
Sle2) for | € Z/3, after introducing the elements. We determine the Ea-terms
E; et (Ve) in section three, and the Adams-Novikov differentials d5 and dg for
Tatlws (Ve) in section four. Sections five and six are devoted to compute the coho-
mologies of the differential algebras C1g' and Cag' for | € Z/3, respectively. Here,
g denotes a generator of F(2),(S“2). In the last section, we deduce our main the-
orems Theorems 2.22 and 2.24 from the results of the cohomologies of C;g' and
ngl.

2. STATEMENT OF RESULTS

By the 3 x 3 lemma, the cofiber sequences in (1.2) give rise to another cofiber
sequence

(2.1) S S v, Bv L sy
On the generator wy € Pic(L2), we have the following
Theorem 2.2 ([4, Th. A]). There is a homotopy equivalence vy : L48V; ~ V3 AS“1.

Since m_5(L2V1) = 0 by [8, Th. 10.6] (see (4.10)), this theorem implies that
ma3(Vi A S¥1) = 0. It follows that (j A 1)v3iyi = 0 for v3 in Theorem 2.2, and so
v3iyi € mag(Vi A S¥1) is pulled back to msg(Va A S“) under (i A1).. Notice that V5
is a ring spectrum, and we obtain the following

Proposition 2.3. There is a homotopy equivalence v : L¥8Vy =~ Vo A 1.
Consider the E(2)-based Adams spectral sequence

By (X) = Exty(y) g2y (B(2)x; B(2)u(X)) = 75 (L2X)
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for a spectrum X. The FEs-term is given by the cohomology of the cobar complex
O*E(2).(X) of the F(2).(E(2))-comodules. Here,

E(2).(E(2)) = EQ2)«[t1,t2,...] ©BP, E(2).
with |t;| = 2(3° — 1). Note that
E(2).(5) = E(2)+{g:}
for i € {1,2} and generators g; € E(2)o(S“?) (see [2, Th. 2.4]).

Proposition 2.4. Lete € {1,2}. The Picard graded homotopy groups Tsi,w;+lsws (L2Ve)
for s € Z and ly,ls € Z/3 is isomorphic t0 Wi 481y +isws (L2Ve).

We concentrate the determination of the homotopy groups sy, (L2Ve) for s €
Z,1€Z/3 and e € {1,2}, and abbreviate wy and g2 to w and g, respectively.

For the homotopy equivalences v3 in Theorem 2.2 and Proposition 2.3, consider

U3 ’U3 'U3

the composite map B,: 144V, =2 59V, A §¢1 RETEN S8V A SW1 A §er TN
Vo A S®1 A S91 A S¥t =V, in which S*1 A §1 A St = L5589 since 3w; = 0.
Proposition 2.5. There ezist self maps Be: X144V, — V. for e € {1,2} such that
E(2).(Be) = v3: E(2)4(Ve) = E(2).(Ve).

The maps B, induce the isomorphisms (B) s : Tatiw(L2Ve) = Tatiw(LaVe) of the
homotopy groups as well as the isomorphisms v§: B+ (V,) — E**T@(V,) of the
Adams-Novikov E,-terms, and so it suffices to determine E**(V,) ® j¢(2) Z/3 for
r > 2 for the homotopy groups 7., (L2S"). Here,

(2.6) KE® = 7/303", v5"]

for k € {0,1,2}. Note that K(©) = K(2),. Moreover, Z/3 is considered to be a
K® = 17/3[v3, vy ?]-module by sending v§ to 1. Hereafter, we abuse notation, and
a K®)-module M denotes

(2.7) M Qg Z/3.

So degrees run over Z/144, and K is considered to be Z/3. We also consider the
algebra

(2.8) PR = g®)[p]

for a generator b corresponding to by € E22’12(Ve)7 which detects i.i8, € m10(Ve) for
the well known generator 31 € m10(S°).

(2.9) ([8, Th. 5.8]) The Ep-term Ej;*(V}) is isomorphic to a free P(®)-module
KO g (F*o F' o F' @ F*) @ A(G)

for
Fb = P@{1,b}, F"=P®{hy, ho},
F* = PO{gg, ¢y} and F' = PO{E b}

Here, (2 € Ey°(V1), hy € Ey'?(V7) and

Eo = ’Ug’ho c E21’84(V1), Bl = ’Ugbl € E22’84(V1),
F 7 2,120 - _ 2 3,48 - _ 6 3,120
E=—vi¢ e By (V1), o =v31 € By (V1) and ¢, = —v§i € By (1)

for the generators hg, b1, &, ¥ and v in [8]. The generators satisfy the relations:
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(2.10) ([8, Prop. 5.9])
hohy =0, ho€ =0, m&=0,
~ _hobo = hiby,  hiby = —hob, B
bi€ = hg% = —h1vg, bo& = hotog = hitpy,
vyby = —by,  bopy = b1y and  bopy = —biy,
as well as
—92 9 —2 —2 —2 2

(2.11) ho=0, hi=0, & =0, ¢¥,=0, ;=0 and (¢ =0.
We introduce imaginary generators u and ¢ such that
(2.12) u? = —v) = —1, Yy=bp and P, = ubp,

and put h = hy and ( = (5. We further identify the elements as follows:

(2.13) ho =uh, by =ub, &=uhp.
Here, the bidegrees of the generators are

[o1ll = (0,4), o]l = (0,16),  [lull = (0,72), |[A]l = (1,12),

2.14
@14) el = (1,36). [icll = (1,0) and ] = (2.12).

3 bo,uhb | ubl, | uhpl, ubp,hb | bC

2 uh(, ub uhp h(, b

1 ¢ uh h

0 1

st/ 0 | 4 | 8 [ 12 | (mod 16 = |va])

In the table, we notice that
(2.15) he & E2® (Vi) and  hbp € By (V).

The modules in (2.9) are rewritten as

Fb=K® gbp, Fh=hPP, F'% =bpP? and

2.16
(2.16) FM = uhpK® @ hpbP? = uhpF?
for
(2.17) K® =7/303 ;7% )/ +1) and P = K,

where k € {0,1,2}, and so
(2.18) EpF(V(1) (K<0>{1, uh, h,uhg} & bPO) @ A(h, «p)) 2 AC).
We notice that the relations (2.10) follow from the two relations
u?=—1 and hA%=0.
Furthermore, we consider the element
(2.19) s=up( (€ B3'(V.),
and modules

(2.20) K =7/3{1,v3,v3} and K'=7/3{1,v3},
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and
P(k) = P@/@F) = Z/3[b]/(b%),
P,k) = PP/%) = P(k)®uP(k),
(2.21) P(k,l) = P(k)s®viP(),
P(k,b'l) = P(k)®v3b'P(l) and

P(k,l,m) = P(k)®v3P(l) ®vSP(m)
forie{1,2}, k,I,me {-}U{n € Z|n >0}, where
P(=)=P? and P(0)=0.

We also note that
ub® = (ub)b'™' =bb'~1 for ¢t > 1.

By use of these notation, we determine the homotopy groups:

Theorem 2.22. The homotopy groups i1, (L2V1) forl € Z/3 are given by:

T (LaVi) = K@ AQ) @ | (P(5) ® ubP(4) ® v3h (P(2,2) @ uP(3,3)))
D (b (P(4)  uP(5)) © vsh (bP(2,2) ©uP(3,3))) | and
(P(3) ® uP(3)) @ vah (P(2,b1) ® uP(3,b%1))
(

b2
@ (b(P(3) & uP(3)) @ vah (P(1,3) ® ubP(1,2)) )
@ (b(P(4) @ uP(5)) ® vah (bP(2,2) & uP(3,3)))

aC((P(5) ® ubP(4)) @ voh (P(2,2) ® uP(3,3)) )} ® Kg*t.

W*iw(LZVI) =

Remark 2.23. From the structure, we find missing differentials in the paper [3]:
dg(U2 hllgq) == ’02 w0b10C2.gq ] = 23 65 7 (9)7
do(v3hi0gy) = vz ¢1b1oC29q 7=0,1,5(9),
dg(U2h10b1ogq) = ’02 ¢1b10<29q j = O7 1, 5 (9)
up to sign. Here, the notations are those used in [3].
Theorem 2.24. The homotopy groups Tai1,(L2Va) forl € Z/3 are given by:
T (L2V2) = (M@ eM?) @ A(C) 52

for
M = v10§ (P(3,3) D ubP(2,2)) @ K' & (P(5) @
@®h (P(4) ®uP(5)) ® K' & vah (P(2,2)
M? = v108b (P(2,2) ® uP(3,3)) @ K' ® b(P(4
®h (bP(4) & uP(5)) ® K' @ voh (bP(2,2
Sy = uvivsh KM @ K' @ A, ¢);  and

ubP(4)) @ A(vivz)
©uP(3,3)) ® A(viva),
) ®uP(5) @ A(vivz2)
) ©uP(3,3)) ® A(vivz),  and

Totew(LaVa) = [(M B M) @ (M@ oM? @ 52] e

for
M = v10§ (P(3,0°1) ® ubP(2,b1)) ® K' & b*P,(3) @ A(viv2)
®hb* (P(2) & uP(3)) ® K' @ voh (P(2) & uP(3,0°1)) ® A(vivs),
MY = v1v2b( (1,3) ® uP(1,2)) @ K & bPy(3) @ A(vivs)
©h (P(3,1) @ ubP(3)) ® K' @ vah (P(1,3,1) @ ubP(1,2)) ® A(vivs).
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We notice that these are isomorphism of modules, and so the modules are not
expressed uniquely. For example, in the summands of 7,4, (LaV2),

g[ (hb*P(2) & heP(3,1)) ® K' ® (v2hP(2) ® v2hcP(1,3,1)) @ A(vivg)
— (hbP(3) @ hs P(3)) ® K' & (vahP(2,b1) & v2hs P(1,3)) @ A(vyva)].

Indeed, these are isomorphic to

(hb?gP(2) @ hegP(3) & h (bg) P(1)) ® K’
® (v2hgP(2) ® vahcgP(1,3) ® v3h (bg) P(1)) @ A(vyv)

for the element (bg) = bg + v3sg in (5.11).

3. THE ADAMS-NOVIKOV F5-TERMS FOR 7, (V)
By (2.18), we rewrite the Ea-term as follows:
(3.1) Ey*(Vi) = BV © K ® A(()
for
BV = KW g (Ft o Fh @ F* @ F'¥).
Consider the exact sequence
(3.2 By ) S B3 (Ve) S B3 () S BT W)

associated to the cofiber sequence (2.1). Recall Landweber’s formula ng(ve) =
vy + v1t3 — vit; mod (3) in BP,(BP). Then, we see that

(3.3) §(vy) = svyh.

Indeed, h = [t3] € Ey'*(V1). Hereafter, [] € E3™*(V,) for a cocycle ¢ € 0**E(2).(V,)
denotes the homology class of ¢. Under the exact sequence (3.2), (3.3) implies

(3.4) vivsh =0 € Ey™* (V) unless s = 2 (3).
We also recall (1.3) that
B(2).() = K(2). and E(2).(V2) = B(2)./(3,03).

For a cocycle ¢ € Q% K (2),, we have a cocycle ¢ € Q53 E(2),./(3,v?). Further-
more, we see that

() = [v3'd] € B3 (W),
since t = vg’k_ltk € QM K(2)..
Lemma 3.5. The connecting homomorphism 8§ acts trivially on the submodule E™)

Of E;’*(Vl)

Proof. Tt suffices to show that, for each element € E(1), we have an element
(z)~ € Ey* (Vo) such that i,((z)~) = 2. For the generators of E("), we may put
(0)~ = [brol,  (ub)™ =[v3bia], (R)~=[t]], (uh)™ = [v3t]]

(3.6) (uhg)™ = [1BX°], (bp)~ = [08Y] and (ubp)™ = [u3Y7].

Here, by 1 = (t1 ®t%+t%®t1)3k, and X € Q>*K(2)., Yy and Y; € Q>*K(2), denote
cocycles representing & = uhy, 1, = by and 1, = ubyp, respectively. O
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The exact sequence (3.2) together with an isomorphism (3.1) gives rise to the
the exact sequences

s UEEO EWV I g S sp0) g 2y BO By g0) 4 B ang
' v B 2 B Iy 3 p() 2, pO),

and we obtain
(3.8) By (va) = (EV @ B @ ESV) @ A(Q).
The homomorphism i, induces an isomorphism
L3{(w3h)} = B3R (e) S BT () = 2/3{v3h)

for v € K (see the chart below (2.14)). The representatives for (vih)™ are given
by
(3.9) (v3h)™ = [vsts — svvy 19).
It follows that
Lemma 3.10. In EJ"(Vs), the generators satisfy the relations:

h(vah)™ = vivy 2ub,  h(v3h)~ = —vivyub  and  (voh)™(v3h)™ = vivg tub.
In other words, (v3h)™~(vhh)™ = (t — s)vivy T~ 4ub.
Proof. This follows from computation

h(vah)™ = [13 @ vt — vity @ 19] = [vatd @ 13 + 11§ @ 13 — v1t5 @ 19]
d(vatd) — 013 @ 19 + 01t @ 3 — ity @ 18] = vyvy Pub,

[
h(v3h)™ = [t3 @ v3t3 + vivats @ 18] = (V3 @ 3 — vivatf @ 1} + v1vath @ 1]
= [d(v3t9) + v1vat? @ 18 — vivat§ @ 13 + vivaty @ t§] = —vyv; Zub,
(vah)~ (V3h)™ = [vat? @ V3t3 + vivat; @ 1§ — v1vst) ® 5]

[V3t3 @ t3 — 11038 @ 13 + v1v5t) @ 1§ — V138 @ 13]
= [d(v3t9) + v1v383 @ 1§ + viv3t, @ t§] = vyvy tub. O

We note that the multiplication by b (resp. wub) defines the monomorphism
b: By * (Vo) = B3 72" 2(V,) (resp. ub: By* (Vo) — B3 72 T%4(1)).
Lemma 3.11. We have an element (viuh)™ € Ey"(Va) satisfying

(v3uh)~b = (vsh)~ub for v € K.

Proof. Since §(viuh) = 0, we have an element (viuh)’ € E;*(Va) such that

ix((v3uh)') = viuh. Then, i, ((viuh)'d) = vSuhb = i, ((v5h)~ub). Thus, (v5uh)'b —

(v3h)~ub is an image of v;. By degree reason, (viuh)'b— (vih)~ub = kvyvs *b¢ for

some k € Z/3. Thus the lemma follows by setting (viuh)™ = (viuh)’ — kvivy *C.

(I

We also have
(3.12) (vsuhp)™ = 3T X% — svjvy~ 1 2% € Ey* (Va)

for a cochain Z € Q2K (2). such that d(Z) = t} ® X. Since vy € (h1,h1,&) €
E5™(V1), we may put

(bp)™ = [W5tS @ X? +t} ® 2°] € B (Va).
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We note that vy = t$ ® X + 13 ® Z for Yy in the proof of Lemma 3.5.
Lemma 3.13. In E;"(Va), the generators satisfy the relations:

(v3h)™ (vhuhy)™ = (t = s)orvs ™ b and  (v3h)™(bp)™ = (v3uhp)™ub
for s, t € {1,2}.

Proof. The first relation follows from

(v3h)™ (huhe)™ = [(u3t — svrus~'t9) @ (WEFEXD — ool 4 2?)]
= |3t @ X0 ot togva TS @ X9 — W]
— [svlv§+‘g+tt? ® Xg] = (t—s)vvyt e
( st = _W _ ittt g Xg(l)

Here, the underlined terms with subscript (1) cancel each other out, and the coef-
ficient of the sum of the waved under lined terms is ¢t — s.
Similarly, we verify the second relation by computing
(v5h)™ (bp)™~ = [(vst] — svpvy 1) @ (St @ X0 + 13 ® Z%]
= [t @t © X9 + it @ 1] © 2°]
—sv1v5 ! 18 @ (0510 ® XO + 13 ® Z9)]

= [1)5*%1’1 @ X -3t ot @ X9(1) + Ut @13 ® Z9(2)}

—svyvy ! [t? ® (WSt @ X+ @ Zg)]

= (051011 ® X — sv03 TPt @ 1§ @ X° — svpv5 by @ Z°
[b171 ® U§+6X9 - Svlv;JrS (t%bl,l + b1,1t‘;’) (39 Xg]
—s[v1os TP @18 @ XY + vivs b ® 27
= b1 @ ot X - suust (B el +Bed+Hel ) e X

1(3) 1(4)
-5 [vlv§+5t? Rt ® Xg(3 + U1U§_1bl,1 ® Zg] = (vsuhgp)~ub.

)
Indeed,

—d(vit$ ® Z°) = —W -t ® 29(2) + st @83 ® X9
—sd(viv3Tt? @ X9)
= spyust? (ti” Rt +1 @8

)

(4))®X9). .

By (3.3) and (3.7), we see that

Im (6: v§ED > 03 EW) = 03" KD @ bFh @ F') @ vy 'hK®  and
Ker (0: v3EM — 03 'EM) = wsKW @ (Fh @ Fhe)

for s € {1,5}, where 'Y = hgobP,Sl) such that KM @ F" = uhoK®) &F". From
this, we obtain the following

Lemma 3.14. The submodules E%" for s € {0,1,5} are:

E(gl) = EW @ A(vv3) and
B = (ﬁf B ﬁs’w) ooy LKW @ (FP @ F* ¢ uhK® @ A(p))
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for s € {1,5}. Here,
Fl = POL(w3h)™, (wosh)™}  and  F' = PO {(viuhp)™, (viuhp)™~ub}.
Hereafter, we abbreviate ()~ to 2. Then, we may identify Fh = p3KM @ Fh
and F'* = o5 K1) @ Fhe,
Corollary 3.15. E;*(Vy) is isomorphic to the tensor product of KV, A(¢) and

the direct sum of
(F* @ F* @ F" @ F"?) @ A(v105)
and
ViK' ® (Fh © F" © vy} (Fb ® F* o uhK® @ A((p))) .
The generators satisfy h® = 0. Therefore, the relations in (2.10) also hold in
By (Va).
We note that
Ey*(Va) = KD @A) ® ( (F® F** @ vy (F* & F**) ® K)

(
3.16
( ) @((FhQBFh“")@K@vlvg (FhGBFh“"))@vlvguhK(Q)@)A(cp)@K’).

By Lemmas 3.10 and 3.13, we have
(v3h) (Vhhep) = (¢ — 8)vrv5 "~ Hubip = (u3h) (vbh)e.
4. THE ADAMS-NOVIKOV DIFFERENTIALS ON E** (1))
FOR e € {1,2} AND | € Z/3

Let 31 € m10(S°) be the well known generator. Note that it is detected by
b=by € E5'?(5°). Consider a spectrum W fitting in the cofiber sequence
(4.1) §10 L1y g0 Ly £y g1t
Then, E(2).(W) = E(2), @ E(2)._11b for a generator b € E(2)11(W) such that
k«(b) =1 € E(2)o.

Hereafter, we abbreviate the generators wy of Pic(£L2) and g of E(2)(5%2) to
w and g, respectively. We set

VW =V, A8 foree{1,2} and € Z/3.

Then, E5* (V) = E3* (VYY) for e € {1,2}. Note that ES*(V\") = E3(V,) for
[ € Z/3, and B; induces a monomorphism b: Eg’t(Ve(l)) — E§+2’t+12(Ve(l)) by (2.9)
and Corollary 3.15. For the next lemma, we recall an exact couple defining the
Adams-Novikov spectral sequence:

ki — ky
>k‘7E/\X<~1—f EQ/\X«E EsAX <-——--

| A A

EANX  EAEAX ENEMAX

for a spectrum X. Here, E = E(2), and S° 4 B L Eis a cofiber sequence.

Lemma 4.2. The Adams-Novikov E3-term E;’*(Ve(l) AW) is trivial for e € {1,2},
l€Z/3 and s > 6.
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Proof. The cofiber sequence (4.1) induces a short exact sequence
(4.3) 0— BN (VO 2 BSY VO AW Zs ESTHH VDY 0.

Consider the generator g' € E(2)0(Ve(l))7 and let i) € my(E3 A Ve(l)) be an element
such that kiky (i) = g'. Let b’ € w19 (E/\EA2 /\Ve(l)) be an element representing b.
Since (E3 A )y (j2)«(b') = 0, the element ¢, (b) in the Ey-term E3'? (Ve(l) AW) is in
the image of a differential d, of the spectral sequence. By degree reason, we have

da(bg') =b € E22’12(Ve(l) A W). Therefore, the induced connecting homomorphism
from (4.3) of the do-differential modules is the multiplication by b and so we obtain
an exact sequence of the Adams-Novikov-F3-terms

(44)  EZ{(VO) B EFHR(VO) L BFRVO A W) s BTV,
Here, note that Eg’t(Ve(l)) = E;t(Ve(l)) by degree reason.
Consider a commutative diagram

s—1,t g s,t—4 v1 ot l s,t g s+1,t—4
E, > Ey ’ E; (Vz()) E, E,

I I N |

E5+1,t+12 a E§+2,t+8LE;H,HQ(VQ(Z))gE5+2,t+12 a E§+3,t+8

T

associated to the cofiber sequence (2.1), where Ej"* denotes E;’t(Vl(l)). By (2.9),
we see that b: ES'(V\Y) — EZ*212(vY) is an isomorphism if s > 4, and a
monomorphism with Coker b = K {hbp(} if s = 3 (see (2.15)). The Five Lemma
shows that b: E3' (V") — ESF212(V () is an isomorphism if s > 5 and an
epimorphism if s = 4. Therefore, the lemma follows from the exact sequence (4.4).

(]

Lemma 4.5. In E**( e(l)) foree{1,2} andl € Z/3, if d,(xb) = yb for elements
T,y € E;"*(Ve(l)), then d.(x) = y. Similarly, a relation d,(xub) = yub also implies
d.(z) =vy.

Proof. Since Eg’t(‘/;(l)) = 0 unless 4 ¢, we see that Eg’*(Ve(Z)) = Eg’*(Ve(l)).
By (2.9) and (3.8), we see that b in (4.4) is a monomorphism on the Es-terms.
Therefore, the lemma holds for r = 5.

Suppose inductively that the lemma holds for s with 5 < s < r. Suppose also
d,(zb) = yb € Ef’m(Ve(l)) and put d,.(z) =y'. Then by = by’ € Ef*m(‘/'e(l))7 and so
we have an integer s < r and an element z € Ef’svm’sﬂ(Ve(l)) such that ds(z) =
by —y'). Note that r —s > 4. Since k > r + 2, we see that k —s >r+2— s> 6.
Therefore, t4(z) = 0 in (4.4) by Lemma 4.2 and we have z such that bz = z. It
follows that ds(zb) = ds(z) = b(y — '), and by the inductive hypothesis we have
ds(Z) =y — v and d,(x) = y as desired.

Since ub is a permanent cycle (see 4.13), multiplying the relation d,.(zub) =
yub by ub implies d,.(z(ub)?) = y(ub)?. Therefore, d,(xb?) = yb?, and we obtain
dr(z) = y. O

Corollary 4.6. In E;’*(Ve(l)) fore € {1,2} and l € Z/3, if xb (resp. zub) is a
permanent cycle, then so is x.
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By [5] and [1], the differential ds: E3™(5%) — E3T>*T4(S%) acts on g by

(4.7) ds(g9) = wg (= vauhbpCg € B3 (V. A S¥) for e € {1,2}).
By [8, Prop.s 8.4, 9.9, 9.10], we deduce that
(4.8)  ds(v3'Tgh) = —twd'TST2hb2 gl 4 s T u(vah)bplgt € Byt (Vi A S,

forl € Z/3 and s € {0,1,5}, and
ds (03" xg") = ds (v3" "9 )z € BT (Vi A 5™
for x S {b7 h’7 Uha Uba Uh% b‘pv Ubgp’ hb(pa C} = {b7EO7 h17517ga $07E17 Blgﬂ CQ} In par-

ticular,
ds (v e hg') = 0 € By * (Vi A S™)
by (4.8) together with (2.11). We also have
(4.9) ([8, Prop. 10.5]). For s € {0,1,5}, we have an integer o(s) € {1,2} such that
do(v3T2R) = a(s)vsub® € Eg" (Vi) (ub® = bybY).

The integer o(s) is not determined in [8]. We determine it to be two in Lemma
4.15.

(4.10) ([8, Th. 10.6]) The Eig-term for Vi is isomorphic to the tensor product of
A(¢), K and

P@ /(") {ub, b} @ P /(b°){1, ubp}
&) (P(Q)/(bZ){vgh, vahbp} ® PP /(b%){vauh, vgump}) ®7Z/3{1,v3}.
See (2.20) for K.
In particular, we have:

(4.11) Every element of K C ES™*(V1) and vi K C ES*(Va) is a permanent cycle in
the spectral sequences.

(4.12) The elements vih € Ey* (V1) for s € {0,1,2,4,5,6} and vivih € Ey* (V1)
for s € {2,5} are permanent cycles in the spectral sequences. (see (3.4).)

The following is well known (cf. [7]):

(4.13) For e € {1,2}, the elements h and vah in Ey*(V.) and b and ub in E3™*(V,)
are permanent cycles detecting i.3] and i35 in m.(Ve) and i.ify and icifg3 in
7« (Ve), respectively. Here, i and i. are the maps in (1.1) and (1.2), the element
By is the one in (4.1), By € mas(S0) is the generator, and B, € migs_5(M) for
s € {1,2} denotes an element such that jB, = Bs for the map j in (1.1).

Among the Adams-Novikov differentials for Vi) for e € {1,2} and | € Z/3, the
following relation is also well known (cf. [9]):

(4.14) Consider the exact sequence of the Ea-terms
B3 (ViAS®) & B3 (IASE) 25 B3 (VanS™) 2= B3 (ViAS™) 5 B3 (AS™),

andlet E L P 2 G Ebea part of the exact sequence. Then, we have a relation
described below:
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a C———Q
e o v
e |
E 7 F 7 G 5 E

Lemma 4.15. Let s € {0,1,5} and t € Z/3. Then, the integers o(s) for s €
{0,1,5} in (4.9) are all two. Furthermore, in E5(Va),

ds (v3") = —t5" " (vah)b?,
( 3t+sh) (1 _ S)U1v3t+576 b3,
—tvyvy' Thh? s =1
ds(v1v3'%) = hae s and

ds(v1 v§t+2 h) =

Proof. We read off ESAS(Vl) = 7/3{vy 3ub?*¢} by (2.9), and may put ds(v3) =
—vahb? + kvyvy 2ub*¢ € E5°%(Va) for k € Z/3 by (4.8). Since the differential ds is

a derivation, we have
ds(v3t) = —tv3 3 (vah)b? + thvyvs T3ub?¢,  and
ds (v 3t+5h) —tv3" 3 (vgh) (V3 h)b? + thv vy T3 Suhb ¢ + vitds (vsh).
It follows that ds(vy'™') = 0 by Lemma 3.10, (3.4) and (4.13). Thus, we have

ds(v3™*h) for s = 1 in the lemma.
Suppose that s € {0,5}. Put

a=(s—1)o(s — 4y uhb®, c=o(s—4)y b, x=(s—1)o(s—4)v5 ub®,

__ ,,3+s
y - UQ h7

and we have dg(z) = c by (4.9), é(¢) = a by (3.4) and d5(z) = a by (4.8). Therefore,
we have d5(y) = w by (4.14), that is,

(4.16)

ZZE*(y), w =z,

(4.17) ds(v3T°h) = (s — 1)o(s — 4)vyvy Sub®.

Similarly, put
a = vic, c=(1—-s)o(s)viub®, x = v hb?,
y = —vSts, z=(1—s)vst*h, w =i, (x),

and we have d5(y) = w by (4.8), d(y) = z by (3.3) and dg(z) = ¢ by (4.9). Thus,
we have ds(x) = a. By Lemma 4.5,

(4.18) ds(vSTeh) = (1 — s)o(s)viviub®.
Since (vah)(vsh) = (s — 1)vyvs 3ub by Lemma 3.10, the second relation of (4.16)
is:

( tovy'~Oub® =0

ds(v3ten) = {712 3t—1 3648 172 :
—tv1vy' T ubd + thvivy TPuhb?¢ + vitds(v3h) s =5
by (3.4) and (4.13). Compare it with (4.17) and (4.18), we obtain
o(5) = —-1=0(0); v3ds(v3h) = (1+ o(1))v1v3ub® — kviv3uhb*¢ and
v§ds(v3h) = kvyviuhbC.
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The last two relations show (1) = —1 and k = 0, and then ds(v3) = 0. Thus the
top two relations of the lemma follow from (4.16).

The third relation of the lemma follows from the first one together with (3.4)
and (4.11). Multiplying the permanent cycle vy in (4.11) to the second relation of
the lemma implies the last one. ([

Lemmg 4.19. The elements uh, uhp = E, vzuhgp = vgg, bp = Jo, Ugb@ = Ug@m
ubp = 1y, v8ubp = v$1, and ( = (o of By (Va) are permanent cycles.

Proof. Let V3 denote the coﬁber of a®: ¥12M — M, and consider the cofiber se

quence Y4V, & @, Vs —> 1% —> Y5V, obtained similarly to (2.1). Let d2: Ey* (V7)) —
E; T1*78(1,) denote the associated connecting homomorphism. In the cobar com-
plex Q*E(2), (Vg) we compute d(v3t] + v1v5t8) = —v3td ® 13 + VISt @ 13 +
V303t @t + v1vgtd @ 1 = v303b 1. Tt follows that da(v3h() = ub(, and so ubl
is a permanent cycle by the Geometric Boundary Theorem, since v3h¢ € E5™ (V1)
is a permanent cycle by (4.10). Therefore, ¢ is a permanent cycle by (4.13) and
Corollary 4.6. Since (uh)b = h(ub) by Corollary 3.15 ((2.10)) and h is a permanent
cycle by (4.13), the element uh is a permanent cycle.

We also compute do (v’ ~*€) = v3tap, by [9 Lemma 4.4], which is 62 (v3' *uhy) =
v3tby in our notation. Since v3uhy and vuhp are permanent cycles of Er*(V1)
by (4.10), their dr-images v$byp and by are permanent cycles of EX*(Vz) by the
Geometric Boundary Theorem. By (4.13) and Corollary 3.15 ((2.10)), we have
uh(vibp) = b(viuhy) and ub(viby) = b(viubp) in Ey*(V,) for s € {0,6}. Noticing
that uh and ub are permanent cycles, these show that uhep, vSuhp, ubp and v§ubyp
are all permanent cycles by Corollary 4.6. (|

Here, consider an element
(4.20) g' =b?g' + lw3ubpCy' € Ey* (V. AS™) forleZ/3 and e € {1,2}.
We notice that the element viubp(g is not divisible by b in the Fp-term.
Lemma 4.21. Let s € {0,1,5}. In Eg" (Vi A S¥), we have

0 t=20
do(v3** (vah)g) = { —vsblpCg t=1.
—vsubdy  t=2

In particular, g(= g) is a permanent cycle.
Proof. We notice that

ds(zg) = ds(z)g + (—1)"lz(veh)ubplg € By ™ (V,)

for e € {1,2} by (4.7). Suppose that s € {0,5} and put
a = vic, — ( ) 3t+s5—6 b59 o tvgt+s—3b4@<~g’ y = (S o 1)U§t+s+297
w=1.(2), x=(1-3)((t—1v3 T hb?g —v3 T*Puhbplg), =z =v3""hg.

Then, ds(z) = a € Ey"*(Va A §¥) by Lemmas 4.15, 4.19 and 3.10, ds(y) = w €
Ey*(Vi A S¥) by (4.8), and 6(y) = z by (3.3). By (4.14), we have dy(z) = ¢. For
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the case for s = 1, we set
a = 94(c), c=(t— Dtv3"Pub® — tv3' b (g, y = v3'"2hg
w =, = (1 -ty ubdg — v3' % (g, 2 =14(y).

Then, ds(z) = a € Ey"*(Vi A S¥) by (4.8) and Lemmas 4.19, and ds(y) = w €
E>*(Va A S¥) by Lemmas 4.15 and 3.10. By (4.14), we also have dy(z) = ¢ in this
case. u

Corollary 4.22. In the spectral sequence EX*(Vi A S¥), vibpg and viubpg are

permanent cycles for s € {0,1,5}.
Proof. Since we have a pairing Vi AV, — Vi, we have do (vg T5uhbpg) = —viu' ~b8pg
in By (V1)g for e € {0,1} by Lemmas 4.19 and 4.21. This shows that v5u!==b5pg

is a permanent cycle, and hence the corollary follows from Corollary 4.6. O

By Lemma 4.15, among the elements of (v; K0 @ KM) ® F* and (v;v3 KM @
K©) @ F" in the FEy-term E;™*(V3), the following elements survive to Eo-term
vivst T for s € {0,5}, viva,
vlv§t+2h, h, vg’tﬂh and v3h
fort € Z/3.

Lemma 4.23. In E;™(V2), we have
do(v1v3) = hb*,  do(v1v§) = —v3hb?,
do(v1v5h) = —viveub® and do(vih) = —ub’.
The following generators are permanent cycles:
vlv% for j €{0,1,2,5,6}, vlv%h for j €{2,5}, and
vih  for j € {0,1,4,5}.

Proof. We begin with verifying the permanent cycles. The elements vlv% for j €
{0,1,5} and vv}h for j € {2,5} are permanent cycles by (4.11) and (4.12). The
second relation in Lemma 4.15 with (¢,s) = (1,0) and = (1,5) shows that v, v, Sub®
and v1v3ub® are permanent cycles. Corollary 4.6 implies that vlvg for j € {2,6} are
permanent. Similarly, the first relation in Lemma 4.15 with ¢ = 1 and = 2 implies
that vohb? and vihb? are permanent, and so v3h for j € {1,4} is a permanent cycle
by Corollary 4.6. By the same argument, the top two relations of this lemma imply
that v}h for j € {0,5} is permanent.

Turn to the top two relations. For s € {0,5}, put

a = i.(c) c=(s—Dt(t+ D)odT53npt  w = —todt 52 pb?

= —(s— Dt T1p? g =3t 2 = vt

Then, these satisfy the relations in (4.14) other than dg(z) = ¢ by (4.8) and (3.3).
Hence, dg(2) = ¢
(4.24) do(v1v3"%) = (s — 1)t(t + Vs T2 hb* € B3 (Va).
This with ¢ = 1 shows the first two equalities.
Multiply by h to the second equality, and Lemma 3.10 implies

do(v105h) = —(vSh)hb? = —vivoub®,
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which is the third one. Since 7,(vh) = vih € Ey™ (Vi) and do(vih) = —ub’® €
E3%* (V1) by (4.9) and Lemma 4.15, we sce that dg( Th) = —ub® + kvyvy Theb® =
—ub® — ds(kviv3b2p) for k € Z/3 by (4.8). Thus, the fourth do-differential follows.
O

Now, the next lemma follows from Lemma 4.15 (see also Lemma 3.10).

Lemma 4.25. Let s € {0, 1,5} and t,l € Z/3. Then, in Ey" (Vo A SW¥),

) = e
5 (03 *hg!) = < v Cubyl 11— oy ed!
ds (01035 gt) St thb?g' + oy PubbeCg! s =1 d
(010} _ an
1 g s € {07 5}
d v1v2t+2hg ) = 0.

By Lemma 4.25, among the elements of ((le(O) K)o F* @ (vvsKY @

K©) ® Fh>g in the Fa-term E3*(Va A S*), the following elements survive to
FEy-term

vivsteg for s € {0,5}, vivs2hg and vilhg
fort € Z/3.

The relation with (¢, s) = (2, 0) in Lemma 4.21 is do(v3hg) = —ub®g € E3*"*(ViA
5¥). We see that vi Ey"" (V) = 0103 Ey P (V1) = Z/3{viv3hb e} C E;" '3 (V)
by (2.9). The generator is zero in the Eqo-term by ds(viuhbypg) = v1v3b*pg, which
follows from the last relation in Lemma 4.25 multiplied by the permanent cycle ubp
(Lemma 4.19). Thus, the relation in Ey (V1) is pulled back to the one in E3"*(V3):

(4.26) do(vshg) = —ub®g € By (Vo A 8%).
It follows from Corollary 4.6 that
(4.27) g = b%g +viubplg € Ey* (Vo A S¥) is a permanent cycle

for the element g = g' in (4.20).
Lemma 4.28. In Ey" (Vo A S¥), we have

(s — Dvsuhb3plg t=0

do(v1v37%g) = { (1 — s)vshb®g t=1 forse{0,5}, and
0 t=2
0 t=20

do(v3™ 1 hg) = { —brpCg t=1.
—ublg  t=2

Proof. For a permanent cycle z of £y (V) with d5(zg) = 0, we have dg(zg) =0 €
Eg* (Vo A S¥), and so

(4.29) do(xb*g) = —dg(zv3ubpCg) = —do(zv3g)ubpC € Eg* (Va A S¥).
Put $§ ) = = v1057* and m(l) = 03" h. By Lemma 4.25, d5(x§€)g) =0 for e € {0, 1},

and so a:( )g € By (Vo A S¥). Furthermore, Lemma 4.23 shows that a:ia) for ¢ €
{0,1} is a permanent cycle unless ¢t = 1. Therefore, by (4.29), we compute

do(x$b2g) = —do(a\7 g)ubp¢, and
do(x5b4g) = —do (25 b2 g)ubpC = do(23) g) (ubp()? =
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Thus, the relations for ¢ = 0 follow from those for ¢ = 1, and the relations for ¢t = 2

follow from Corollary 4.6.
(e)

Now we cosider the differential dy on z;’g. Lemma 4.25 together with Lemma
4.19 also shows that
(4.30) vouhbplg, vivSh2pCg and  vv3b%pCg
are zero in By (Vo A S¥). Therefore,
0 0 s
do(@\"0%) = do(ai” (%9 + vdubpCo)) = do(vru*ba) =

1 1 .
do(@i0g) = do(wl (B9 + vhubipCg)) = do(vihg) = —ub’g

(1 — s)vshb®g, and

for s € K'. By Corollary 4.6, we obtain the relations for dg(z{"). O

5. THE COHOMOLOGY OF A DIFFERENTIAL ALGEBRA C}
Consider algebras K® | K{® P® and P{F in (2.6) and (2.17) and
(5.1) AP = PP @ A(vyh)

for k € {0,1,2}. Recall that these algebras are considered to be the tensor products
with Z/3 over K (see (2.7)). In this section, we consider the module

(5.2) g = (41" © A(e,0)) o

for I € Z/3, which contains E; " (Vi)g! = Ey" (Vi A S™). We use the relation
(5.3) glg™ = gt™ for I,m € Z/3.

In order to consider a differential algebra, we consider the subalgebra

(5.4) ) =AW @ A(p,¢) € Cr.

We begin with introducing a differential algebra structure on Cfl)[g] /(g®) so that
the inclusion E3™*(V)[g]/(g®) — Cilg]/(g?) is the one of differential C\"-modules
with differential Os:

Os(x) = 0 forz € {1,u,b,vah,p,(},

(5.5) Ds(v3t) = —tv3t 3 (veh)b?  for t € Z/3, and
95(9) = wyg

on the generators, where

(5.6) w = uvahbpl = vahbs € A1) (¢ = ugpC).

We make C; = C{l) ® K a differential module by setting

(5.7) O5(v3) =0 and 0Oy(v3) =0 forvs € K,

and we obtain
H*(Chg',85) = H*(CVg!,05) @ K.

In addition to (2.21), we consider PP algebras

P,(b9k) = b1 P, (k), Pu,(b°k,b%1) = b1 P, (k) ® v3b*2P,(I) and
P, (b1 K, b°21, b3 m) = b P, (k) ® v3b°2 P, (1) ® v§b° P, (m)

for k,l,m,e; € {—=}U{n € Z | n >0}, and we set b~ = 0. We notice that
P(l) = Pu(fa > 7)'

u

(5.8)
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Since 95 acts as P,(—, —, —) — vah P, (b*—,b*—) C vohP,(—, —, —), we immediately
obtain the following lemma from the second equality of (5.5):
Lemma 5.9. The cohomology H*(A(ll),ﬁs) is isomorphic to

AWM = PO g u,hP,(2,2,-)

as an algebra.

Put
(5.10) B§1) = Agl) ® A(s)  for ¢ = up(.
Consider an element
(5.11) <bgl> = bg' + vy,

and we see that this is a ds-cocycle. Note that the element g in (4.20) equals b (bg),
but that

05(v3g) = —vahb®g + v3 (vah)bsg # —vahb (bg)
by (5.5).

Lemma 5.12. The cohomology H*(B%l)gil, 0s) is isomorphic to
B{g™! = (bg™!) P & (02hPu(2,2, ) 0 < (PP @ vahPu(1,2,-)) ) g,
Then, Lemmas 5.9 and 5.12 imply the following;:
Corollary 5.13. The cohomology H*(Cl(l)gl, 0s) forl € Z/3 is isomorphic to
AP © Ap,C) 1=0
{(Bﬁ” oAp.(}) g 1=41

and H*(C1g',05) is isomorphic to Cig' = (Cgl)gl QK.

(Cgl)gl _

Now, we introduce Cyg' for [ € Z/3 a differential module structure with differ-
ential Jy given by

0 t=0
(5.14) o (v hghy = & —luvsbicgt  t=1
—uvib* <bgl> t=2
for t € Z/3 and s € {0,1,5}. In particular, we assume that
(5.15) 9o((bg")) = 0 = o(sg') forleZ/3.
By definition, we immediately obtain the following:

Lemma 5.16.
H* AV, ) = AP and
o @ 0) = AV @Ay
forl e {1,2}. Here,
AV =P, @ vghPul(Q, 2),
AD = 0P, (4) ® vahPy(2,b1) and AL = Py(4) @ vahPy(1,2).

Since H*(C1g',09) = H*(Cgl)gl,ag) ® K, we obtain
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Corollary 5.17. The cohomology H*(C1g',09) for | € 7./3 is isomorphic to

AN @ K@ A, ) 1=0
e 1 _ 1 '
(A e AO®) 8 A © 230, ¢} @ Ko 1=1.

Corollary 5.18. On H**(C1g',05), there is no more non-trivial differential Oy
other than those in (5.14). Furthermore, no more differential 0, for r > 10 can be
defined on the cohomologies on them.

Proof. Since the submodule with the homology dimension of G(ll) g' greater than
ten is trivial, 9, is trivial for each r > 10. For r = 9, 0y originates H**(C1g, 05)
for s € {0,1}, on which the differential dy is defined. O
6. THE COHOMOLOGY OF THE DIFFERENTIAL ALGEBRA C
We consider an algebra E = Z/3[v1, va,v5 ']/(v?) and E-algebras
(6.1) Qu = PP @PL, and Q' = vhP & hPY,

in which h is an element with bidegree ||h|| = (1,12), and the E-action and the
multiplication on Q" satisfies

vivsh =0 unless s =2 (3),
(6.2) _ 27 p(1) h
xy=0 forx € vivshP;’ and y € Q. and
(6.3) (v3h)(vhh) = (t — s)vyvs T Hub.

We notice that Q" has a Q,-module structure by (6.2). In this section, we consider
the algebras

(6.4) A=QuoQ;, C=A8Mp() and Cy=Clg/(s® 1)

for generators ¢, ¢ (cf. above (2.12)) and g with g3 = 1 . We introduce differen-

tials 05: Cy — Cy and 0y: H*(Cy,05) — H*(Cy, 05) so that H*(H*(Cy,ds5), dg) is

closely related to Ejy"(V2). We moreover assume that 9, is a derivation. For the

generators u, ¢, ¢, v1v5, v3h, b and g, we set

Or(u) =0, 9-(¢)=0, 9.(()=0, Or-(v1v5) =0, 0.(b)=0,
Or(v5h) =0 and 05(g9) = wg = v2hbgg.

for r € {5,9}, s € {0,1,5}, and w and < of (5.6). We define the differential 5 by
(6.6) Os(v3t) = —tudT2hb?  for vit € KW,

We notice that the relations in Lemma 4.25 hold after replacing ds with d5 by (6.2)
and (6.3). We define differential Jy on the algebra C, = H*(Cy,05) by

(6.5)

(s — Dlvshb®sg!  t=0
Do(v1v35ghy = (1 — s)vshb? (bg'y t=1 forse{0,5},
0 t=2
6.7
(6.7) 0 t=20
Do(v3 gy = { —lubtcgt  t=1,

—ubt <bgl> t=2
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for I € Z/3 and (bg') in (5.11). We also assume that the relations in (5.15) hold in
Cy. We further notice that

Qu = va’P(l) QK @ P, ) ® A(viv) and
Q! = nPV @ K @ vsh PN @ A(vivs).
By (6.5), (6.6) and (6.7), we easily obtain the following:
Lemma 6.8. The cohomology H*(A, 0s) is isomorphic to
A = (vlePu(S, 3, ) K @ quz) ® A(’Ul’l}g))
@ (hPf) ® K' ©vhPy(2,2,-) ® A(vlvg)) .
The cohomology H* (A, 9) is isomorphic to

A = (vlngu(?), K & P,(5)® A(vlvg))
@ (hP,(4) ® K" © vohP,(2,2) @ A(vivs)) .

Consider a differential subalgebra of C
B=A48A),

Then, in the same manner as the proof of Lemma 6.8, we verify the following lemma
easily by (6.2), (6.3), (6.5), (6.6) and (6.7) (cf. Lemma 4.25):

Lemma 6.9. The cohomology H*(Bg*!,ds) is isomorphic to
]Bgil _ (A@CK)gil

where
A = (vlva (3,3, ) K' @ vP? A(vlvg))
@ (WP @ K/ © v2hPu(2,2,-) © A(vyua))  and
A = (vlngu(Q, 3,-)K' @ quz) ® A(’ulvg))

® (hPP & K/ ©vahPy(1,2,-) @ A(vrvz) )
The cohomology H*(Bg*™!,09) is isomorphic to
By = (Ao A) g™

where
- (v1v2P (3,02) @ K' @ bP,(4) @ A(vivs))

® (hbP,(3) @ K' @ vahP,(2,b1) ® A(viv2))  and
= (U11}2 (2,3)®K/@Pu(4)®A(U1U2))

@ (hPy(3) @ K' @ v2hPy(1,2) ® A(viv2)) .
Remark 6.10. In Ag*!, the elements vibFg*! bFg*l, hbFg*! and vihbg™' are
the classes of v1bFgt! + viv3bF~1lcg*! = vpF~1 <bgi1> bEgTt £ vdbh—logt! =
b1 <bgj[1>7 hbk gt udhbF—Legtl = hbk—1 <bgi1> and v3hb—vlhsg™t = vih <bgi1>,
respectively.

Corollary 6.11. The cohomology H*(H*(Cg',05),09) for | € 7/3 is isomorphic
to

e [APA0O =0
(BoA{p, (Y g 1=+1"
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Corollary 6.12. The other differentials 0,: Cy — (C;J”" forr > 9 are all trivial.

Proof. By Corollary 6.11, the submodules of Cg! for I € Z/3 with the homology
dimension greater than nine are:

CLx = 4 bl K @ bicK®  and
657*91 = 0 fors=10and ! ==+1or s > 11.

Therefore, 9, = 0 for » > 10. The differential dgy is defined on each element of
Ce*gl for e € {0,1} and [ € Z/3, and no more differential can be defined.

7. THE E,-TERMS FROM THE COHOMOLOGIES OF C; AND C

In this section, we show a lemma by which the E.-terms E**(V.)g' for | € Z/3
are deduced from @C.g' for e € {1,2}. Hereafter, Co = C, Co = C and Cy = C. Let
R, and S, denote modules fitting in the diagram

Segl

[t

(7.1) bCeg' = E3*(Vo)g' = Reg'

o b

C.g'

in which the row and the column are exact. Then, j and pi are monomorphisms.
Indeed, if pi(x) = 0, then we have an element bc € bC.g' such that bc = i(z).
be = j(bc) = ji(z) = 0 and so i(z) = 0. Since i is a monomorphism, = = 0 as
desired. Here, S1g' = 0, Sag' = So @ A(()g' and R.g' = R, @ A({)g' for

Sy, = uvlvghK(l) ® A((p) ®KI,
1 = KOU1, h,uh, uhp}
= (P(1,1,1) @ v2hP,(1,1,1) @ uvaheP(1,1,1)) ® K and
Ry = KOv;,h} e KM @ A(vv3h)
ouh (KO @ vv3KD) @ Alp) @ S,
= (n§P(1,1,1)® K' & P(1,1,1) @ A(viv2))
® (hP,(1,1,1) @ K’ ® v2hPy(1,1,1) @ A(vyv2))
oup (hP(1,1,1) @ K’ ® vahP(1,1,1) @ A(vyv2)) & Sa.

Indeed, we deduce S, and Ry from (3.16), (6.4) and isomorphisms

bQ, ® KM o KO = (KW gy KO)e Fb,
WQup = (KO @ K)o F,
bQ" @ h( O g vw%K&l)) = (KO guviKY)e F" and
bQ! @ uhp(K© @ viv3KM) (KO @uv3KW) @ Fhv,
obtained by (2.16) and (6.1).
We see that
(7.4) P(Dsa B3 (Ve)g') = 0.

Lemma 7.5. Every element of Sag' C Ey*(Va)g! is a permanent cycle.

(7.3)
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Proof. Since viviuhbg' =0 € E;"(Va)g' (by (3.3)) unless s = 2 mod 3, we see that

bS5g' = 0, and so the lemma, follows from Corollary 4.6. O
Put
(7.6) b.C. = H*(bC.g',05) and b,CL = H*(b.C,dy).

We notice that the generator b induces isomorphisms C.g' — b,C.g' and C.g' —
b.Ccg'. Since p in (7.1) is an epimorphism, for each z € R., we have an element
T € Ey"(V.) such that p(Z) = .

Lemma 7.7. There is an isomorphism
BT (V.) 2 b6 /DL e 2L forleZ/3
of modules. Here,

D. = {[[zg"] € b.CL | xg' = d5(wg') or [xg'] = do([wg']) for w € R} and
Z! = {xg' € R.g' | d5(Tg") = 0 and dy([Zg']) = 0}.

Proof. Note that the differentials ds and dy act on R.g' trivially by (7.2) (and
(7.4)). Indeed, it has no element of cohomology dimension greater than two. The
short exact sequence in (7.1) induces the long exact sequence

Reg' 2 b,CL 2% E* (Vo)g' 2 Ry

of ds-cohomologies. Hereafter, inc, denotes an homomorphism induced from the
inclusion. This gives rise to the short exact sequence

0 = b,CL/(Im 65) 225 EX*(V)g' 2 Ker 65 — 0.
Here, d5(z) = d5(7) € E5*(V.), and so Im &5 = {[z] | = ds(w), w € R.}. For
dg-cohomologies, we obtain a long exact sequence
Ker 65 2% H*(bCL/(Im 65),0p) 25 B (V)g' £ Ker 05 22 -+,
which splits into a short exact sequence
0 — H*(bCL/(Im 05),do)/(Im Jg) 255 EI3*(Va)g' 25 Ker g — 0.

Now we deduce the lemma by verifying that H*(bC. /(Im 65),dg)/(Im &) = b,C. /D!
and Ker &y = Z_. O

Since V. is an M-module spectrum, the homotopy groups m.(L2V,) are Z/3-
modules, and hence 7;_4(LaV,) = @ Ejy (V.). So it suffices to determine the
structures of E1g-terms.

Proof of Theorem 2.22. The structure of Ejy (V1) follows from (4.10).
For E};*(V1), we obtain

ZF' = [0ahPy(1) & uvahP(1,1)
®C (P(1) ® v2hPy(1,1)) ® v2hsP(1,1,1)] ® Kg*'  and
DF' = [v2hbsP(1) @ v2hb?P(1,1) & b2 P, (1) @ bic P, (1) & bPpP(1)
B¢ (v2hb?P(1,1) & b°P, (1)) | ® Kg*!

from R in (7.2) by (4.8) and Lemma 4.21 (cf. (5.5) and (5.14)). We notice that
the last summand of 21jEl is given by the permanent cycles of (5.14) by setting
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v/jﬁggil = (vIhs £ vihb)gt!. Therefore, by Corollary 5.17, the module b, Gljﬂ/Dlil
is isomorphic to the tensor product of K¢*' and

b2 P, (3) @ vghbP(1) ® uvshbP(2,b1) @ < (bP,(3) ® vAhbP(2) & uvshbP(1,2))
G (bP(4) & ubP(5) & v3hbPy(2,2)) & ¢ (bPu(4) ® vahbP(1,1) & uvahbP(2,2))

and the structure of the F1g-terms follow from Lemma 7.7. We add the summand
v3hbP(1) ® Kg*' to the Ejp-term instead of the last summand v3hsP(1) @ Kg*! of

Zlﬂ, since both of the generators of the modules represent the generator v3h <bgi1>.
O

Proof of Theorem 2.24. By (4.13), Lemmas 4.15, 4.19, 4.23 and 7.5, we read off
from (7.2):

79 = (Zs @ upZy ®92) @ M) and  D§ = (D2 @ ¢Dj) @ A(Q),
for
72 = Ul’l)gp(]., ].) ®K/ &) P(].) X A(’011)2) D hPu(].) ®K/ &) ’UQhPu(]., 1) X A(’Uﬂ)Q),
Z3 = hP(1) ® K' ® vahP(1,1) ® A(viv2),
Dy = hb4P(1) (24 K’ (&) UthQP(l, 1) X A(Uﬂ]g)
®vv$*P,(1,1) @ K' @ b°P, (1) ® A(vive) and
D3 = v0§bPP(1,1) @ K’ @ bV P(1) ® A(vivy).

By Lemmas 4.25, 4.28 and 7.5,

ZF = 010§ P(1) @ K' @ vah P, (1) @ A(v1ve) ® (Zo @ upZsy
@®s (hP(1,1) @ K' ® vohP(1,1,1) ® A(v1v2)) © S2  and

= (hb*cP(1) ® hb*P(1)) ® K' & (v2hb?P(1,1) ® vehbsP(1)) @ A(vivs)

@ (010563 P, (1,1) & 0105602 P, (1)) ® K' & (b5 P, (1) & b6 P, (1)) @ A(viv2)
@Dy ® Dy & us (nb*P(1) @ K').

+1
D2

Here, every element of ¢Z°¢*! for
7" = uhP(1) @ K' ® v3hP(1) © A(vivs)
is a permanent cycle. Indeed, v;+shggi1 for s € {0,1,5} denotes a permanent cycle
(vsT*he F v T*hb)g*!. Furthermore, for
7' = 00SP(1) @ K’ & vhPy(1) @ A(vyv2),
we have
ZF =7 © (ZydupZy & (7? @7) ® Ss.

Put
ﬁ;l’w = (v10§0? P, (1) ® uv 3P (1)) ® K' & b* P, (1) @ A(vyv2)
@hb3P(1) ® K' @ vahbP(1) @ A(vivs),
and we see that
DE' =Dy o <D, " @ (D@ Dy

Then, we notice that

b.€9/DY = (b.A/Ds @ o (b*A/Ei)) ®A(C), and
b,C*1/DEL = (b, A/Dy &< (b*ﬁ/ﬁ;“’“")) @ (g (b.A/D2) @ (b*A/ﬁf))
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by Corollary 6.11. Furthermore, we read off the summands:

b*ﬂ/ﬁg = (’()11)2bP (2 2) ®K/@bp ( )®A(’U1U2))
@ (hb (P(3) ® uP(4)) ® K' @ vahb (P(1,1) & uP(2,2)) ® A(viv2)) ,
b, A/Dy = (vlvzb(P(2,2) S uP(3,3)) @ K' ®b(P(4) @ uP(5) ® A(vivs))
@ (hbP,(4) ® K' @ vahbPy(2,2) @ A(viva))
b*ﬂ/ﬁg = (U1U2bP (2 bl) X K/ @ b2P, ( )®A(U11)2))
@ (b2 (P(2) ® uP(3)) ® K' @ vohb (P(1) @ uP(2,b1)) @ A(v1v3)) and

b A/Dy ¢ = vi8b (P(1,3) @ uP(1,2)) ® K & bPy(3) ® A(vivs)

@ (hb (P(2) ® uP(3)) © K' & vahb (v3P(2) & uP(1,2)) ® A(vyvs)) -

Put that M = b, A/Dy ® Zo, M¥ = b, A/Dy & uZy, M = b,A/Dy & Z’ and

M

=0 A/Dil Y @ (7; @7), and we obtain the Ejg-terms from Lemma 7.7,

and the homotopy groups of the M-module spectrum V5 are isomorphic to the
corresponding E1g-terms. O

10.
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