A NOTE ON PRODUCTS IN STABLE HOMOTOPY GROUPS OF SPHERES VIA THE CLASSICAL ADAMS SPECTRAL SEQUENCE

RYO KATO AND KATSUMI SHIMOMURA

ABSTRACT. In recent years, Liu and his collaborators found many non-trivial products of generators in the homotopy groups of the sphere spectrum. In this paper, we show a result which not only implies most of their results, but also extends a result of theirs.

1. INTRODUCTION

The homotopy groups $\pi_*(S^0)$ of the sphere spectrum S^0 form an algebra with multiplication given by composition. The determination of the structure of $\pi_*(S^0)$ is one of the most important problems in stable homotopy theory. We study the problem by considering the *p*-component ${}_p\pi_*(S^0)$ of the groups at a prime number *p*. The classical Adams spectral sequence (ASS) and the Adams-Novikov spectral sequence (ANSS) are typical and effective tools for calculating ${}_p\pi_*(S^0)$. We usually use the ANSS to study ${}_p\pi_*(S^0)$ at an odd prime *p*, and the ASS at the prime two. In recent years, Liu and his collaborators advocated that the ASS is sufficiently effective at p > 2 as well as at p = 2. Indeed, they derived out many results on the non-triviality of products of generators in ${}_p\pi_*(S^0)$ from the ASS at p > 2 by use of the May spectral sequence (MSS). Their method is simple as follows: for a product $\xi \in {}_p\pi_{t-s}(S^0)$ of generators, let $\overline{\xi}$ be an element of the E_2 -term ${}^{A}E_2^{s,t}$ of the ASS, which detects ξ . We also consider an element x in the E_1 -term ${}^{M}E_1^{s,t,*}$ of the MSS, which converges to $\overline{\xi}$. Then, they proceed their argument in the following steps:

- 1) The element x is not a coboundary of the first May differential $d_1^M \colon {}^M E_1^{s-1,t,*} \to {}^M E_1^{s,t,*}$.
- 2) For any $r \ge 2$, the domain of the May differential $d_r^M : {}^M\!E_r^{s-1,t,*} \to {}^M\!E_r^{s,t,*}$ is zero, and
- 3) For any $r \geq 2$, the domain of the Adams differential $d_r^A : {}^{A}E_r^{s-r,t-r+1} \rightarrow {}^{A}E_r^{s,t}$ is zero by use of the MSS.

The main theorem of this paper Theorem 1.3 is shown in a similar procedure (Proposition 4.4 and Corollary 4.5 for 1) and 2), and the proof of Theorem 1.3 for 3)) for the homotopy groups $\pi_*(V(2))$ of the second Smith-Toda spectrum V(2) (cf. (1.1)). The result is new one, and implies most of results shown by Liu and his collaborators as a corollary.

From here on, we assume that the prime number p is greater than five. Let $H_*(X)$ denote the mod p reduced homology groups of a spectrum X represented by the mod p Eilenberg-MacLane spectrum H. The E_2 -term ${}^{A}E_2^{*,*}(X)$ of the ASS converging to the homotopy groups ${}_{p}\pi_*(X)$ of a spectrum X is the Ext group $\operatorname{Ext}_{\mathcal{A}_*}^{*,*}(\mathbb{Z}/p, H_*(X))$ of the category of \mathcal{A}_* -comodules. Here $\mathcal{A}_* = H_*(H)$ denotes

the dual of the Steenrod algebra, which is isomorphic as an algebra to the free algebra $P(\xi_i : i \ge 1) \otimes E(\tau_i : i \ge 0)$ over generators ξ_i 's and τ_i 's. Let V(k) for $k \ge -1$ denotes the k-th Smith-Toda spectrum defined by $H_*(V(k)) = E(\tau_i : 0 \le i \le k)$. Then, for $k \le 3$, V(k) is known to exist if and only if $p \ge 2k + 1$ (Smith [32], Toda [33], Ravenel [31]). In particular, if $p \ge 7$, then V(k) for $k \le 3$ are given by the cofiber sequences

(1.1)
$$S^{0} \xrightarrow{p} S^{0} \xrightarrow{i} V(0) \xrightarrow{j} \Sigma S^{0}, \quad \Sigma^{q} V(0) \xrightarrow{\alpha} V(0) \xrightarrow{i_{1}} V(1) \xrightarrow{j_{1}} \Sigma^{q+1} V(0),$$
$$\Sigma^{(p+1)q} V(1) \xrightarrow{\beta} V(1) \xrightarrow{i_{2}} V(2) \xrightarrow{j_{2}} \Sigma^{(p+1)q+1} V(1) \text{ and}$$
$$\Sigma^{(p^{2}+p+1)q} V(2) \xrightarrow{\gamma} V(2) \xrightarrow{i_{3}} V(3) \xrightarrow{j_{3}} \Sigma^{(p^{2}+p+1)q+1} V(2),$$

in which α is the Adams v_1 -periodic map, and β and γ are the v_2 - and the v_3 periodic maps given by Smith and Toda, respectively. Hereafter, q denotes the integer 2p - 2, and $\pi_*(S^0)$ denotes ${}_p\pi_*(S^0)$. In this paper, we consider the Greek letter elements of $\pi_*(S^0)$ and $\pi_*(V(0))$ defined by

(1.2)
$$\alpha_s = j\alpha^s i, \quad \beta_s = jj_1\beta^s i_1 i \quad \text{and} \quad \gamma_s = jj_1j_2\gamma^s i_2i_1 i \in \pi_*(S^0); \quad \text{and} \quad \beta'_1 = j_1\beta i_1 i \in \pi_*(V(0)).$$

We moreover consider some other generators:

$$\zeta_n \in \pi_{(p^n+1)q-3}(S^0), \quad j\xi_n \in \pi_{(p^n+p)q-3}(S^0) \text{ and } \varpi_n \in \pi_{(p^n+2p+1)q-3}(S^0)$$

given by Cohen [1], Lin [4] and Liu [19]. Lin and Zheng [7] and Liu [15] constructed generators $\lambda_{n,s} \in \pi_{(p^n+sp^2+sp+s)q-7}(S^0)$ for $n \ge 2$ and $3 \le s < p-2$. We now state our main theorem, which extends the results [20, Theorems 1.2 and 1.3] of Liu's. In this paper, n denotes a fixed integer > 4.

Theorem 1.3. Let n be an integer greater than four. The following products of elements of $\pi_*(S^0)$ and $\pi_*(V(0))$ are all non-trivial:

$$\begin{array}{ll} \alpha_{1}\varpi_{n}\gamma_{s}\beta_{1}, \ j\xi_{n}\alpha_{1}\beta_{2}\gamma_{s} \in \pi_{(p^{n}+sp^{2}+(s+2)p+s)q-9}(S^{0}) & for \ 3 \leq s < p, \\ \zeta_{n}\beta_{1}\beta_{2}\gamma_{s} \in \pi_{(p^{n}+sp^{2}+(s+2)p+s)q-10}(S^{0}) & for \ 3 \leq s < p-2, \ and \\ \beta_{1}'\lambda_{n,s}\beta_{1} \in \pi_{(p^{n}+sp^{2}+(s+2)p+s)q-10}(V(0)) & for \ 3 \leq s < p-2. \end{array}$$

The proof is given at the end of the paper.

Corollary 1.4. Every factor of the elements $\alpha_1 \varpi_n \gamma_s \beta_1$, $j \xi_n \alpha_1 \beta_2 \gamma_s$, $\zeta_n \beta_1 \beta_2 \gamma_s$ of ${}_p \pi_*(S^0)$ and $\beta'_1 \lambda_{n,s} \beta_1$ of $\pi_*(V(0))$ in the theorem is also non-trivial in the homotopy groups.

We note that the corollary contains almost of all results of Liu and his collaborators on the non-triviality of products of elements of $\pi_*(S^0)$: [2], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [34], [35], [36] and [37].

The authors would like to thank the referee for many useful comments.

2. The Adams spectral sequence for $\pi_*(V(2))$

Hereafter, $P(x_i)$ and $E(x_i)$ denote a polynomial and an exterior algebras on generators x_i over \mathbb{Z}/p , respectively. Let \mathcal{A}_* denote the dual of the Steenrod algebra isomorphic to $P(\xi_1, \xi_2, ...) \otimes E(\tau_0, \tau_1, ...)$ as a graded algebra, where deg $\xi_m =$ $2(p^m - 1)$ and deg $\tau_m = 2p^m - 1$. It is also a Hopf algebra with the coproduct $\Delta : \mathcal{A}_* \to \mathcal{A}_* \otimes \mathcal{A}_*$ given by

$$\Delta \xi_m = \sum_{i=0}^m \xi_{m-i}^{p^i} \otimes \xi_i \quad \text{and} \quad \Delta \tau_m = \tau_m \otimes 1 + \sum_{i=0}^m \xi_{m-i}^{p^i} \otimes \tau_i$$

 $(\xi_0 = 1)$. Consider the Adams spectral sequence

$${}^{A}E_{2}^{s,t}(V(2)) = \operatorname{Ext}_{\mathcal{A}_{*}}^{s,t}(\mathbb{Z}/p, H_{*}(V(2))) \Rightarrow \pi_{t-s}(V(2)).$$

The second Smith-Toda spectrum V(2) satisfies $H_*(V(2)) = E(\tau_0, \tau_1, \tau_2) = \mathcal{A}_* \Box_{\overline{\mathcal{A}}_*} \mathbb{Z}/p$ for the quotient Hopf algebra $\overline{\mathcal{A}}_* = P(\xi_1, \xi_2, \dots) \otimes E(\tau_3, \tau_4, \dots)$, and we have the isomorphisms

by the change of rings theorem (cf. [31, A1.3.13]). The Ext group is determined as the cohomology of the cobar complex $C^*_{\overline{\mathcal{A}}_*}$ defined by $C^s_{\overline{\mathcal{A}}_*} = \overline{\mathcal{A}}_* \otimes \cdots \otimes \overline{\mathcal{A}}_*$ (the *s*-fold tensor product of $\overline{\mathcal{A}}_*$) with coboundary $d_s \colon C^s_{\overline{\mathcal{A}}_*} \to C^{s+1}_{\overline{\mathcal{A}}_*}$ given by $d_s(x) =$ $1 \otimes x + \sum_{i=1}^s (-1)^i \Delta_i(x) + (-1)^{s+1} x \otimes 1$ for $\Delta_i(x_1 \otimes \ldots \otimes x_s) = x_1 \otimes \ldots \otimes \Delta(x_i) \otimes \ldots \otimes x_s$. We consider the following generators:

(2.1)
$$\begin{aligned} h_i &= [\xi_1^{p^i}] \in {}^{A}E_2^{1,p^iq}(V(2)) \text{ and} \\ b_i &= \left[\sum_{k=1}^{p-1} \frac{1}{p} {p \choose k} \xi_1^{kp^i} \otimes \xi_1^{(p-k)p^i}\right] \in {}^{A}E_2^{2,p^{i+1}q}(V(2)) \end{aligned}$$

for $i\geq 0,$ where [x] denotes the cohomology class of a cocycle x of the cobar complex $C^*_{\overline{4}}$. We also have generators

(2.2)
$$g_0 = \langle h_0, h_0, h_1 \rangle \in {}^{A}E_2^{2,(p+2)q}(V(2)) \text{ and } \\ k_0 = \langle h_0, h_1, h_1 \rangle \in {}^{A}E_2^{2,(2p+1)q}(V(2))$$

given by the Massey products. By the juggling theorem of the Massey products, we have a well known relation:

(2.3)
$$g_0h_1 = h_0k_0 \in {}^{A}E_2^{3,2(p+1)q}(V(2)).$$

3. The May spectral sequence

Hereafter, we abbreviate ${}^{A}E_{2}^{*,*}(V(2))$ to ${}^{A}E_{2}^{*,*}$. In this section, we study the Adams E_{2} -term by the May spectral sequence ${}^{M}E_{1}^{s,t,u} \Rightarrow {}^{A}E_{2}^{s,t}$ with

$${}^{M}E_{1}^{*,*,*} = A \otimes H_{0} \otimes H \otimes B$$

and differential $d_r^M : {}^M\!E_r^{s,t,u} \to {}^M\!E_r^{s+1,t,u-r}$. Here,

(3.1)
$$A = P(a_i : i \ge 3), \quad H_0 = E(h_{i,0} : i > 0), \\ H = E(h_{i,j} : i > 0, j > 0) \quad \text{and} \quad B = P(b_{i,j} : i > 0, j \ge 0)$$

on the generators

$$\begin{aligned} a_i \in {}^{M}\!E_1^{1,2p^i-1,2i+1}, \\ h_{i,j} \in {}^{M}\!E_1^{1,2(p^i-1)p^j,2i-1} \quad \text{and} \quad b_{i,j} \in {}^{M}\!E_1^{2,2(p^i-1)p^{j+1},p(2i-1)} \end{aligned}$$

We notice that the May E_1 -term is a graded commutative algebra and the May differentials are derivations. For each element $x \in {}^M E_1^{s,t,u}$, we denote by dim x and

degx the superscripts s and t, respectively. The first May differential d_1^M is given by

(3.2)
$$\begin{aligned} d_1^M(a_i) &= \sum_{3 \le k < i} h_{i-k,k} a_k, \\ d_1^M(h_{i,j}) &= \sum_{0 < k < i} h_{i-k,k+j} h_{k,j} \quad \text{and} \quad d_1^M(b_{i,j}) = 0. \end{aligned}$$

By definition of the May E_1 -term, the generators $h_{1,i}$, $b_{1,i}$, $\hat{g}_0 = h_{2,0}h_{1,0}$ and $\hat{k}_0 = h_{2,0}h_{1,1}$ are obtained by the elements in (2.1) and (2.2). We also have a generator $\hat{\gamma}_s$, see [8, Th. 1.1].

Lemma 3.3. In the May E_1 -term, we have permanent cycles

 $h_{1,i}, \quad b_{1,i}, \quad \widehat{g}_0, \quad \widehat{k}_0 \quad and \quad \widehat{\gamma}_s = a_3^{s-3} h_{3,0} h_{2,1} h_{1,2}$

for $i \geq 0$ and $3 \leq s < p$, which detect h_i , b_i , g_0 , k_0 in (2.1) and (2.2), and $\overline{\gamma}_s \in {}^{AE_2^{*,*}}$, respectively. Here, $\overline{\gamma}_s$ is an element converging to $i_2i_1i\gamma_s \in \pi_{(sp^2+(s-1)p+s-2)q-3}(V(2))$ for the element γ_s in (1.2)

Throughout this paper, the word 'monomial' means a (nonzero) product of algebraic generators of the May E_1 -term up to sign, that is, a monomial xy is identified as yx (without sign) for generators x and y. A monomial $x \in {}^M E_1^{*,*,*}$ is expressed as

(3.4)
$$x = \prod_{x_i \in G} x_i \text{ for a subset } G \subset \{a_{k'}, h_{l,k}, b_{l,k} \mid k' \ge 3, \ k \ge 0, \ l \ge 1\}.$$

In particular, if $G = \emptyset$, then x = 1. A monomial x of ${}^{M}E_{1}^{*,*,*}$ has a factorization

(3.5)
$$x = a(x)h_0(x)f(x)$$
 for $a(x) \in A, h_0(x) \in H_0, f(x) \in H \otimes B$

Let M denote the set of all monomials of ${}^M\!E_1^{*,*,*}$. We define mappings $c, c', c_k \colon M \to \mathbb{Z}$ for $k \ge 0$ so that

$$c'(a_{i}) = 1, \quad c'(h_{i,j}) = 0, \quad c'(b_{i,j}) = 0,$$

$$c_{k}(a_{i}) = \begin{cases} 1 & 0 \le k < i \\ 0 & \text{otherwise} \end{cases}, \quad c_{k}(h_{i,j}) = \begin{cases} 1 & j \le k < i+j \\ 0 & \text{otherwise} \end{cases}$$

$$c_{k}(b_{i,j}) = \begin{cases} 1 & j \le k \le i+j \\ 0 & \text{otherwise} \end{cases}$$

for the generators of ${}^{M}E_{1}^{*,*,*}$, and for a monomial $x = \prod_{i} x_{i}$,

$$c'(x) = \sum_{i} c'(x_i), \quad c_k(x) = \sum_{i} c_k(x_i)$$

and

(3.6)
$$c(x) = \left(\sum_{k\geq 0} c_k(x)p^k\right)q + c'(x).$$

Under the notation, we see that

(3.7) deg x = c(x).

We note that the part $\sum_{k\geq 0} c_k(x)p^k$ of (3.6) is not always the *p*-adic expansion of c in deg x = cq + c'(x). We notice that

$$(3.8) \ c'(x) = c_0(a(x)) = c_1(a(x)) = c_2(a(x)) = \dim a(x), \quad c_0(h_0(x)) = \dim h_0(x)$$

and

(3.9)
$$c_0(x) = c_0(a(x)h_0(x)) = c'(x) + \dim h_0(x) = \dim a(x)h_0(x)$$

Furthermore, we have the following relations on $c_k(x)$:

Lemma 3.10. Let $x \in {}^{M}E_{1}^{*,*,*}$ be a monomial. Then,

1) For integers s, t and u with s > t > u, we have $c_s(x) + c_u(x) - c_t(x) \le \dim x$. 2) For r > 0, dim $h_0(x) - r < c_r(x)$.

Proof. 1) For a monomial $x = \prod_{x_i \in G} x_i$ in (3.4), we put $C_s(x) = \{x_i \in G \mid c_s(x_i) = 1\}$. We notice that $c_s(x) = \#C_s(x)$ and $C_s(x) \cap C_u(x) \subset C_t(x)$. It follows that $c_s(x) + c_u(x) - c_t(x) \le c_s(x) + c_u(x) - \#(C_s(x) \cap C_u(x)) = \#(C_s(x) \cup C_u(x)) \le \dim x.$ 2) We note that dim $h_{i,0} = 1$ and $c_r(h_{i,0}) = 1$ if i > r. For a monomial x =

$$\prod_{x_i \in G} x_i$$
, we have

$$\dim h_0(x) = \dim \prod_{h_{i,0} \in G, i \le r} h_{i,0} + \dim \prod_{h_{i,0} \in G, i > r} h_{i,0} \le r + c_r(x).$$

We introduce a notation:

(3.11)
$$\mathbf{c}_{i}(x) = (c_{i-1}(x), c_{i-2}(x), \dots, c_{0}(x))$$

for $i \geq 1$ and a monomial x.

In the Adams spectral sequence, we write

 $\xi = (y)^{\sim}$

if a permanent cycle y of the E_2 -term detects a homotopy element ξ . This is well defined up to higher filtration of the ASS. The Greek letter elements we consider here are

(3.12)
$$\begin{aligned} \alpha_1 &= (h_0)^{\sim} \in \pi_{q-1}(S^0), \quad \beta_1 &= (b_0)^{\sim} \in \pi_{pq-2}(S^0), \\ \beta_2 &= (k_0)^{\sim} \in \pi_{(2p+1)q-2}(S^0); \quad \text{and} \quad \beta_1' &= (h_1)^{\sim} \in \pi_{pq-1}(V(0)), \end{aligned}$$

and Cohen's [1], Lin's [4] and Liu's elements [19] :

(3.13)
$$\begin{aligned} \zeta_n &= (h_0 b_{n-1})^{\sim} \in \pi_{(p^n+1)q-3}(S^0) \text{ for } n \ge 1, \\ j\xi_n &= (b_0 h_n + h_1 b_{n-1})^{\sim} \in \pi_{(p^n+p)q-3}(S^0) \text{ for } n \ge 3, \\ \varpi_n &= (k_0 h_n)^{\sim} \in \pi_{(p^n+2p+1)q-3}(S^0) \text{ for } n \ge 3. \end{aligned}$$

Lin and Zheng [7] constructed a generator

$$\lambda_n = \langle \zeta_{n-1}'' i_1, \alpha, \beta_1' \rangle = (b_{n-1}g_0)^{\sim} \in \pi_{(p^n + p + 2)q - 4}(V(1))$$

(Toda bracket), where $\zeta_{n-1}'' \in [V(1), V(1)]_{(p^n+1)q-4}$ satisfies $j_1 \zeta_{n-1}'' = ijj_1(\zeta_{n-1} \wedge ij_1) - ijj_1(\zeta_{n-1$ V(1)). Lin and Zheng [7] and Liu [15] showed that the composite $\lambda_{n,s} = jj_1j_2\gamma^s i_2\lambda_n$ satisfying

(3.14)
$$\lambda_{n,s} = (b_{n-1}g_0\overline{\gamma}_s)^{\sim} \in \pi_{(p^n+s(p^2+p+1))q-4-s}(S^0)$$

is essential for $n \ge 4$ and $3 \le s .$ $For a monomial <math>x \in {}^{M}E_{1}^{*,*,*}$, we denote by \widetilde{x} the set of monomials, each of these has degree $\deg x$. Consider a monomial

$$l_{i,j} \in \{h_{i,j}, b_{i,j-1}\},\$$

and we see that $\tilde{l}_{i,j} = \tilde{h}_{i,j} = \tilde{b}_{i,j-1}$. For example,

$$\widetilde{l}_{2,1} = \{h_{2,1}, b_{2,0}, h_{1,2}h_{1,1}, h_{1,1}b_{1,1}, h_{1,2}b_{1,0}, b_{1,1}b_{1,0}, h_{1,1}b_{1,0}^p, b_{1,0}^{p+1}\}$$

and

$$\widetilde{a}_4 = \{a_4, a_3h_{1,3}, a_3b_{1,2}, a_3h_{1,2}b_{1,1}^{p-1}, a_3b_{1,1}^p\}$$

Lemma 3.15. For u > 0 and $k \ge 0$, we consider a monomial x of ${}^{M}E_{1}^{s,c(x),*}$ such that

(3.16)
$$c_i(x) = \begin{cases} u & k \le i < n \\ 0 & i \ge n \end{cases}$$

If $l_{a,b}$ with k < a + b < n (resp. a_b with k < b < n) is a factor of x, then x has a factor in $\tilde{l}_{n-b,b}$ (resp. \tilde{a}_n).

Proof. Consider an element $l_{a,b}$ with k < a + b < n such that $x = x_0 l_{a,b}$ for a monomial x_0 . Then, $c_{a+b-\varepsilon}(x_0) = c_{a+b-\varepsilon}(x) - \varepsilon = u - \varepsilon$ for $\varepsilon = 0, 1$, which shows that x_0 has a factor $l_{\iota_1,a+b}$ for an integer $\iota_1 > 0$. Therefore, x has a factor $l_{\iota_1,a+b} l_{a,b} \in \tilde{l}_{a+\iota_1,b}$. Inductively, we see that x has a factorization

$$l_{\iota_{\ell},s_{\ell}}l_{\iota_{\ell-1},s_{\ell-1}}\cdots l_{\iota_{1},s_{1}}l_{a,b} \text{ for some } \ell > 0 \text{ and } s_{j} = a + b + \sum_{i=1}^{j-1} \iota_{i},$$

which is in $l_{n-b,b}$ if $\iota_{\ell} + s_{\ell} = n$.

The statement for \tilde{a}_n is verified similarly.

For sets S_k for $1 \le k \le \ell$ of monomials in the May E_1 -terms, we consider a set $S_1S_2 \cdots S_\ell = \{x_1x_2 \cdots x_\ell \mid x_k \in S_k\}$

of monomials. In particular, we write $S^e = S \cdots S$ (*e* factors) if e > 0, and $S^0 = \emptyset$ for a set S. We also define

$$\mathbf{S}^{(d)} = \{ x \in \mathbf{S} \mid \dim x = d \}$$

and

$$\underline{\dim} \mathbf{S} = \begin{cases} 0 & \mathbf{S} = \emptyset, \\ \min\{\dim x \mid x \in \mathbf{S}\} & \text{otherwise.} \end{cases}$$

In particular, we have

(3.17)
$$\underline{\dim} \, \tilde{l}^e_{n-\iota,\iota} = \begin{cases} 0 & \iota = 0 \text{ and } e > n, \text{ or } e = 0\\ 2e-1 & otherwise. \end{cases}$$

Indeed, if $e \geq 1$ and $\tilde{l}_{n-i,i}^e \neq \emptyset$, then the dimension of a monomial of the subset

$$(3.18) h_{n-i,i}(\tilde{l}_{n-i,i}^{(2)})^{e-1} \subset \tilde{l}_{n-i,i}$$

is 2e-1 and implies $\underline{\dim} \tilde{l}_{n-i,i}^e = 2e-1$ since $h_{i,j}^2 = 0$.

Proposition 3.19. Suppose that a monomial $x \in {}^{M}E_{1}^{s,c(x),*}$ satisfies (3.16) for integers u > 0 and $k \ge 0$. Then,

$$x = lz \quad for \ l \in \widetilde{a}_n^{e_0} \widetilde{l}_{n-\iota_1,\iota_1}^{e_1} \cdots \widetilde{l}_{n-\iota_m,\iota_m}^{e_m},$$

in which $k \ge \iota_1 > \iota_2 > \cdots > \iota_m \ge 0$ for $m \ge 0$, $e_0 \ge 0$, $e_i > 0$ for each $i \ge 1$, $\sum_{i=0}^{m} e_i = u = c_{n-1}(x)$, and z is a monomial which has no factor of the form $l_{\iota_i - \ell, \ell}$ nor a_{ι_i} . Furthermore, $c_i(z) = 0$ for $i \ge k$ and $c_{\iota_i - 1}(z) \le c_{\iota_i}(z)$.

$$\square$$

Note that we do not claim the uniqueness of the factorization of the proposition.

Proof. By Lemma 3.15, we have an integer $\iota_0 \leq k$ and an element $y_0 \in \tilde{l}_{n-\iota_0,\iota_0} \cup \tilde{a}_n$ such that $x = x_0 y_0$. The factor x_0 also satisfies (3.16) for $k \geq 0$ and u-1 unless u = 1. Inductively, we obtain a factorization

$$x = z y_{u-1} y_{u-2} \dots y_0,$$

for $y_i \in \tilde{l}_{n-\iota_i,\iota_i} \cup \tilde{a}_n$ with $\iota_i \leq k$, and z has no factor of the form $l_{\iota_i-\ell,\ell}$ nor a_{ι_i} . Put $l = y_{u-1} \cdots y_0$, and we may consider $l \in \tilde{a}_{n}^{e_0} \tilde{l}_{n-\iota_1,\iota_1}^{e_1} \cdots \tilde{l}_{n-\iota_m,\iota_m}^{e_m}$ and $\iota_1 > \iota_2 > \cdots > \iota_m \geq 0$. We also obtain the equality $\sum_{j=0}^m e_j = u$. The element z satisfies $c_i(z) = 0$ for $i \geq k$, since $c_i(z) = c_i(x) - c_i(y_{u-1}y_{u-2} \dots y_0) = u - u = 0$.

We also have $c_{\iota_i-1}(z) \leq c_{\iota_i}(z)$. Indeed, if $c_{\iota_i-1}(z) > c_{\iota_i}(z)$, then z should have a factor $z' \in \tilde{l}_{\iota_i-\ell,\ell} \cup \tilde{a}_{\iota_i}$, which implies $y_i z' \in \tilde{l}_{n-\ell,\ell} \cup \tilde{a}_n$. Hence we may replace y_i with $y_i z'$ as a factor of l.

Now consider the internal degree

(3.20)
$$t_0 = (p^n + p^3 + 2p - 1)q + p - 4.$$

We put

(3.21)
$$u_s = \deg a_3^s = (sp^2 + sp + s)q + s \text{ for } s \ge 0.$$

Lemma 3.22. Consider a monomial x of the May E_1 -term ${}^{M}E_1^{p+5+\varepsilon-s-r,t_0-u_s-r+1,*}$ with $\varepsilon \in \{0,1\}$, $0 \le s \le p-4$, and $r \ge 1$. Then $\mathbf{c}_{n+1}(x)$ in (3.11) is

(3.23)
$$\mathbf{c}_{n+1}^{0}(s) = (1, 0, \dots, 0, p-1-s, p+1-s, p-1-s) \text{ or } \\ \mathbf{c}_{n+1}^{1}(s) = (0, p-1, \dots, p-1, p, p-1-s, p+1-s, p-1-s).$$

Proof. We first note that

(3.24)
$$\dim x \le p + 5 - s < 2p - 1 - s$$

by $p \geq 7$. We also note that

(3.25)
$$deg x = t_0 - u_s - r + 1 = (p^n + p^3 - sp^2 + (2 - s)p - 1 - s)q + p - 3 - s - r = (\sum_{k \ge 0} c_k(x)p^k)q + c'(x)$$

by (3.6) and (3.7). Consider the factorization (3.5). By (3.8), we obtain dim $a(x) = c'(x) \equiv p - 3 - s - r \mod q$. The inequality

$$q + p - 3 - s - r > p + 5 + \varepsilon - s - r = \dim x$$

implies

(3.26)
$$\dim a(x) = c'(x) = p - 3 - s - r.$$

Notice that $c_0(x) \equiv -1 - s \mod p$ by (3.25), $0 \leq c_0(x) \leq \dim x$ and $c_0(x) = \dim a(x) + \dim h_0(x)$ by (3.9), and we obtain

(3.27)
$$c_0(x) = p - 1 - s$$
 and $\dim h_0(x) = 2 + r$.

It follows that

(3.28)
$$\dim f(x) = 6 + \varepsilon - r.$$

Since $c_1(x) \equiv 1 - s \mod p$ by (3.25), and $2 \le r + 1 = \dim h_0(x) - 1 \le c_1(x)$ by (3.27) and Lemma 3.10 2), we deduce

$$c_1(x) = p + 1 - s$$

under the condition (3.24), and so

$$c_2(x) = p - 1 - s$$
 and $c_3(x) \equiv 0 \mod p$.

We also see that $c_n(x) = 1$ or = 0. If $c_n(x) = 1$, then $c_i(x) = 0$ for $3 \le i < n$ by degree reason. Therefore, we have $\mathbf{c}_{n+1}(x) = \mathbf{c}_{n+1}^0(s)$ in this case.

Suppose that $c_n(x) = 0$. Then, we have an integer j with $3 \le j < n$ such that

$$c_i(x) = \begin{cases} 0 & 3 \le i < j \\ p & i = j \\ p - 1 & j < i < n \end{cases}.$$

If $j \neq 3$, then Lemma 3.10 1) shows that $p+5+\varepsilon-s-r \geq c_j(x)+c_1(x)-c_3(x) = 2p+1-s$, which contradicts to (3.24). Thus, j=3 and we have $\mathbf{c}_{n+1}(x) = \mathbf{c}_{n+1}^1(s)$.

Lemma 3.29. Let x be a monomial such that $\mathbf{c}_{n+1}(x) = \mathbf{c}_{n+1}^1(s)$ in (3.23). Then,

$$x = lz \text{ for } l \in \tilde{a}_{n}^{e} \tilde{l}_{n-3,3}^{e_{3}} \tilde{l}_{n-1,1}^{e_{1}} \tilde{l}_{n,0}^{e_{0}},$$

where e, e_3, e_1 and e_0 are non-negative integers such that

$$(3.30) e + e_3 + e_1 + e_0 = p - 1$$

 $e_0 \leq n, e_3 \in \{s, s+1\}$ and $e_1 \in \{0, 1, 2\}$. The factor z satisfies $c_i(z) = 0$ for i > 3, $c'(z) \leq 3$,

(3.31)
$$\mathbf{c}_4(z) = (1, e_3 - s, 2 + e_3 - s, e_3 + e_1 - s)$$

and dim $z \ge 3$. Furthermore, $s + r \le \frac{4 + w + \varepsilon - c'(z) - \dim z}{2} < 3$, where w denotes the number of *i*'s with $e_i \ne 0$.

Proof. Consider a factorization

$$x = lz$$

in Proposition 3.19. Since the integer k in Lemma 3.15 is four in our case,

$$l \in \tilde{a}_{n}^{e} \tilde{l}_{n-4,4}^{e_{4}} \tilde{l}_{n-3,3}^{e_{3}} \tilde{l}_{n-2,2}^{e_{2}} \tilde{l}_{n-1,1}^{e_{1}} \tilde{l}_{n,0}^{e_{0}} \quad \text{for } e \geq 0 \text{ and } e_{i} \geq 0 \ (0 \leq i \leq 4) \ , \quad \text{and} \\ c_{i}(z) = 0 \quad \text{for } i \geq 4.$$

We may assume that $e_0 \leq n$. Indeed, if $e_0 > n$, then $\tilde{l}_{n,0}^{e_0} = \emptyset$. Furthermore, the fact $c_{n-1}(x) = p-1$ implies $e + \sum_{i=0}^{4} e_i = p-1$, and so

$$\mathbf{c}_4(z) = \left(1 + e_4, e_4 + e_3 - s, 2 + \sum_{i=2}^4 e_i - s, \sum_{i=1}^4 e_i - s\right)$$

since $\mathbf{c}_n(l) = \left(p-1,\ldots,p-1,\sum_{i=0}^4 e_i,\sum_{i=0}^3 e_i,\sum_{i=0}^2 e_i,e_1+e_0,e_0\right)$. Notice that $c_3(z) > 0 = c_4(z)$ and $c_1(z) > c_2(z)$. Then, the last statement in Proposition 3.19 implies $e_4 = 0$ and $e_2 = 0$. Thus, we obtain (3.30) and (3.31). By (3.31), $c_1(z) = 2 + c_2(z) \ge 2$. If $c_1(z) \ge 3$, then dim $z \ge 3$. If $c_1(z) = 2$, then $c_2(z) = 0$. Therefore, z has a factor $l_{1,3} \in \tilde{l}_{1,3}$ and two factors whose coefficient c_1 is one, and so dim $z \ge 3$.

Proposition 3.19 implies that $2 \ge e_1$ by (3.31) if $e_1 \ne 0$, and that $0 \le c_2(z) = e_3 - s \le c_3(z) = 1$ if $e_3 \ne 0$. We also see $c_2(z) = -s \ge 0$ if $e_3 = 0$. These show $e_1 \in \{0, 1, 2\}$, and $e_3 \in \{s, s+1\}$. Now, $c'(z) = c_1(a(z)) \le c_1(z) \le 3$ by (3.8) and (3.31).

Note that $e_0 \leq n$. By (3.17), we compute

$$\dim x \ge e + 2(e_3 + e_1 + e_0) - w + \dim z$$

= $e + 2(p - 1 - e) - w + \dim z$ (by (3.30))
= $2(p - 1) - (p - 3 - s - r - \dim a(z)) - w + \dim z$
(by $c'(x) = e + \dim a(z)$ and (3.26)).

Since dim $x = p + 5 + \varepsilon - s - r$, $w \leq 3$ and dim $z \geq 3$, we obtain the last inequality.

4. Proof of the main theorem

In this section, we also abbreviate ${}^{A}E_{2}^{*,*}(V(2))$ to ${}^{A}E_{2}^{*,*}$. Put $m_{s}(x) = x\overline{\gamma}_{s}g_{0}h_{1}b_{0}$ for $x \in {}^{A}E_{2}^{*,*}$. Then $m_{s}(h_{n}) \in {}^{A}E_{2}^{s+6,(p^{n}+sp^{2}+(s+2)p+s)q+s}$ and $m_{s}(b_{n-1}) \in {}^{A}E_{2}^{s+7,(p^{n}+sp^{2}+(s+2)p+s)q+s}$. We notice that

(4.1) the elements $m_s(h_n)$ and $m_s(b_{n-1})$ are permanent cycles, since

(4.2) $i_2 i_1 i (\alpha_1 \varpi_n \gamma_s \beta_1) = (m_s(h_n))^{\sim}$ and $i_2 i_1 i (\zeta_n \beta_1 \beta_2 \gamma_s) = (m_s(b_{n-1}))^{\sim}$. Indeed, we have

$$m_s(h_n) = h_n \overline{\gamma}_s g_0 h_1 b_0 = b_0 k_0 h_n h_0 \overline{\gamma}_s = (b_0 h_n + h_1 b_{n-1}) k_0 h_0 \overline{\gamma}_s \text{ and } m_s(b_{n-1}) = b_{n-1} \overline{\gamma}_s g_0 h_1 b_0 = h_0 b_{n-1} b_0 k_0 \overline{\gamma}_s = h_1 b_{n-1} g_0 \overline{\gamma}_s b_0$$

by (2.3), and also (3.12), (3.13) and (3.14) imply

(4.3)

$$i_{2}i_{1}i(\alpha_{1}\varpi_{n}\gamma_{s}\beta_{1}) = (h_{0}k_{0}h_{n}\overline{\gamma}_{s}b_{0})^{\sim}$$

$$= (-(b_{0}h_{n} + h_{1}b_{n-1})h_{0}k_{0}\overline{\gamma}_{s})^{\sim}$$

$$= -i_{2}i_{1}i(j\xi_{n}\alpha_{1}\beta_{2}\gamma_{s}) \text{ and}$$

$$i_{2}i_{1}i(\zeta_{n}\beta_{1}\beta_{2}\gamma_{s}) = (h_{0}b_{n-1}b_{0}k_{0}\overline{\gamma}_{s})^{\sim}$$

$$= (h_{1}b_{n-1}g_{0}\overline{\gamma}_{s}b_{0})^{\sim}$$

$$= i_{2}i_{1}(\beta'_{1}\lambda_{n,s}\beta_{1})$$

in $\pi_*(V(2))$. In particular,

$$i_2 i_1 i \left(\alpha_1 \varpi_n \gamma_s \beta_1 \right) = -i_2 i_1 i \left(j \xi_n \alpha_1 \beta_2 \gamma_s \right)$$

and

$$i_2 i_1 i \left(\zeta_n \beta_1 \beta_2 \gamma_s \right) = i_2 i_1 \left(\beta_1' \lambda_{n,s} \beta_1 \right)$$

up to Adams filtration. In this section, we show that the elements in (4.2) are non-trivial.

Proposition 4.4. The elements $m_{p-1}(h_n)$ and $m_{p-1}(b_{n-1})$ of the Adams E_2 -term are non-trivial.

Proof. Let $y_{\varepsilon} \in {}^{A}E_{2}^{p+5+\varepsilon,t_{0}}$ denote $m_{p-1}(h_{n})$ if $\varepsilon = 0$, and $m_{p-1}(b_{n-1})$ if $\varepsilon = 1$. We also take an element $\overline{y}_{\varepsilon}$ in ${}^{M}E_{1}^{p+5+\varepsilon,t_{0},*}$, which detects y_{ε} . If $y_{\varepsilon} = 0$, then there exists $\overline{x}_{\varepsilon} \in {}^{M}E_{r}^{p+4+\varepsilon,t_{0},*}$ such that $d_{r}^{M}(\overline{x}_{\varepsilon}) = \overline{y}_{\varepsilon}$ for some r. We denote by $x_{\varepsilon} \in {}^{M}E_{1}^{p+4+\varepsilon,t_{0},*}$ a monomial appearing in a term of a representative of $\overline{x}_{\varepsilon}$. By Lemma 3.22 at (s,r) = (0,1), the n-tuple $\mathbf{c}_{n+1}(x_{\varepsilon})$ is $\mathbf{c}_{n+1}^{0}(0)$ or $\mathbf{c}_{n+1}^{1}(0)$ in (3.23). Since $t_{0} \equiv p-4 \mod (q)$ by (3.20), we see $c'(x_{\varepsilon}) = p-4$. Therefore,

$$x_{\varepsilon} \in \begin{cases} \widetilde{a}_{3}^{p-4}\widetilde{l}_{1,n}\widetilde{l}_{1,1}^{2}\widetilde{l}_{3,0}^{3} & \mathbf{c}_{n+1}(x_{\varepsilon}) = \mathbf{c}_{n+1}^{0}(0), \\ \widetilde{a}_{n}^{p-4}\widetilde{l}_{1,3}\widetilde{l}_{1,1}^{2}\widetilde{l}_{n-1,0}^{3} & \mathbf{c}_{n+1}(x_{\varepsilon}) = \mathbf{c}_{n+1}^{1}(0). \end{cases}$$

Since dim $x_{\varepsilon} = p + 4 + \varepsilon$ and $\underline{\dim}\left(\widetilde{a}_{3}^{p-4}\widetilde{l}_{1,n}\widetilde{l}_{1,1}^{2}\widetilde{l}_{3,0}^{3}\right) = p + 5 = \underline{\dim}\left(\widetilde{a}_{n}^{p-4}\widetilde{l}_{1,3}\widetilde{l}_{1,1}^{2}\widetilde{l}_{n-1,0}^{3}\right)$, we have $\varepsilon = 1$. It follows that there is no monomial for x_0 , and so ${}^{M}E_1^{p+3,t_0,*} = 0$. Therefore, \overline{y}_0 survives to $y_0 = m_{p-1}(h_n)$.

We consider the case $\varepsilon = 1$. If $\mathbf{c}_{n+1}(x_1) = \mathbf{c}_{n+1}^1(0)$, then

 $x_1 \in a_n^{p-4} h_{1,3} h_{1,1} b_{1,0} h_{n,0} (\tilde{l}_{n-1,0}^{(2)})^2$

by (3.18). Put $w_{i,j} = h_{n-1-i,i}h_{i,0}h_{n-1-j,j}h_{j,0}$. Then, we see that $(\tilde{l}_{n-1,0}^{(2)})^2 = \{w_{i,j}: 1 \le i < j \le n-2\}$. It follows that the monomial x_1 is of the form $x_{1,i,j} = a_n^{p-4}h_{1,3}h_{1,1}b_{1,0}h_{n,0}w_{i,j}$. Since n > 4, we have

$$d_1^M(x_{1,i,j}) = -4a_n^{p-5}a_4h_{n-4,4}h_{1,3}h_{1,1}b_{1,0}h_{n,0}w_{i,j} + \dots \neq 0.$$

The images $d_1^M(x_{1,i,j})$ are linearly independent, since so are $w_{i,j}$'s. Therefore, any linear combination of $x_{1,i,j}$'s doesn't survive to the May E_2 -term.

For the case $\mathbf{c}_{n+1}(x_1) = \mathbf{c}_{n+1}^0(0)$, we have

$$x_1 \in a_3^{p-4} h_{1,n} h_{1,1} b_{1,0} h_{3,0} (\tilde{l}_{3,0}^{(2)})^2$$

by (3.18). Since $(\tilde{l}_{3,0}^{(2)})^2 = \{h_{1,0}h_{2,0}h_{1,2}h_{2,1}\},\$

 $x_1 = a_3^{p-4} h_{1,n} h_{1,1} b_{1,0} h_{3,0} h_{1,0} h_{2,0} h_{1,2} h_{2,1},$

which converges to $\overline{\gamma}_{p-1}h_1b_0k_0h_n$ in the Adams E_2 -term by Lemma 3.3. Therefore

 $\begin{array}{l} d_r^M(x_1) = 0 \text{ for } r \geq 1, \text{ and so } ^{M}E_r^{s+5,t_0,*} = 0 \text{ for } r \geq 2. \\ \text{By the above argument, for } r \geq 2, \text{ we obtain } d_r(x) = 0 \text{ for any } x \in {}^{M}E_r^{p+5,t_0,*}. \\ \text{Hence } y_1 = m_{p-1}(b_{n-1}) \text{ survives to the Adams } E_2\text{-term.} \end{array}$

Corollary 4.5. The elements $m_s(h_n)$ for $3 \le s < p$ and $m_s(b_{n-1})$ for $3 \le s < p-2$ in the E_2 -terms are non-zero.

Proof. Since $a_3 \in {}^{M}E_1^{*,*,*}$ survives to ${}^{A}E_2^{*,*}$, the multiplication by a_3 induces a homomorphism

(4.6)
$$(a_3)_* \colon {}^{A}E_2^{*,*} \to {}^{A}E_2^{*,*}.$$

Since $a_3^{p-s-1}\widehat{\gamma}_s = \widehat{\gamma}_{p-1}$ in the May E_1 -term by Lemma 3.3, we have $(a_3)_*^{p-s-1}(\overline{\gamma}_s) = \overline{\gamma}_{p-1}$, and hence $(a_3)_*^{p-s-1}(m_s(h_n)) = m_{p-1}(h_n)$. Proposition 4.4 implies the nontriviality of the first element.

Since Lemma 3.3 also implies $(a_3)_*^{p-s-1}(b_{n-1}g_0\overline{\gamma}_s) = b_{n-1}g_0\overline{\gamma}_{p-1}$, we obtain the non-triviality of the second elements similarly by Proposition 4.4.

Remark 4.7. In the May spectral sequence converging to ${}^{A}E_{2}^{*,*}(S^{0})$, the geneator a_3 in the E_1 -term is not permanent, and therefore the map (4.6) is not defined. This is a reason why we consider the second Smith-Toda spectrum V(2) in this paper.

Proof of Theorem 1.3. It suffices to show that

(4.8)
$${}^{A}E_{2}^{p+5+\varepsilon-s'-r,t_{0}-u_{s'}-r+1} = 0$$

for $\varepsilon \in \{0,1\}$, $r \ge 2$ and $s' \ge \varepsilon$. Indeed, if it holds, then the elements $m_{p-1-s'}(h_n)$ and $m_{p-1-s'}(b_{n-1})$ in (4.1) we concern are not in the image of the Adams differential

(4.9)
$$d_r^A: {}^{A}E_r^{p+5+\varepsilon-s'-r,t_0-u_{s'}-r+1} \to {}^{A}E_r^{p+5+\varepsilon-s',t_0-u_{s'}},$$

and the theorem follows from (4.2) and Corollary 4.5. We show (4.8) by verifying

$${}^{M}\!E_{2}^{p+5+\varepsilon-s'-r,t_{0}-u_{s'}-r+1,*}=0$$

For a monomial $x \in {}^{M}E_1^{p+5+\varepsilon-s'-r,t_0-u_{s'}-r+1,*}$ with $r \ge 2$, if $c_3(x) = 0$, then $\dim h_0(x) \le 3$ by Lemma 3.10 2), which contradicts to (3.27). It follows that $\mathbf{c}_{n+1}(x) = \mathbf{c}_{n+1}^1(s')$ by Lemma 3.22, and so $s' + r \le 2$ by Lemma 3.29. This implies

$$(s', r) = (0, 2).$$

Therefore, (4.8) holds except for this case. We will show ${}^{M}E_{2}^{p+3,t_{0}-1,*} = 0$. By Lemma 3.29, a monomial x in ${}^{M}E_{1}^{p+3,t_{0}-1,*}$ is factorized into

$$x = lz$$

for $l \in \widetilde{a}_n^e \widetilde{l}_{n-3,3}^{e_1} \widetilde{l}_{n-1,1}^{e_1} \widetilde{l}_{n,0}^{e_0}$ and a monomial z with $\mathbf{c}_4(z) = (1, e_3, 2 + e_3, e_3 + e_1)$, $e_3 \in \{0, 1\}$ and $e_1 \in \{0, 1, 2\}$. We notice that we can tell the least dimension of zfrom $\mathbf{c}_4(z)$. Since e = p - 5 - c'(z) by (3.8) and (3.20), we have

$$(4.10) e_3 + e_1 + e_0 = p - 1 - e = 4 + c'(z)$$

by (3.30). These give rise to a table:

(e_3, e_1)	(0,0)	(0, 1)	(0, 2)	(1, 0)	(1, 1)	(1, 2)
$\mathbf{c}_4(z)$	(1,0,2,0)	(1, 0, 2, 1)	(1, 0, 2, 2)	(1, 1, 3, 1)	(1, 1, 3, 2)	(1, 1, 3, 3)
$\dim z \geq$	3	3	4	3	3	4
w	1	2	2	2	3	3

Here, w is the integer given in Lemma 3.29. We also see that $w - c'(z) - \dim z \in$ $\{0,1\}$ by the inequality of Lemma 3.29, and hence $w - \dim z > 0$. The table shows us that the inequation holds only when $(e_3, e_1) = (1, 1)$, dim z = 3 and c'(z) = 0. Then the monomial x is of the form

$$x_j = a_n^{p-5} h_{n-3,3} h_{n-1,1} h_{n,0} h_{n-j,j} h_{j,0} h_{4,0} h_{2,0} h_{1,1}$$

for $j \geq 5$. Since

$$d_1^M(x_j) = -5a_n^{p-6}a_4h_{n-4,4}h_{n-3,3}h_{n-1,1}h_{n,0}h_{n-j,j}h_{j,0}h_{4,0}h_{2,0}h_{1,1} + \dots \neq 0,$$

the images $d_1^M(x_j)$ are linearly independent. Thus, (4.8) also holds in this case. \Box

References

- 1. R. L. Cohen, Odd primary infinite families in stable homotopy theory, Mem. Amer. Math. Soc. 30 (1981), no. 242.
- 2. J. Hong, X. Liu, and D. Zheng, On a family involving R. L. Cohen's ζ -element (II), Sci. Chin. Math. 58 (2014), 1-8.
- 3. C.-N. Lee, Detection of some elements in the stable homotopy groups of spheres, Math. Z. **222** (1996), 231–245.
- 4. J. Lin, A new family of filtration three in the stable homotopy of spheres, Hiroshima Math. J. 31 (2001), 477-492.
- 5. J. Lin, New Families in the Stable Homotopy of Spheres Revisited, Acta Mathematica Sinica, English Series 18 (2002), 95–106.
- 6. J. Lin, Two new families in the stable homotopy groups of sphere and Moore spectrum, Chinese Ann. Math. Ser. B 27 (2006), 311-328.
- 7. J. Lin and Q. Zheng, A new family of filtration seven in the stable homotopy of spheres, Hiroshima Math. J. 28 (1998), 183-205.
- 8. X. Liu, A nontrivial product in the stable homotopy groups of spheres, Sci. China Ser. A Math. 47 (2004), 831-841.

- 9. X. Liu, A new family of filtration s + 6 in the stable homotopy groups of spheres, Acta Math. Sci. Ser. B. **26** (2006), 193–201.
- 10. X. Liu, Non-triviality of some compositions $\alpha_1\beta_1\gamma_s$ in the stable homotopy of spheres, Adv. Math. (China) **35** (2006), 733–738.
- 11. X. Liu, Non-trivial of two homotopy elements in $\pi_*(S)$, J. Korean Math. Soc. **43** (2006), 783–801.
- 12. X. Liu, A new infinite family $\alpha_1\beta_2\gamma_s$ in $\pi_*(S)$, JP J. Geom. Topol. 7 (2007), 51–63.
- X. Liu, Non-triviality of an element α₁β₁β_s in the stable homotopy of spheres, Acta Math. Sci. Ser. A. Chin. Ed. **27** (2007), 208–214.
- 14. X. Liu, A nontrivial product of filtration s + 5 in the stable homotopy of spheres, Acta Math. Sin. (Engl. Ser.) **23** (2007), 385–392.
- X. Liu, Some notes on the May spectral sequence (Chinese). Acta Math. Sci. Ser. A. Chin. Ed. 27 (2007), 802–810.
- X. Liu, A nontrivial product in the stable homotopy groups of spheres, Sci. China Ser. A. 47 (2007). 831–841.
- 17. X. Liu, On the convergence of products $\gamma_s h_1 h_n$ in the Adams spectral sequence, Acta Math. Sin. (Engl. Ser.) **23** (2007), 1025–1032.
- X. Liu, Detection of a new non-trivial family in the stable homotopy of spheresπ_{*}(S), Tamkang J. Math. **39** (2008), 75–83.
- X. Liu, Detection of some elements in the stable homotopy groups of spheres, Chin. Ann. Math. Ser. B 29 (2008), 291–316.
- 20. X. Liu, On the ϖ_n -related elements in the stable homotopy group of spheres, Arch. Math. (Basel) **91** (2008), 471–480.
- X. Liu, Some infinite elements in the Adams spectral sequence for the sphere spectrum, J. Math. Kyoto Univ. 48 (2008), 617–629.
- 22. X. Liu, On R. L. Cohen's ζ-element, Algebr. Geom. Topol. 11 (2011). 1709–1735.
- X. Liu, A composite map in the stable homotopy groups of spheres. Forum Math. 25 (2013), 241–253.
- 24. X. Liu and S. Jiang, Convergence of the products $b_0 g_0 \gamma_s$ in Adams spectral sequence, Adv. Math. (Chin.) **38** (2009). 319–326.
- X. Liu and W. Li, A product involving the β-family in stable homotopy theory, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), 411–420.
- X. Liu and K. Ma, A new family in the homotopy groups of spheres, Bull. Iranian Math. Soc. 38 (2012), 313–322.
- 27. X. Liu and X. Wang, The convergence of $\gamma_s(b_0h_n h_1b_{n-1})$, Chinese Ann. Math. Ser. B. 27 (2006), 329–340.
- X. Liu and H. Zhao, On two non-trivial products in the stable homotopy groups of spheres, Bol. Soc. Mat. Mexicana 13 (2007), 367–380.
- X. Liu, H. Zhao and Y. Jin, A non-trivial product of filtration s + 6 in the stable homotopy groups of spheres. Acta Math. Sci. Ser. B. Engl. Ed. 29 (2009), 276–284.
- 30. X. Liu and D. Zheng, On a family involving R. L. Cohen's ζ -element. Topol. Appl. 160 (2013), 394–405.
- D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, AMS Chelsea Publishing, Providence, 2004.
- 32. L. Smith, On realizing complex bordism modules, Amer. J. Math. 92 (1970), 793-856.
- H. Toda, On spectra realizing exterior parts of the Steenrod algebra, Topology, 10 (1971), 53–65.
- 34. X. Wang and Q. Zheng, The convergence of α̃⁽ⁿ⁾_sh₀h_k, Sci. China (ser. A), **41** (1998), 622–628.
 35. H. Zhao, X. Liu and Y. Jin, A non-trivial product of filtration s + 6 in the stable homotopy groups of spheres, Acta Math. Sci. Ser. B Engl. Ed. **29** (2009), 276–284.
- 36. L. Zhong and X. Liu, On homotopy element $\alpha_1\beta_1\beta_2\gamma_s$, Chin. Ann. Math., Ser. A **34** (2013), 487–498.
- L. Zhong and Y. Wang, Detection of a nontrivial product in the stable homotopy groups of spheres, Algebr. Geom. Topol. 13 (2013), 3009–3029.

12

Faculty of Fundamental Science, National Institute of Technology, Niihama College, Niihama, 792-8580, Japan

E-mail address: ryo_kato_1128@yahoo.co.jp

Department of Mathematics, Faculty of Science and Technology, Kochi University, Kochi, 780-8520, Japan

E-mail address: katsumi@kochi-u.ac.jp