A NOTE ON PRODUCTS IN STABLE HOMOTOPY GROUPS OF
SPHERES VIA THE CLASSICAL ADAMS SPECTRAL
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ABSTRACT. In recent years, Liu and his collaborators found many non-trivial
products of generators in the homotopy groups of the sphere spectrum. In this
paper, we show a result which not only implies most of their results, but also
extends a result of theirs.

1. INTRODUCTION

The homotopy groups 7. (S%) of the sphere spectrum SY form an algebra with
multiplication given by composition. The determination of the structure of 7, (S°)
is one of the most important problems in stable homotopy theory. We study the
problem by considering the p-component ,m.(S°) of the groups at a prime number
p. The classical Adams spectral sequence (ASS) and the Adams-Novikov spectral
sequence (ANSS) are typical and effective tools for calculating ,7.(SY). We usually
use the ANSS to study ,7.(S%) at an odd prime p, and the ASS at the prime two.
In recent years, Liu and his collaborators advocated that the ASS is sufficiently
effective at p > 2 as well as at p = 2. Indeed, they derived out many results on the
non-triviality of products of generators in ,m.(SY) from the ASS at p > 2 by use of
the May spectral sequence (MSS). Their method is simple as follows: for a product
¢ € ,m—s(S°) of generators, let € be an element of the Ep-term AES’t of the ASS,
which detects £. We also consider an element x in the E;-term MEf’t’* of the MSS,
which converges to €. Then, they proceed their argument in the following steps:

s—1,t,%

1) The element x is not a coboundary of the first May differential d} : ME7
M8, t,*
B3
2) For any r > 2, the domain of the May differential @} : MEs=Ltx — Mps.t.x
is zero, and
3) For any r > 2, the domain of the Adams differential d2: AEs—mt-r+1
AEst is zero by use of the MSS.

The main theorem of this paper Theorem 1.3 is shown in a similar procedure (Propo-
sition 4.4 and Corollary 4.5 for 1) and 2), and the proof of Theorem 1.3 for 3)) for
the homotopy groups 7. (V(2)) of the second Smith-Toda spectrum V' (2) (¢f. (1.1)).
The result is new one, and implies most of results shown by Liu and his collaborators
as a corollary.

From here on, we assume that the prime number p is greater than five. Let
H.(X) denote the mod p reduced homology groups of a spectrum X represented
by the mod p Eilenberg-MacLane spectrum H. The Fa-term 4E;"(X) of the ASS
converging to the homotopy groups ,7_(X) of a spectrum X is the Ext group
Ext’;"(Z/p, H.(X)) of the category of A,-comodules. Here A, = H,(H) denotes
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the dual of the Steenrod algebra, which is isomorphic as an algebra to the free
algebra P(&; 14 > 1) ® E(r; : ¢ > 0) over generators &’s and 7;’s. Let V (k) for
k > —1 denotes the k-th Smith-Toda spectrum defined by H.(V(k)) = E(1; : 0 <
i < k). Then, for k < 3, V(k) is known to exist if and only if p > 2k + 1 (Smith
[32], Toda [33], Ravenel [31]). In particular, if p > 7, then V' (k) for k < 3 are given
by the cofiber sequences

S0 2 60 Ly) L 2SO, Rv(0) S V(0) L V(1) L 2ty (o),
(1.1) ey (1) L v (1) 2 v(2) 2 se+HDary (1) and
2@ ey (2) L v (2) 25 v(3) Ly n@t ety (2),
in which « is the Adams vi-periodic map, and § and  are the vo- and the wvs-
periodic maps given by Smith and Toda, respectively. Hereafter, ¢ denotes the
integer 2p — 2, and m,(S°) denotes ,7,(SY). In this paper, we consider the Greek
letter elements of 7,(S%) and 7. (V(0)) defined by
s =jasi, fs=jnf%ii and v, = jji1jey*iziii € T.(S°); and
Bl = j1Biri € m(V(0)).

We moreover consider some other generators:

(1.2)

Cn € Tprt1)g-3(8°),  J&n € Tprip)g-3(S°) and @ € T(pniapi1)g—3(SY)

given by Cohen [1], Lin [4] and Liu [19]. Lin and Zheng [7] and Liu [15] constructed
generators Ay s € T(pntsp2+spts)g—7(S°) for n > 2 and 3 < s < p—2. We now state
our main theorem, which extends the results [20, Theorems 1.2 and 1.3] of Liu’s.
In this paper, n denotes a fixed integer > 4.

Theorem 1.3. Let n be an integer greater than four. The following products of
elements of 7.(S°) and 7. (V(0)) are all non-trivial:

alwn'YsBL jgna16278 S 7T(p"JrspzJr(er2)ers)¢179(SO) fO’f’ 3 S s <p,
CnB1B27s € W(pn+spz+(s+2)p+s)q,10(SO) for3<s<p-—2, and
51/\n,sﬂ1 € Tr(pn+sp2+(s+2)p+s)q_1o(V(O)) for3<s<p-—2.

The proof is given at the end of the paper.

Corollary 1.4. FEvery factor of the elements ay1w,vs51, j€na1B2Ys, CnlB1827Ys of
»m,(S°) and BiA, o1 of . (V(0)) in the theorem is also non-trivial in the homotopy
groups.

We note that the corollary contains almost of all results of Liu and his collabo-
rators on the non-triviality of products of elements of 7.(S%): [2], [8], [9], [10], [11],
[12), [13], [14], [15], [16], [L7], [18], [19], [20], [21], [22], [23]. [24], (2], [26], [27]. [28];
[29], [30], [34], [35], [36] and [37].

The authors would like to thank the referee for many useful comments.

2. THE ADAMS SPECTRAL SEQUENCE FOR 7, (V(2))

Hereafter, P(z;) and E(z;) denote a polynomial and an exterior algebras on
generators x; over Z/p, respectively. Let A, denote the dual of the Steenrod algebra
isomorphic to P(&1,&2,...) ® E(79,71,...) as a graded algebra, where deg&,, =
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2(p™ — 1) and degt,, = 2p™ — 1. It is also a Hopf algebra with the coproduct
A: A, — A, ® A, given by

A& =6 @& and Ary=7,®1+Y & @7
=0 =0

(&0 = 1). Consider the Adams spectral sequence
B3N (V(2)) = Exty (Z/p, Ho(V(2))) = m—s(V(2)).
The second Smith-Toda spectrum V'(2) satisfies H.(V(2)) = E(79, 71, 72) = A0z Z/p

for the quotient Hopf algebra A, = P(£1,&s,...) ® E(13,74,...), and we have the
isomorphisms

BFVE) = B V)
= Ext} (Z/p, A0z Z/p) = Ext>; (Z/p.Z/p)

by the change of rings theorem (cf. [31, A1.3.13]). The Ext group is determined as
the cohomology of the cobar complex C’% defined by C% = A, ® - ® A, (the
s-fold tensor product of A,) with coboundary d: CSZ — C%H given by ds(x) =
1@z+> 0 (—1)'A;(z)+(=1)" 1zl for Aj(21®. . .Qzs) = 1Q. . .QA(2;)®. . .Qu;.
We consider the following generators:

hi = (€] € 4B I(V(2)) and

(2'1) — i —k)pt i+1
b= (SR e e e BTV (2)

for i > 0, where [z] denotes the cohomology class of a cocycle x of the cobar complex
C’% . We also have generators

22) g0 = <h0,h0,h1>eAEg’(Z“)Iq(V(Q)) and
ko = (ho,h1,hi) € AEZEPTHI(1(2))

given by the Massey products. By the juggling theorem of the Massey products,
we have a well known relation:

(2.3) goh1 = hoko € “E32PT9(1/(2)).

3. THE MAY SPECTRAL SEQUENCE

Hereafter, we abbreviate AE;*(V(2)) to “4F, . In this section, we study the
Adams Ep-term by the May spectral sequence MEJ"" = AES" with

ME!** = A9 Hy@ H® B
and differential ¢ : MEs:tv — Mps+ltu=r_ Here

A:P(CLZZZ3), H():E(hi702i>0),
H=E(h;;:i>0,7>0) and B=P(b;:i>0,j>0)

on the generators

(3.1)

1,2p°—1,2i+1
a; € JVIEl P i+ ;

he i € ME11»2(:0i*1)Pj72i*1 c MEf,z(le)pf“,p(%l)
,] :

and b@j

We notice that the May E;-term is a graded commutative algebra and the May
differentials are derivations. For each element x € ME7] b we denote by dim x and
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deg x the superscripts s and ¢, respectively. The first May differential d} is given
by

(3.2) i’ (a;) = 23§k<i hi—g koK,
dM(hij) =Y gcpei Pimkribr,; and dM(b; ;) =0.
By definition of the May Ej-term, the generators hy;, bis, go = haohi,0 and

ko = hgohi,1 are obtained by the elements in (2.1) and (2.2). We also have a
generator s, see [8, Th. 1.1].

Lemma 3.3. In the May E:-term, we have permanent cycles
hii, bii, Go, ko and Fs=ai *hsoh2ihis

fori >0 and 3 < s < p, which detect h;, b;, go, ko in (2.1) and (2.2), and 7, €
AES™, respectively. Here, 7, is an element converging to igiyirys € T(sp2+(s—1)p+s—2)g—3(V(2))
for the element ~y, in (1.2)

Throughout this paper, the word ‘monomial’ means a (nonzero) product of alge-
braic generators of the May FE;-term up to sign, that is, a monomial zy is identified
as yx (without sign) for generators z and y. A monomial x € ME;"™" is expressed

as

(3.4) w =[] @i for asubset G C {ar, hug,bii | K >3, k>0, 1>1}.

z; €G
In particular, if G = ), then = = 1. A monomial = of ME}"™" has a factorization
(3.5) x = a(x)ho(x)f(x) for a(x) € A, ho(z) € Ho, f(x) € H® B.

Let M denote the set of all monomials of ME}"**. We define mappings ¢, ¢’, cx: M —
Z for k > 0 so that

d(a;) = 1, d(hij)=0, d(bij)=0,

cel(a)) = 1 0<k<s (hi;) = 1 j<k<i+y
R 0 otherwise’ Wil = 0 otherwise

1 j<k<i+y
cr(bij) = ’ g

0 otherwise

for the generators of ME7™", and for a monomial z = [, z;,
@) = Y @), @) =Y exlw)
i i

and

(3.6) c(z) = Z cr()pF | ¢+ ().

k>0
Under the notation, we see that
(3.7) degz = c(z).

We note that the part Y, ck(z)p® of (3.6) is not always the p-adic expansion of
¢ in degx = cq + ¢ (x). We notice that

(3.8) () = cola(z)) = c1(a(z)) = c2(a(z)) = dima(z), co(ho(x)) = dim ho(x)
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and
(3.9) co(x) = co(a(x)ho(z)) = ¢ (x) + dim ho(x) = dim a(z)ho(x).
Furthermore, we have the following relations on ¢ (z):

Lemma 3.10. Let x € ME"™" be a monomial. Then,

1) Forintegers s, t and uw with s > t > u, we have ¢s(z)+cy () — () < dimz.
2) Forr >0, dimho(z) —r < ¢ ().

( {xz €eG ‘ 05(33%> =

C’u( ) C Ci(x). It follows that
) =
if 4

Proof. 1) For a monomial z = [[, o % in (3.4), w
1}. We notice that cs(x) = #Cs(z) and Cs(
cs(@) ey () —ci () < es(@)4cu(x) —#(Cs(2)N

2) We note that dimh; o = 1 and ¢, (h;)
Hm,;eG x;, we have

( s(2)UC,(x)) < dim x.

r. For a monomial z =

I Qi

n
u(
1

dim hg(z) = dim H hio + dim H hio <71+ c(x).
hi,OEGKL‘ST hiyo€G7i>’r‘

We introduce a notation:
(3.11) ci(z) = (ci—1(x), ci—a(x), ..., co(x))

for ¢ > 1 and a monomial z.
In the Adams spectral sequence, we write

£=(y)~

if a permanent cycle y of the Es-term detects a homotopy element £. This is well
defined up to higher filtration of the ASS. The Greek letter elements we consider
here are

(3.12) ar = (ho)™ € mg-1(8%),  Bi = (bo)™ € Tpg—2(S),
’ Ba = (ko)™ € M(2ps1)q—2(S°); and B = (h1)™ € mpe—1(V(0)),

and Cohen’s [1], Lin’s [4] and Liu’s elements [19] :

Cn = (hobp—1)~ € T(pni1)q—3(S?) for n > 1,
(3.13) jén = (bohy + h1bp_1)~ € 7r(pn+p)q,3(50) forn >3, and
@y = (kohn)™ € T(pniopt1)g—3(S?) for n > 3.

Lin and Zheng [7] constructed a generator

An = <C;L/71i1704a51> = (bnflgO)N € 71'(10”JrszrZ)t;(féL(V(l))
(Toda bracket), where ¢ ; € [V(1), V(1)](pnq1)q—a satisfies j1¢) ;= ijj1(Cn1 A
V(1)). Lin and Zheng [7] and Liu [15] showed that the composite \,, s = jj1j27 92\
satisfying
(3.14) Anys = (bn-1907,)" € 7T(pn+s(p2+p+1))q,4,5(SO)

is essential forn >4 and 3 < s <p—2.
For a monomial z € ME]"™", we denote by 7 the set of monomials, each of these
has degree deg . Consider a monomial

lij € {hij,bij—1},
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and we see that l~” = E” = Zi,j_l. For example,

~ _ D p+1
lag = {ha1,b2,0,h12h1,1, h1,1b1,1, b1 2b10, 01,1610, h1,1b7 o, 07

and
Gy = {as, azh1 3, azbi2, azhi b1 asb? | }.
Lemma 3.15. Foru > 0 and k > 0, we consider a monomial x of MEf’C(I)’* such
that
u k<i<n
3.16 ci(r) = - .
(3.16) (@) {O .

If lgp with k < a+b<mn (resp. ap with k < b < n) is a factor of z, then = has a
factor in l~n_b,b (resp. ).

Proof. Consider an element [,; with & < a +b < n such that © = z¢l,; for
a monomial xg. Then, c,1p—c(2g) = Catp—c(x) —& = u—¢€ for € = 0,1, which
shows that xy has a factor [,, . for an integer ¢; > 0. Therefore, z has a factor
Ly atblap € lN@_th. Inductively, we see that x has a factorization

Lipselip s oses = liysilap  for some £ >0 and s; =a+b+ 37" 1,

which is in Tn,b,b if 1p+ s, =n.
The statement for a, is verified similarly. O
For sets S for 1 < k < ¢ of monomials in the May E:-terms, we consider a set
8182”'Sg = {x1x2~-~xg | T € Sk}

of monomials. In particular, we write S® = S---S (e factors) if e > 0, and S° = 0
for a set S. We also define

S@ = {zeS|dimz = d}

dimS—{O =90,

min{dimx | z € S} otherwise.

and

In particular, we have

~ fr— d =
(3.17) dim®_ = 0 L Oar'1 e>n,ore=0
’ 2e —1 otherwise.
Indeed, if e > 1 and Flvfb_m # (), then the dimension of a monomial of the subset
(318) hn—i,i(%ff)i)i)e*1 - Tn—i,i

is 2e — 1 and implies dlimflve

n—i,:

= 2e — 1 since h?’j =0.

Proposition 3.19. Suppose that a monomial x € MEf’C(I)’* satisfies (3.16) for
integers u > 0 and k > 0. Then,

r=Iz fm"lEEeU’lvel e

n "n—ii,l1 N—Llm, lm "’
i which 'k > 11 > 10> >ty >0 form>0,e >0, e >0 for eachi > 1,
Stoei =u=cn_1(x), and z is a monomial which has no factor of the form1,,_¢
nor a,,. Furthermore, ¢;(z) =0 fori >k and ¢,,—1(z) < ¢,,(2).
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Note that we do not claim the uniqueness of the factorization of the proposition.

Proof. By Lemma 3.15, we have an integer ¢ < k and an element yq € Tn,LO’LO Uan,
such that © = zgyo. The factor x( also satisfies (3.16) for k > 0 and u — 1 unless
u = 1. Inductively, we obtain a factorization
T = ZYu—-1Yu—-2--- Yo,

for y; € ZNH_LMi Ua, with ¢; < k, and z has no factor of the form /,, _¢  nor a,,. Put
I = Yu—1-""Yo, and we may consider [ € ?ii"l:elibwl ZNZ’ZLL and ¢; >0 > - >
tm > 0. We also obtain the equality Z;nzo e; = u. The element z satisfies ¢;(z) =0
for i > k, since ¢;(2) = ¢;(x) — ¢i(Yu—1Yu—2---Yo) = u —u = 0.

We also have ¢,,_1(z) < ¢,,(2). Indeed, if ¢,,_1(2) > ¢,,(2), then z should have
a factor 2/ € lil.,“ Ua,,, which implies y;2’ € Tn,“ Ua,. Hence we may replace y;
with y;2’ as a factor of [. O

Now consider the internal degree

(3.20) to=(p"+p*+2p—1)g+p—4.
We put
(3.21) us = dega§ = (sp® +sp+s)g+s for s> 0.

Lemma 3.22. Consider a monomial z of the May E -term MEPToTe=s—rlomus—rtlx

withe € {0,1}, 0<s<p—4, andr > 1. Then c,11(x) in (5.11) is

(3.23) C%H(s) = (1,0,...,0,p—1—s,p+1—s,p—1—35) or
Chi(s) = (Op—1,....p—1Lpp—1—sp+1—sp—1—s).
Proof. We first note that
(3.24) dimr <p+5—-s<2p—1-—3s
by p > 7. We also note that
degx = tog—us—7r+1
(3.25) = (p"+pP—sp*+(2—8)p—1—8)g+p—3—s—r
= (Xrso0 cx(z)p*)g + ¢ (z)

by (3.6) and (3.7). Consider the factorization (3.5). By (3.8), we obtain dima(z) =
cd(x) =p—3—s—r mod q. The inequality

qg+p—3—s—r>p+5+e—s—r=dimz

implies

(3.26) dima(z) =d(z)=p—3—s—r.

Notice that co(z) = —1 — s mod p by (3.25), 0 < ¢o(z) < dimz and ¢o(z) =
dim a(z) 4+ dim ho(z) by (3.9), and we obtain

(3.27) co(z)=p—1—s and dimho(z)=2+r.

It follows that

(3.28) dim f(z) =6+¢ — .

Since ¢1(z) =1 — s mod p by (3.25), and 2 < r+ 1 =dimhg(z) — 1 < ¢;(z) by
(3.27) and Lemma 3.10 2), we deduce

caf@)=p+1l-s
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under the condition (3.24), and so
c2(z)=p—1—s and c3(x) =0 mod p.
We also see that ¢,(x) =1 or = 0. If ¢,(z) = 1, then ¢;(z) =0 for 3 < i <n by

degree reason. Therefore, we have ¢,11(x) = ¢%,;(s) in this case.
Suppose that ¢, (z) = 0. Then, we have an integer j with 3 < j < n such that

0 3<i<j
ci(x) =4 p i=j
p—1 j<i<n
If j # 3, then Lemma 3.10 1) shows that p+5+ec—s—1r > ¢j(z) +c1(x) —c3(x) =
2p+1—s, which contradicts to (3.24). Thus, j = 3 and we have ¢, +1(z) = ¢}, 1 (s).
(]

Lemma 3.29. Let x be a monomial such that ¢, +1(z) = ¢}, 1 (s) in (3.23). Then,

_ ~eJes  Jer  Jeo
x=Iz forl e CL,LZTL_:37:,)Z,AL_1,1ln707

where e, es, e; and ey are non-negative integers such that

(3.30) eteste+e=p-—1,

eo <mn, ez €{s,s+1} and ey € {0,1,2}. The factor z satisfies ¢;(z) =0 fori > 3,

d(z) <3,

(3.31) ca(z) = (1,e3— 8,2+ e3 —s,e3+e1 — 9)

44+ w+e—d(z) —dimz
2

and dimz > 3. Furthermore, s +r < < 3, where w

denotes the number of i’s with e; # 0.

Proof. Consider a factorization
Tz =Ilz
in Proposition 3.19. Since the integer k£ in Lemma 3.15 is four in our case,

Le@glin , (1% 4402 5,18 | 1% fore>0ande; >0 (0<i<4), and
¢i(z) =0 fori>4.

€0

We may assume that e < n. Indeed, if ¢g > n, then [[%) = (). Furthermore, the

fact ¢,—1(z) = p — 1 implies e + Z?:o e; =p—1, and so
cy(z) = (1 +e4,e4+e3— 5,2+ Z?:Q €; — S, Z?:l e; — 5)

since ¢, (1) = (p -1,...,p—1, Z?:o €, Z?:o €5 E?:o e;,e1 + eg, eo>. Notice that
c3(z) > 0 = ca(z) and ¢1(2) > ca(2). Then, the last statement in Proposition
3.19 implies e4 = 0 and eo = 0. Thus, we obtain (3.30) and (3.31). By (3.31),
c1(z) =2+ co(2) > 2. If ¢1(2) > 3, then dimz > 3. If ¢1(2) = 2, then ca(z) = 0.
Therefore, z has a factor [; 3 € l~113 and two factors whose coefficient ¢; is one, and
so dim z > 3.

Proposition 3.19 implies that 2 > ey by (3.31) if e; # 0, and that 0 < e3(z) =
ez — s < c3(z) =1if eg # 0. We also see ca(z) = —s > 0 if e3 = 0. These show
e1 € {0,1,2}, and e3 € {s,s + 1}. Now, ¢/(2) = c1(a(z)) < ¢1(2) < 3 by (3.8) and
(3.31).
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Note that ey < n. By (3.17), we compute

dimz > e+2(es+er+e)—w+dimz
e+2(p—1—e)—w+dimz (by (3.30))
2p—-1)—(p—3—s—r—dima(z)) —w+dimz
(by ¢(z) = e+ dima(z) and (3.26) ).
Since dimx =p+5+e—s—r, w < 3 and dim z > 3, we obtain the last inequality.
O

4. PROOF OF THE MAIN THEOREM

In this section, we also abbreviate 4E; ™ (V/(2)) to AE;™*. Put m4(z) = 27,90h1bo
for o € AE}™. Then my(hy) € AE;+67(p”+sp2+(3+2)p+s)q+s and my(bn_1) € AES-S-?,(p”+sp2+(s+2)p+s)q+s.

We notice that

(4.1) the elements m(h,,) and mg(b,—1) are permanent cycles,

since

(4.2)  dgiri (1@ sPr) = (ms(hy))™ and dziri (Cuf1B2vs) = (s (bn-1)) " .

Indeed, we have

ms(hn) = hn¥s90h1bo = bokohnho¥, = (bohy + h1bn—1)koho¥, and
Mg(bp_1) = bp—17s90h1bo = hobp—1boko¥, = h1bn_1907 b0
by (2.3), and also (3.12), (3.13) and (3.14) imply
igiri(a1wnysP1) = (hokohn7sbo)™
= (—(bohn + h1bn—1)hoko7,)
(4.3) = —igi1i(j§na Bays) and
‘ i2i11(CuB1B2ys) = (hobn-1boko7s)
= (h1bp—1907bo)
= iﬂl(ﬂi)\n,sﬁl)

in 7, (V(2)). In particular,

igiri (1 @nYsfr) = —iziri (j€n1 f27s)
and
G201 (CaB1P2Ys) = tt1 (B1An,sP1)
up to Adams filtration. In this section, we show that the elements in (4.2) are
non-trivial.

Proposition 4.4. The elements my_1(hy) and my_1(b,—1) of the Adams Ez-term
are non-trivial.

Proof. Let y. € AE§+5+5”5° denote my,_1(hy) if e = 0, and my,_1(b,—1) if € = 1.
We also take an element 7. in MEPTOTS00* " which detects y.. If y. = 0, then
there exists 7. € MEPT4+eto* such that d(Z.) = 7. for some r. We denote by
z. € MEPTFElo* 3 monomial appearing in a term of a representative of Z.. By
Lemma 3.22 at (s,7) = (0,1), the n-tuple c,41(zc) is €31 (0) or c;.,,(0) in (3.23).
Since to = p —4 mod (q) by (3.20), we see ¢(z.) = p — 4. Therefore,

N {a“’g‘%,nzill%,o enti(we) = b4 (0),
1>

aﬁ74l~1,3’l?,1flvi—1,o Crr1(ze) = ¢ 14(0).
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Since dim z. = p+4+¢ and dim (5§_4l~17nl~%)1l~§’,0) = p+5 = dim (&’%‘471731?)17;?’171)0),
we have e = 1. It follows that there is no monomial for zo, and so MEPT3f0* —
Therefore, T, survives to yo = my_1(hy,).

We consider the case € = 1. If c,q1(2z1) = ¢} (0), then

x1 € aﬁ_4h1,3h1,1bl,ohn,o@?_)170)2

by (318) Put ’LUi’j = hnflfi’ihi’()hn,1,j’jhj’(]. Then, we see that (25127)1’0)2
{w; ;: 1 <i<j<n-—2} It follows that the monomial z; is of the form x; ; ;
aﬁ_zlhl’ghl’lbl’ohn,owi’j. Since n > 4, we have

dM(214,5) = —4al Pagh, g 4hy 3hy 1b1 ohnowi; + -+ # 0.

The images d (x1,,;) are linearly independent, since so are w; ;’s. Therefore, any
linear combination of z; ; ;’s doesn’t survive to the May F-term.
_ a0
For the case c,41(21) = ¢, 1(0), we have

x1 € a§74h1,nh1,1b1,0h3,0(igf()))z
by (318) Since (%?3)2 = {h17()]712’()]7‘1’2]1271}'7

_ p—4
T1 =as hynhiibiohsohioheohi2ha 1,

which converges to 7,_;h1bokoh,, in the Adams Fa-term by Lemma 3.3. Therefore
dM(zy) =0 for r > 1, and so MES*t5t0* = for r > 2.

By the above argument, for r > 2, we obtain d,.(z) = 0 for any x € MEP+5.tox,
Hence y1 = my_1(bn—1) survives to the Adams Es-term. O

Corollary 4.5. The elements mg(hy,) for 3 < s < p and ms(b,—1) for3 < s <p—2
in the Eo-terms are non-zero.

Proof. Since a3 € ME]™ survives to AE;"*, the multiplication by a3 induces a
homomorphism

(4.6) (az)e: “Ey* — AEy*.
Since af*"'5, = F,_1 in the May E;-term by Lemma 3.3, we have (a3)2 *"'(7,) =
¥p—1, and hence (a3)2™* " (ms(hn)) = my_1(hy). Proposition 4.4 implies the non-

triviality of the first element.
Since Lemma 3.3 also implies (a3)2 """ (bp_1907,) = bn-1907,_1, we obtain the
non-triviality of the second elements similarly by Proposition 4.4. O

Remark 4.7. In the May spectral sequence converging to AE; *(8Y), the geneator
a3 in the Ej-term is not permanent, and therefore the map (4.6) is not defined.
This is a reason why we consider the second Smith-Toda spectrum V(2) in this

paper.
Proof of Theorem 1.3. 1t suffices to show that
(4.8) AE;D+5+€fslfr,toqu/7r+1 —0

. b =
for e € {0,1}, r > 2 and s’ > e. Indeed, if it holds, then the elements my_1_s (hy,)
and my_1_g (by—1) in (4.1) we concern are not in the image of the Adams differential

’ ’
(49) df AE£+5+575 —rito—ug—r+1 s AE£+5+575 ,tgfusz’
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and the theorem follows from (4.2) and Corollary 4.5. We show (4.8) by verifying

54+e—s'—rto—ugy —r+1,x
]\/IE§+ +e—s —rito—uy —r+ = 0.

For a monomial x € MEf+5+E_S/_T’t°_u5/_T+1’* with r > 2, if es(z) = 0, then
dim hg(z) < 3 by Lemma 3.10 2), which contradicts to (3.27). It follows that
Cny1(z) = ¢} (s") by Lemma 3.22, and so s’ +r < 2 by Lemma 3.29. This implies

(s',r) = (0,2).
Therefore, (4.8) holds except for this case.

We will show MEET3%~1* — 0 By Lemma 3.29, a monomial z in MEP+3te=1=

is factorized into

z=Ilz
for [ € 52?2{3,3TZ£1’1~Z‘30 and a monomial z with c4(z) = (1,e3,2 + es, e3 + e1),
es € {0,1} and e; € {0,1,2}. We notice that we can tell the least dimension of z
from c4(z). Since e = p — 5 — ¢/(z) by (3.8) and (3.20), we have

(4.10) esteit+e=p—1—e=4+c(2)
by (3.30). These give rise to a table:
(63761) (070) (07 1) (072) (170) (17 1) (172)
ci(z) || (1,0,2,0) | (1,0,2,1) | (1,0,2,2) | (1,1,3,1) | (1,1,3,2) | (1,1,3,3)
dim z > 3 3 4 3 3 4
w 1 2 2 2 3 3

Here, w is the integer given in Lemma 3.29. We also see that w — ¢/(z) —dim z €
{0,1} by the inequality of Lemma 3.29, and hence w — dim z > 0. The table shows
us that the inequation holds only when (es,e;) = (1,1), dimz = 3 and ¢/(z) = 0.
Then the monomial x is of the form

p—>5

Tj = ay, hn73,3hn71,1hn,Ohnfj,jhj70h4,0h2,0h1,1

for 7 > 5. Since
dM(z;) = —5al Sagh, g ahn—33hn—1.1hn 0hn_j jhjohaohaohii + - #0,

the images d}(z;) are linearly independent. Thus, (4.8) also holds in this case. O
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