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Abstract. In recent years, Liu and his collaborators found many non-trivial

products of generators in the homotopy groups of the sphere spectrum. In this
paper, we show a result which not only implies most of their results, but also

extends a result of theirs.

1. Introduction

The homotopy groups π∗(S
0) of the sphere spectrum S0 form an algebra with

multiplication given by composition. The determination of the structure of π∗(S
0)

is one of the most important problems in stable homotopy theory. We study the
problem by considering the p-component pπ∗(S

0) of the groups at a prime number
p. The classical Adams spectral sequence (ASS) and the Adams-Novikov spectral
sequence (ANSS) are typical and effective tools for calculating pπ∗(S

0). We usually
use the ANSS to study pπ∗(S

0) at an odd prime p, and the ASS at the prime two.
In recent years, Liu and his collaborators advocated that the ASS is sufficiently
effective at p > 2 as well as at p = 2. Indeed, they derived out many results on the
non-triviality of products of generators in pπ∗(S

0) from the ASS at p > 2 by use of
the May spectral sequence (MSS). Their method is simple as follows: for a product

ξ ∈ pπt−s(S
0) of generators, let ξ be an element of the E2-term AEs,t2 of the ASS,

which detects ξ. We also consider an element x in the E1-term MEs,t,∗1 of the MSS,

which converges to ξ. Then, they proceed their argument in the following steps:

1) The element x is not a coboundary of the first May differential dM1 : MEs−1,t,∗1 →
MEs,t,∗1 .

2) For any r ≥ 2, the domain of the May differential dMr : MEs−1,t,∗r → MEs,t,∗r

is zero, and
3) For any r ≥ 2, the domain of the Adams differential dAr : AEs−r,t−r+1

r →
AEs,tr is zero by use of the MSS.

The main theorem of this paper Theorem 1.3 is shown in a similar procedure (Propo-
sition 4.4 and Corollary 4.5 for 1) and 2), and the proof of Theorem 1.3 for 3)) for
the homotopy groups π∗(V (2)) of the second Smith-Toda spectrum V (2) (cf. (1.1)).
The result is new one, and implies most of results shown by Liu and his collaborators
as a corollary.

From here on, we assume that the prime number p is greater than five. Let
H∗(X) denote the mod p reduced homology groups of a spectrum X represented
by the mod p Eilenberg-MacLane spectrum H. The E2-term AE∗,∗2 (X) of the ASS
converging to the homotopy groups pπ∗(X) of a spectrum X is the Ext group
Ext∗,∗A∗(Z/p,H∗(X)) of the category of A∗-comodules. Here A∗ = H∗(H) denotes

1
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the dual of the Steenrod algebra, which is isomorphic as an algebra to the free
algebra P (ξi : i ≥ 1) ⊗ E(τi : i ≥ 0) over generators ξi’s and τi’s. Let V (k) for
k ≥ −1 denotes the k-th Smith-Toda spectrum defined by H∗(V (k)) = E(τi : 0 ≤
i ≤ k). Then, for k ≤ 3, V (k) is known to exist if and only if p ≥ 2k + 1 (Smith
[32], Toda [33], Ravenel [31]). In particular, if p ≥ 7, then V (k) for k ≤ 3 are given
by the cofiber sequences

(1.1)

S0 p−→ S0 i−→ V (0)
j−→ ΣS0, ΣqV (0)

α−→ V (0)
i1−→ V (1)

j1−→ Σq+1V (0),

Σ(p+1)qV (1)
β−→ V (1)

i2−→ V (2)
j2−→ Σ(p+1)q+1V (1) and

Σ(p2+p+1)qV (2)
γ−→ V (2)

i3−→ V (3)
j3−→ Σ(p2+p+1)q+1V (2),

in which α is the Adams v1-periodic map, and β and γ are the v2- and the v3-
periodic maps given by Smith and Toda, respectively. Hereafter, q denotes the
integer 2p − 2, and π∗(S

0) denotes pπ∗(S
0). In this paper, we consider the Greek

letter elements of π∗(S
0) and π∗(V (0)) defined by

(1.2)
αs = jαsi, βs = jj1β

si1i and γs = jj1j2γ
si2i1i ∈ π∗(S0); and

β′1 = j1βi1i ∈ π∗(V (0)).

We moreover consider some other generators:

ζn ∈ π(pn+1)q−3(S0), jξn ∈ π(pn+p)q−3(S0) and $n ∈ π(pn+2p+1)q−3(S0)

given by Cohen [1], Lin [4] and Liu [19]. Lin and Zheng [7] and Liu [15] constructed
generators λn,s ∈ π(pn+sp2+sp+s)q−7(S0) for n ≥ 2 and 3 ≤ s < p−2. We now state
our main theorem, which extends the results [20, Theorems 1.2 and 1.3] of Liu’s.
In this paper, n denotes a fixed integer > 4.

Theorem 1.3. Let n be an integer greater than four. The following products of
elements of π∗(S

0) and π∗(V (0)) are all non-trivial:

α1$nγsβ1, jξnα1β2γs ∈ π(pn+sp2+(s+2)p+s)q−9(S0) for 3 ≤ s < p,
ζnβ1β2γs ∈ π(pn+sp2+(s+2)p+s)q−10(S0) for 3 ≤ s < p− 2, and
β′1λn,sβ1 ∈ π(pn+sp2+(s+2)p+s)q−10(V (0)) for 3 ≤ s < p− 2.

The proof is given at the end of the paper.

Corollary 1.4. Every factor of the elements α1$nγsβ1, jξnα1β2γs, ζnβ1β2γs of

pπ∗(S
0) and β′1λn,sβ1 of π∗(V (0)) in the theorem is also non-trivial in the homotopy

groups.

We note that the corollary contains almost of all results of Liu and his collabo-
rators on the non-triviality of products of elements of π∗(S

0): [2], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28],
[29], [30], [34], [35], [36] and [37].

The authors would like to thank the referee for many useful comments.

2. The Adams spectral sequence for π∗(V (2))

Hereafter, P (xi) and E(xi) denote a polynomial and an exterior algebras on
generators xi over Z/p, respectively. Let A∗ denote the dual of the Steenrod algebra
isomorphic to P (ξ1, ξ2, . . . ) ⊗ E(τ0, τ1, . . . ) as a graded algebra, where deg ξm =
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2(pm − 1) and deg τm = 2pm − 1. It is also a Hopf algebra with the coproduct
∆: A∗ → A∗ ⊗A∗ given by

∆ξm =

m∑
i=0

ξp
i

m−i ⊗ ξi and ∆τm = τm ⊗ 1 +

m∑
i=0

ξp
i

m−i ⊗ τi

(ξ0 = 1). Consider the Adams spectral sequence

AEs,t2 (V (2)) = Exts,tA∗(Z/p,H∗(V (2)))⇒ πt−s(V (2)).

The second Smith-Toda spectrum V (2) satisfiesH∗(V (2)) = E(τ0, τ1, τ2) = A∗�A∗Z/p
for the quotient Hopf algebra A∗ = P (ξ1, ξ2, . . . )⊗ E(τ3, τ4, . . . ), and we have the
isomorphisms

AEs,t2 (V (2)) = Exts,tA∗(Z/p,H
∗(V (2)))

= Exts,tA∗(Z/p,A∗�A∗Z/p) = Exts,tA∗
(Z/p,Z/p)

by the change of rings theorem (cf. [31, A1.3.13]). The Ext group is determined as
the cohomology of the cobar complex C∗A∗

defined by CsA∗
= A∗ ⊗ · · · ⊗ A∗ (the

s-fold tensor product of A∗) with coboundary ds : CsA∗
→ Cs+1

A∗
given by ds(x) =

1⊗x+
∑s
i=1(−1)i∆i(x)+(−1)s+1x⊗1 for ∆i(x1⊗. . .⊗xs) = x1⊗. . .⊗∆(xi)⊗. . .⊗xs.

We consider the following generators:

(2.1)
hi = [ξp

i

1 ] ∈ AE1,piq
2 (V (2)) and

bi =
[∑p−1

k=1
1
p

(
p
k

)
ξkp

i

1 ⊗ ξ(p−k)p
i

1

]
∈ AE2,pi+1q

2 (V (2))

for i ≥ 0, where [x] denotes the cohomology class of a cocycle x of the cobar complex
C∗A∗

. We also have generators

(2.2)
g0 = 〈h0, h0, h1〉 ∈ AE

2,(p+2)q
2 (V (2)) and

k0 = 〈h0, h1, h1〉 ∈ AE
2,(2p+1)q
2 (V (2))

given by the Massey products. By the juggling theorem of the Massey products,
we have a well known relation:

(2.3) g0h1 = h0k0 ∈ AE
3,2(p+1)q
2 (V (2)).

3. The May spectral sequence

Hereafter, we abbreviate AE∗,∗2 (V (2)) to AE∗,∗2 . In this section, we study the

Adams E2-term by the May spectral sequence MEs,t,u1 ⇒ AEs,t2 with

ME∗,∗,∗1 = A⊗H0 ⊗H ⊗B

and differential dMr : MEs,t,ur → MEs+1,t,u−r
r . Here,

(3.1)
A = P (ai : i ≥ 3), H0 = E(hi,0 : i > 0),

H = E(hi,j : i > 0, j > 0) and B = P (bi,j : i > 0, j ≥ 0)

on the generators

ai ∈ ME1,2pi−1,2i+1
1 ,

hi,j ∈ ME
1,2(pi−1)pj ,2i−1
1 and bi,j ∈ ME

2,2(pi−1)pj+1,p(2i−1)
1 .

We notice that the May E1-term is a graded commutative algebra and the May
differentials are derivations. For each element x ∈ MEs,t,u1 , we denote by dim x and
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deg x the superscripts s and t, respectively. The first May differential dM1 is given
by

(3.2)
dM1 (ai) =

∑
3≤k<i hi−k,kak,

dM1 (hi,j) =
∑

0<k<i hi−k,k+jhk,j and dM1 (bi,j) = 0.

By definition of the May E1-term, the generators h1,i, b1,i, ĝ0 = h2,0h1,0 and

k̂0 = h2,0h1,1 are obtained by the elements in (2.1) and (2.2). We also have a
generator γ̂s, see [8, Th. 1.1].

Lemma 3.3. In the May E1-term, we have permanent cycles

h1,i, b1,i, ĝ0, k̂0 and γ̂s = as−33 h3,0h2,1h1,2

for i ≥ 0 and 3 ≤ s < p, which detect hi, bi, g0, k0 in (2.1) and (2.2), and γs ∈
AE∗,∗2 , respectively. Here, γs is an element converging to i2i1iγs ∈ π(sp2+(s−1)p+s−2)q−3(V (2))
for the element γs in (1.2)

Throughout this paper, the word ‘monomial’ means a (nonzero) product of alge-
braic generators of the May E1-term up to sign, that is, a monomial xy is identified
as yx (without sign) for generators x and y. A monomial x ∈ ME∗,∗,∗1 is expressed
as

(3.4) x =
∏
xi∈G

xi for a subset G ⊂ {ak′ , hl,k, bl,k | k′ ≥ 3, k ≥ 0, l ≥ 1}.

In particular, if G = ∅, then x = 1. A monomial x of ME∗,∗,∗1 has a factorization

(3.5) x = a(x)h0(x)f(x) for a(x) ∈ A, h0(x) ∈ H0, f(x) ∈ H ⊗B.

LetM denote the set of all monomials of ME∗,∗,∗1 . We define mappings c, c′, ck : M →
Z for k ≥ 0 so that

c′(ai) = 1, c′(hi,j) = 0, c′(bi,j) = 0,

ck(ai) =

{
1 0 ≤ k < i

0 otherwise
, ck(hi,j) =

{
1 j ≤ k < i+ j

0 otherwise
,

ck(bi,j) =

{
1 j < k ≤ i+ j

0 otherwise

for the generators of ME∗,∗,∗1 , and for a monomial x =
∏
i xi,

c′(x) =
∑
i

c′(xi), ck(x) =
∑
i

ck(xi)

and

(3.6) c(x) =

∑
k≥0

ck(x)pk

 q + c′(x).

Under the notation, we see that

(3.7) deg x = c(x).

We note that the part
∑
k≥0 ck(x)pk of (3.6) is not always the p-adic expansion of

c in deg x = cq + c′(x). We notice that

(3.8) c′(x) = c0(a(x)) = c1(a(x)) = c2(a(x)) = dim a(x), c0(h0(x)) = dimh0(x)
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and

(3.9) c0(x) = c0(a(x)h0(x)) = c′(x) + dimh0(x) = dim a(x)h0(x).

Furthermore, we have the following relations on ck(x):

Lemma 3.10. Let x ∈ ME∗,∗,∗1 be a monomial. Then,

1) For integers s, t and u with s > t > u, we have cs(x)+cu(x)−ct(x) ≤ dimx.
2) For r ≥ 0, dimh0(x)− r ≤ cr(x).

Proof. 1) For a monomial x =
∏
xi∈G xi in (3.4), we put Cs(x) = {xi ∈ G | cs(xi) =

1}. We notice that cs(x) = #Cs(x) and Cs(x) ∩ Cu(x) ⊂ Ct(x). It follows that
cs(x)+cu(x)−ct(x) ≤ cs(x)+cu(x)−#(Cs(x)∩Cu(x)) = #(Cs(x)∪Cu(x)) ≤ dimx.

2) We note that dimhi,0 = 1 and cr(hi,0) = 1 if i > r. For a monomial x =∏
xi∈G xi, we have

dimh0(x) = dim
∏

hi,0∈G,i≤r

hi,0 + dim
∏

hi,0∈G,i>r

hi,0 ≤ r + cr(x).

�

We introduce a notation:

(3.11) ci(x) = (ci−1(x), ci−2(x), . . . , c0(x))

for i ≥ 1 and a monomial x.
In the Adams spectral sequence, we write

ξ = (y)∼

if a permanent cycle y of the E2-term detects a homotopy element ξ. This is well
defined up to higher filtration of the ASS. The Greek letter elements we consider
here are

(3.12)
α1 = (h0)∼ ∈ πq−1(S0), β1 = (b0)∼ ∈ πpq−2(S0),

β2 = (k0)∼ ∈ π(2p+1)q−2(S0); and β′1 = (h1)∼ ∈ πpq−1(V (0)),

and Cohen’s [1], Lin’s [4] and Liu’s elements [19] :

(3.13)
ζn = (h0bn−1)∼ ∈ π(pn+1)q−3(S0) for n ≥ 1,
jξn = (b0hn + h1bn−1)∼ ∈ π(pn+p)q−3(S0) for n ≥ 3, and
$n = (k0hn)∼ ∈ π(pn+2p+1)q−3(S0) for n ≥ 3.

Lin and Zheng [7] constructed a generator

λn = 〈ζ ′′n−1i1, α, β′1〉 = (bn−1g0)∼ ∈ π(pn+p+2)q−4(V (1))

(Toda bracket), where ζ ′′n−1 ∈ [V (1), V (1)](pn+1)q−4 satisfies j1ζ
′′
n−1 = ijj1(ζn−1 ∧

V (1)). Lin and Zheng [7] and Liu [15] showed that the composite λn,s = jj1j2γ
si2λn

satisfying

(3.14) λn,s = (bn−1g0γs)
∼ ∈ π(pn+s(p2+p+1))q−4−s(S

0)

is essential for n ≥ 4 and 3 ≤ s < p− 2.
For a monomial x ∈ ME∗,∗,∗1 , we denote by x̃ the set of monomials, each of these

has degree deg x. Consider a monomial

li,j ∈ {hi,j , bi,j−1},
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and we see that l̃i,j = h̃i,j = b̃i,j−1. For example,

l̃2,1 = {h2,1, b2,0, h1,2h1,1, h1,1b1,1, h1,2b1,0, b1,1b1,0, h1,1bp1,0, b
p+1
1,0 }

and
ã4 = {a4, a3h1,3, a3b1,2, a3h1,2bp−11,1 , a3b

p
1,1}.

Lemma 3.15. For u > 0 and k ≥ 0, we consider a monomial x of ME
s,c(x),∗
1 such

that

(3.16) ci(x) =

{
u k ≤ i < n

0 i ≥ n
.

If la,b with k < a + b < n (resp. ab with k < b < n) is a factor of x, then x has a

factor in l̃n−b,b (resp. ãn).

Proof. Consider an element la,b with k < a + b < n such that x = x0la,b for
a monomial x0. Then, ca+b−ε(x0) = ca+b−ε(x) − ε = u − ε for ε = 0, 1, which
shows that x0 has a factor lι1,a+b for an integer ι1 > 0. Therefore, x has a factor

lι1,a+bla,b ∈ l̃a+ι1,b. Inductively, we see that x has a factorization

lι`,s` lι`−1,s`−1
· · · lι1,s1 la,b for some ` > 0 and sj = a+ b+

∑j−1
i=1 ιi,

which is in l̃n−b,b if ι` + s` = n.
The statement for ãn is verified similarly. �

For sets Sk for 1 ≤ k ≤ ` of monomials in the May E1-terms, we consider a set

S1S2 · · · S` = {x1x2 · · ·x` | xk ∈ Sk}
of monomials. In particular, we write Se = S · · · S (e factors) if e > 0, and S0 = ∅
for a set S. We also define

S(d) = {x ∈ S | dimx = d}
and

dim S =

{
0 S = ∅,
min{dimx | x ∈ S} otherwise.

In particular, we have

(3.17) dim l̃en−ι,ι =

{
0 ι = 0 and e > n, or e = 0

2e− 1 otherwise.

Indeed, if e ≥ 1 and l̃en−i,i 6= ∅, then the dimension of a monomial of the subset

(3.18) hn−i,i(l̃
(2)
n−i,i)

e−1 ⊂ l̃n−i,i

is 2e− 1 and implies dim l̃en−i,i = 2e− 1 since h2i,j = 0.

Proposition 3.19. Suppose that a monomial x ∈ ME
s,c(x),∗
1 satisfies (3.16) for

integers u > 0 and k ≥ 0. Then,

x = lz for l ∈ ãe0n l̃
e1
n−ι1,ι1 · · · l̃

em
n−ιm,ιm ,

in which k ≥ ι1 > ι2 > · · · > ιm ≥ 0 for m ≥ 0, e0 ≥ 0, ei > 0 for each i ≥ 1,∑m
i=0 ei = u = cn−1(x), and z is a monomial which has no factor of the form lιi−`,`

nor aιi . Furthermore, ci(z) = 0 for i ≥ k and cιi−1(z) ≤ cιi(z).
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Note that we do not claim the uniqueness of the factorization of the proposition.

Proof. By Lemma 3.15, we have an integer ι0 ≤ k and an element y0 ∈ l̃n−ι0,ι0 ∪ ãn
such that x = x0y0. The factor x0 also satisfies (3.16) for k ≥ 0 and u − 1 unless
u = 1. Inductively, we obtain a factorization

x = zyu−1yu−2 . . . y0,

for yi ∈ l̃n−ιi,ιi ∪ ãn with ιi ≤ k, and z has no factor of the form lιi−`,` nor aιi . Put

l = yu−1 · · · y0, and we may consider l ∈ ãe0n l̃
e1
n−ι1,ι1 · · · l̃

em
n−ιm,ιm and ι1 > ι2 > · · · >

ιm ≥ 0. We also obtain the equality
∑m
j=0 ej = u. The element z satisfies ci(z) = 0

for i ≥ k, since ci(z) = ci(x)− ci(yu−1yu−2 . . . y0) = u− u = 0.
We also have cιi−1(z) ≤ cιi(z). Indeed, if cιi−1(z) > cιi(z), then z should have

a factor z′ ∈ l̃ιi−`,` ∪ ãιi , which implies yiz
′ ∈ l̃n−`,` ∪ ãn. Hence we may replace yi

with yiz
′ as a factor of l. �

Now consider the internal degree

(3.20) t0 = (pn + p3 + 2p− 1)q + p− 4.

We put

(3.21) us = deg as3 = (sp2 + sp+ s)q + s for s ≥ 0.

Lemma 3.22. Consider a monomial x of the May E1-term MEp+5+ε−s−r,t0−us−r+1,∗
1

with ε ∈ {0, 1}, 0 ≤ s ≤ p− 4, and r ≥ 1. Then cn+1(x) in (3.11) is

(3.23)
c0n+1(s) = (1, 0, . . . , 0, p− 1− s, p+ 1− s, p− 1− s) or
c1n+1(s) = (0, p− 1, . . . , p− 1, p, p− 1− s, p+ 1− s, p− 1− s).

Proof. We first note that

(3.24) dimx ≤ p+ 5− s < 2p− 1− s
by p ≥ 7. We also note that

(3.25)
deg x = t0 − us − r + 1

= (pn + p3 − sp2 + (2− s)p− 1− s)q + p− 3− s− r
= (

∑
k≥0 ck(x)pk)q + c′(x)

by (3.6) and (3.7). Consider the factorization (3.5). By (3.8), we obtain dim a(x) =
c′(x) ≡ p− 3− s− r mod q. The inequality

q + p− 3− s− r > p+ 5 + ε− s− r = dimx

implies

(3.26) dim a(x) = c′(x) = p− 3− s− r.
Notice that c0(x) ≡ −1 − s mod p by (3.25), 0 ≤ c0(x) ≤ dimx and c0(x) =
dim a(x) + dimh0(x) by (3.9), and we obtain

(3.27) c0(x) = p− 1− s and dimh0(x) = 2 + r.

It follows that

(3.28) dim f(x) = 6 + ε− r.
Since c1(x) ≡ 1− s mod p by (3.25), and 2 ≤ r + 1 = dimh0(x)− 1 ≤ c1(x) by

(3.27) and Lemma 3.10 2), we deduce

c1(x) = p+ 1− s
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under the condition (3.24), and so

c2(x) = p− 1− s and c3(x) ≡ 0 mod p.

We also see that cn(x) = 1 or = 0. If cn(x) = 1, then ci(x) = 0 for 3 ≤ i < n by
degree reason. Therefore, we have cn+1(x) = c0n+1(s) in this case.

Suppose that cn(x) = 0. Then, we have an integer j with 3 ≤ j < n such that

ci(x) =


0 3 ≤ i < j

p i = j

p− 1 j < i < n

.

If j 6= 3, then Lemma 3.10 1) shows that p+ 5 + ε− s− r ≥ cj(x) + c1(x)− c3(x) =
2p+1−s, which contradicts to (3.24). Thus, j = 3 and we have cn+1(x) = c1n+1(s).

�

Lemma 3.29. Let x be a monomial such that cn+1(x) = c1n+1(s) in (3.23). Then,

x = lz for l ∈ ãen l̃
e3
n−3,3 l̃

e1
n−1,1 l̃

e0
n,0,

where e, e3, e1 and e0 are non-negative integers such that

(3.30) e+ e3 + e1 + e0 = p− 1,

e0 ≤ n, e3 ∈ {s, s+ 1} and e1 ∈ {0, 1, 2}. The factor z satisfies ci(z) = 0 for i > 3,
c′(z) ≤ 3,

(3.31) c4(z) = (1, e3 − s, 2 + e3 − s, e3 + e1 − s)

and dim z ≥ 3. Furthermore, s + r ≤ 4 + w + ε− c′(z)− dim z

2
< 3, where w

denotes the number of i’s with ei 6= 0.

Proof. Consider a factorization

x = lz

in Proposition 3.19. Since the integer k in Lemma 3.15 is four in our case,

l ∈ ãen l̃
e4
n−4,4 l̃

e3
n−3,3 l̃

e2
n−2,2 l̃

e1
n−1,1 l̃

e0
n,0 for e ≥ 0 and ei ≥ 0 (0 ≤ i ≤ 4) , and

ci(z) = 0 for i ≥ 4.

We may assume that e0 ≤ n. Indeed, if e0 > n, then l̃e0n,0 = ∅. Furthermore, the

fact cn−1(x) = p− 1 implies e+
∑4
i=0 ei = p− 1, and so

c4(z) =
(

1 + e4, e4 + e3 − s, 2 +
∑4
i=2 ei − s,

∑4
i=1 ei − s

)
since cn(l) =

(
p− 1, . . . , p− 1,

∑4
i=0 ei,

∑3
i=0 ei,

∑2
i=0 ei, e1 + e0, e0

)
. Notice that

c3(z) > 0 = c4(z) and c1(z) > c2(z). Then, the last statement in Proposition
3.19 implies e4 = 0 and e2 = 0. Thus, we obtain (3.30) and (3.31). By (3.31),
c1(z) = 2 + c2(z) ≥ 2. If c1(z) ≥ 3, then dim z ≥ 3. If c1(z) = 2, then c2(z) = 0.

Therefore, z has a factor l1,3 ∈ l̃1,3 and two factors whose coefficient c1 is one, and
so dim z ≥ 3.

Proposition 3.19 implies that 2 ≥ e1 by (3.31) if e1 6= 0, and that 0 ≤ c2(z) =
e3 − s ≤ c3(z) = 1 if e3 6= 0. We also see c2(z) = −s ≥ 0 if e3 = 0. These show
e1 ∈ {0, 1, 2}, and e3 ∈ {s, s + 1}. Now, c′(z) = c1(a(z)) ≤ c1(z) ≤ 3 by (3.8) and
(3.31).
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Note that e0 ≤ n. By (3.17), we compute

dimx ≥ e+ 2(e3 + e1 + e0)− w + dim z
= e+ 2(p− 1− e)− w + dim z (by (3.30) )
= 2(p− 1)− (p− 3− s− r − dim a(z))− w + dim z

(by c′(x) = e+ dim a(z) and (3.26) ).

Since dimx = p+ 5 + ε− s− r, w ≤ 3 and dim z ≥ 3, we obtain the last inequality.
�

4. Proof of the main theorem

In this section, we also abbreviate AE∗,∗2 (V (2)) to AE∗,∗2 . Put ms(x) = xγsg0h1b0

for x ∈ AE∗,∗2 . Thenms(hn) ∈ AE
s+6,(pn+sp2+(s+2)p+s)q+s
2 andms(bn−1) ∈ AE

s+7,(pn+sp2+(s+2)p+s)q+s
2 .

We notice that

(4.1) the elements ms(hn) and ms(bn−1) are permanent cycles,

since

(4.2) i2i1i (α1$nγsβ1) = (ms(hn))
∼

and i2i1i (ζnβ1β2γs) = (ms(bn−1))
∼
.

Indeed, we have

ms(hn) = hnγsg0h1b0 = b0k0hnh0γs = (b0hn + h1bn−1)k0h0γs and
ms(bn−1) = bn−1γsg0h1b0 = h0bn−1b0k0γs = h1bn−1g0γsb0

by (2.3), and also (3.12), (3.13) and (3.14) imply

(4.3)

i2i1i(α1$nγsβ1) = (h0k0hnγsb0)
∼

= (−(b0hn + h1bn−1)h0k0γs)
∼

= −i2i1i(jξnα1β2γs) and
i2i1i(ζnβ1β2γs) = (h0bn−1b0k0γs)

∼

= (h1bn−1g0γsb0)
∼

= i2i1(β′1λn,sβ1)

in π∗(V (2)). In particular,

i2i1i (α1$nγsβ1) = −i2i1i (jξnα1β2γs)

and
i2i1i (ζnβ1β2γs) = i2i1 (β′1λn,sβ1)

up to Adams filtration. In this section, we show that the elements in (4.2) are
non-trivial.

Proposition 4.4. The elements mp−1(hn) and mp−1(bn−1) of the Adams E2-term
are non-trivial.

Proof. Let yε ∈ AEp+5+ε,t0
2 denote mp−1(hn) if ε = 0, and mp−1(bn−1) if ε = 1.

We also take an element yε in MEp+5+ε,t0,∗
1 , which detects yε. If yε = 0, then

there exists xε ∈ MEp+4+ε,t0,∗
r such that dMr (xε) = yε for some r. We denote by

xε ∈ MEp+4+ε,t0,∗
1 a monomial appearing in a term of a representative of xε. By

Lemma 3.22 at (s, r) = (0, 1), the n-tuple cn+1(xε) is c0n+1(0) or c1n+1(0) in (3.23).
Since t0 ≡ p− 4 mod (q) by (3.20), we see c′(xε) = p− 4. Therefore,

xε ∈

{
ãp−43 l̃1,n l̃

2
1,1 l̃

3
3,0 cn+1(xε) = c0n+1(0),

ãp−4n l̃1,3 l̃
2
1,1 l̃

3
n−1,0 cn+1(xε) = c1n+1(0).
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Since dimxε = p+4+ε and dim
(
ãp−43 l̃1,n l̃

2
1,1 l̃

3
3,0

)
= p+5 = dim

(
ãp−4n l̃1,3 l̃

2
1,1 l̃

3
n−1,0

)
,

we have ε = 1. It follows that there is no monomial for x0, and so MEp+3,t0,∗
1 = 0.

Therefore, y0 survives to y0 = mp−1(hn).
We consider the case ε = 1. If cn+1(x1) = c1n+1(0), then

x1 ∈ ap−4n h1,3h1,1b1,0hn,0(l̃
(2)
n−1,0)2

by (3.18). Put wi,j = hn−1−i,ihi,0hn−1−j,jhj,0. Then, we see that (l̃
(2)
n−1,0)2 =

{wi,j : 1 ≤ i < j ≤ n − 2}. It follows that the monomial x1 is of the form x1,i,j =
ap−4n h1,3h1,1b1,0hn,0wi,j . Since n > 4, we have

dM1 (x1,i,j) = −4ap−5n a4hn−4,4h1,3h1,1b1,0hn,0wi,j + · · · 6= 0.

The images dM1 (x1,i,j) are linearly independent, since so are wi,j ’s. Therefore, any
linear combination of x1,i,j ’s doesn’t survive to the May E2-term.

For the case cn+1(x1) = c0n+1(0), we have

x1 ∈ ap−43 h1,nh1,1b1,0h3,0(l̃
(2)
3,0)2

by (3.18). Since (l̃
(2)
3,0)2 = {h1,0h2,0h1,2h2,1},

x1 = ap−43 h1,nh1,1b1,0h3,0h1,0h2,0h1,2h2,1,

which converges to γp−1h1b0k0hn in the Adams E2-term by Lemma 3.3. Therefore

dMr (x1) = 0 for r ≥ 1, and so MEs+5,t0,∗
r = 0 for r ≥ 2.

By the above argument, for r ≥ 2, we obtain dr(x) = 0 for any x ∈ MEp+5,t0,∗
r .

Hence y1 = mp−1(bn−1) survives to the Adams E2-term. �

Corollary 4.5. The elements ms(hn) for 3 ≤ s < p and ms(bn−1) for 3 ≤ s < p−2
in the E2-terms are non-zero.

Proof. Since a3 ∈ ME∗,∗,∗1 survives to AE∗,∗2 , the multiplication by a3 induces a
homomorphism

(4.6) (a3)∗ : AE∗,∗2 → AE∗,∗2 .

Since ap−s−13 γ̂s = γ̂p−1 in the May E1-term by Lemma 3.3, we have (a3)p−s−1∗ (γs) =

γp−1, and hence (a3)p−s−1∗ (ms(hn)) = mp−1(hn). Proposition 4.4 implies the non-
triviality of the first element.

Since Lemma 3.3 also implies (a3)p−s−1∗ (bn−1g0γs) = bn−1g0γp−1, we obtain the
non-triviality of the second elements similarly by Proposition 4.4. �

Remark 4.7. In the May spectral sequence converging to AE∗,∗2 (S0), the geneator
a3 in the E1-term is not permanent, and therefore the map (4.6) is not defined.
This is a reason why we consider the second Smith-Toda spectrum V (2) in this
paper.

Proof of Theorem 1.3. It suffices to show that

(4.8) AE
p+5+ε−s′−r,t0−us′−r+1
2 = 0

for ε ∈ {0, 1}, r ≥ 2 and s′ ≥ ε. Indeed, if it holds, then the elements mp−1−s′(hn)
andmp−1−s′(bn−1) in (4.1) we concern are not in the image of the Adams differential

(4.9) dAr : AEp+5+ε−s′−r,t0−us′−r+1
r → AEp+5+ε−s′,t0−us′

r ,
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and the theorem follows from (4.2) and Corollary 4.5. We show (4.8) by verifying

ME
p+5+ε−s′−r,t0−us′−r+1,∗
2 = 0.

For a monomial x ∈ ME
p+5+ε−s′−r,t0−us′−r+1,∗
1 with r ≥ 2, if c3(x) = 0, then

dimh0(x) ≤ 3 by Lemma 3.10 2), which contradicts to (3.27). It follows that
cn+1(x) = c1n+1(s′) by Lemma 3.22, and so s′+r ≤ 2 by Lemma 3.29. This implies

(s′, r) = (0, 2).

Therefore, (4.8) holds except for this case.

We will show MEp+3,t0−1,∗
2 = 0. By Lemma 3.29, a monomial x in MEp+3,t0−1,∗

1

is factorized into

x = lz

for l ∈ ãen l̃
e3
n−3,3 l̃

e1
n−1,1 l̃

e0
n,0 and a monomial z with c4(z) = (1, e3, 2 + e3, e3 + e1),

e3 ∈ {0, 1} and e1 ∈ {0, 1, 2}. We notice that we can tell the least dimension of z
from c4(z). Since e = p− 5− c′(z) by (3.8) and (3.20), we have

(4.10) e3 + e1 + e0 = p− 1− e = 4 + c′(z)

by (3.30). These give rise to a table:

(e3, e1) (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2)

c4(z) (1, 0, 2, 0) (1, 0, 2, 1) (1, 0, 2, 2) (1, 1, 3, 1) (1, 1, 3, 2) (1, 1, 3, 3)

dim z ≥ 3 3 4 3 3 4

w 1 2 2 2 3 3

Here, w is the integer given in Lemma 3.29. We also see that w − c′(z)− dim z ∈
{0, 1} by the inequality of Lemma 3.29, and hence w− dim z ≥ 0. The table shows
us that the inequation holds only when (e3, e1) = (1, 1), dim z = 3 and c′(z) = 0.
Then the monomial x is of the form

xj = ap−5n hn−3,3hn−1,1hn,0hn−j,jhj,0h4,0h2,0h1,1

for j ≥ 5. Since

dM1 (xj) = −5ap−6n a4hn−4,4hn−3,3hn−1,1hn,0hn−j,jhj,0h4,0h2,0h1,1 + · · · 6= 0,

the images dM1 (xj) are linearly independent. Thus, (4.8) also holds in this case. �
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