
PRODUCTS OF GREEK LETTER ELEMENTS DUG UP FROM
THE THIRD MORAVA STABILIZER ALGEBRA

RYO KATO AND KATSUMI SHIMOMURA

Abstract. In [3], Oka and the second author considered the cohomology of
the second Morava stabilizer algebra to study nontriviality of the products of

beta elements of the stable homotopy groups of spheres. In this paper, we
use the cohomology of the third Morava stabilizer algebra to find nontrivial
products of Greek letters of the stable homotopy groups of spheres: α1γt, β2γt,
〈α1, α1, βp

p/p
〉γtβ1 and 〈β1, p, γt〉 for t with p - t(t2 − 1) for a prime number

p > 5.

1. Introduction

Greek letter elements are well known generators of the stable homotopy groups
of spheres localized at a prime p. Studying products among these elements is an
interesting subject, and studied by several authors. For example, at an odd prime
p, all products of alpha elements are trivial. In [3], we used H∗S(2) to study
nontriviality of the product of beta elements. In this paper, we use H∗S(3) to
find relations of Greek letters. The multiplicative structure of H∗S(3) is given by
Yamaguchi [7], but unfortunately, it has some typos. So here, our computation is
based on Ravenel’s.

Let βp/p be the generator of the E2-term E2,p2q
2 (S) of the Adams-Novikov spec-

tral sequence converging to the homotopy groups π∗(S) of the sphere spectrum S.
Hereafter, q = 2p − 2 as usual. A relation given by Toda implies that βp/p dies in
the Adams-Novikov spectral sequence at a prime p > 2. At the prime two, β2

2/2 = 0
by [2, Prop. 8.22], while at the prime numbers three and five, Ravenel showed that
βp

p/p survives to a homotopy element of π∗(S) and α1β
p
p/p = 0 for the generator α1

of πq−1(S). Here, we show the following

Theorem 1.1. At a prime p > 3, βp
p/p survives to π(p3−1)q−2(S) and α1β

p
p/p = 0.

Corollary 1.2. At a prime p > 3, the Toda bracket 〈α1, α1, β
p
p/p〉

(
= α1βp2/p2

)
is

defined.

Remark 1.3. It is already known that α1βp2/p2 survives in the Adams-Novikov
spectral sequence by the work of R. Cohen [1]. Corollary 1.2 states that the Cohen’s
element is a Toda bracket 〈α1, α1, β

p
p/p〉.

We notice that at the prime 3, Ravenel showed these in [4].
Let β1, β2 and γt (t > 0) be the generators of Coker J of dimensions pq − 2,

(2p + 1)q − 2 and (tp2 + (t − 1)p + t − 2)q − 3, respectively.

Theorem 1.4. Let p > 5, and t be a positive integer with p - t(t2 − 1). Then,
the elements α1γt, β2γt, 〈α1, α1, β

p
p/p〉β1γt and 〈β1, p, γt〉 generate subgroups of the
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stable homotopy groups of spheres isomorphic to Z/p. Besides, even in the case
p|(t + 1), β1γt and 〈β1, p, γt〉 are generators of order p.

Note that 〈β1, p, γt〉 = 〈γt, p, β1〉. We also notice that if t = 1, then 〈γ1, p, β1〉 =
0, while β2γ1 is non-trivial (see section five).

From here on, we assume that the prime number p is greater than three.

2. H∗S(3) revisited

We begin with recalling some notation from Ravenel’s green book [4]. Let BP
denote the Brown-Peterson spectrum. Then, the pair

(BP∗, BP∗(BP )) = (Z(p)[v1, v2, . . . ], BP∗[t1, t2, . . . ])

is a Hopf algebroid. Here, the degrees of vi and ti are 2pi − 2. The structure maps
act as follows:

(2.1)

ηR(v1) = v1 + pt1
ηR(v2) ≡ v2 + v1t

p
1 + pt2 mod (p2, vp

1)
ηR(v3) ≡ v3 + v2t

p2

1 + v1t
p
2 + pt3

−pv1v
p−1
2 (t2 + tp+1

1 ) mod (p2, v2
1 , vp

2)
∆(t1) = t1 ⊗ 1 + 1 ⊗ t1
∆(t2) = t2 ⊗ 1 + t1 ⊗ tp1 + 1 ⊗ t2 − v1b10

∆(t3) ≡ t3 ⊗ 1 + t2 ⊗ tp
2

1 + t1 ⊗ tp2 + 1 ⊗ t3 mod (v1, v2)
∆(t4) ≡ t4 ⊗ 1 + t3 ⊗ tp

3

1 + t2 ⊗ tp
2

2 + t1 ⊗ tp3 + 1 ⊗ t4
−v3b12 mod (v1, v2)

∆(t5) = t5 ⊗ 1 + t4 ⊗ tp
4

1 + t3 ⊗ tp
3

2 + t2 ⊗ tp
2

3 + t1 ⊗ tp4 + 1 ⊗ t5
−v3b22 − v4b13 mod (p, v1, v2)

for
(2.2)

b1k =
1
p

(
∆(t1)pk+1 − tp

k+1

1 ⊗ 1 − 1 ⊗ tp
k+1

1

)
=

1
p

pk+1−1∑
i=1

(
pk+1

i

)
ti1 ⊗ tp

k+1−i
1 and

b2k =
1
p

(
∆(t2)pk+1 − tp

k+1

2 ⊗ 1 − tp
k+1

1 ⊗ tp
k+2

1 − 1 ⊗ tp
k+1

2 − vpk+1

1 b1k+1

)
.

Let K(3)∗ = Fp[v3, v
−1
3 ] have the BP∗-module structure given by viv

s
3 = vs

3vi =
vs+1
3 if i = 3, and = 0 otherwise, and

Σ(3) = K(3)∗ ⊗BP∗ BP∗(BP ) ⊗BP∗ K(3)∗
= K(3)∗[t1, t2, . . . ]/(v3t

p3

i − vpi

3 ti : i > 0) (by [4, 6.1.16])

is the Hopf algebra with structure inherited from BP∗(BP ). Define the Hopf alge-
bra S(3) by S(3) = Σ(3) ⊗K(3)∗Fp, where K(3)∗ acts on Fp by v3 · 1 = 1. Then,

S(3) = Fp[t1, t2, . . . ]/(tp
3

i − ti : i > 0).

Now we abbreviate ExtS(3)(Fp, Fp) to H∗S(3).
Consider integers di (= d3,i in [4, 6.3.1])

di =

{
0 i ≤ 0,

max(i, pdi−3) i > 0.
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Then, there is a unique increasing filtration of the Hopf algebroid S(3) with deg
tp

j

i = di for 0 ≤ j < 3.

Theorem 2.3. (Ravenel[4, 6.3.2]) The associated Hopf algebra E0S(3) is isomor-
phic to the truncated polynomial algebra of height p on the elements tp

j

i for i > 0
and j ∈ Z/3, with coproduct defined by

∆(tp
j

i ) =

{∑i
k=0 tp

j

k ⊗ tp
k+j

i−k i ≤ 3,

tp
j

i ⊗ 1 + 1 ⊗ tp
j

i + bi−3,j+2 i > 3.

Let L(3) be the Lie algebra without restriction with basis xi,j for i > 0 and
j ∈ Z/3 and bracket given by

[xi,j , xk,l] =

{
δl
i+jxi+k,j − δj

k+lxi+k,l for i + k ≤ 3,
0 otherwise,

where δi
j = 1 if i ≡ j mod 3 and 0 otherwise, and L(3, k) the quotient of L(3)

obtained by setting xi,j = 0 for i > k. Then, Ravenel noticed in [4, 6.3.8]:

Theorem 2.4. H∗(L(3, k)) for k ≤ 3 is the cohomology of the exterior complex
E(hi,j)on one-dimensional generators hi,j with i ≤ k and j ∈ Z/3, with coboundary

d(hi,j) =
i−1∑
s=1

hs,jhi−s,s+j .

From now on, we abbreviate hi,j to hij , and h1j to hj .
Under the above filtration, Ravenel constructed the May spectral sequences

Theorem 2.5. (Ravenel [4, 6.3.4, 6.3.5]) There are spectral sequences
(a) E2 = H∗(L(3, 3)) =⇒ H∗(E0S(3)) and
(b) E2 = H∗(E0S(3)) =⇒ H∗(S(3)).

Since these spectral sequences collapse, H∗S(3) is additively isomorphic to H∗L(3, 3).
Therefore, we have a projection

(2.6) π : H∗S(3) → E0H∗S(3) = H∗(E0S(3)) = H∗L(3, 3).

Note that the Massey product 〈hi, hi+1, hi+2, hi〉 is homologous to v
(2−p)pi

3 bi+2 rep-
resented by v

(2−p)pi

3 b1,i+2 of (2.2), and π assigns the Massey product to bi+2 ∈
H∗L(3, 3). Ravenel determined in [4, 6.3.34] the additive structure of H∗L(3, 3).
In particular, we have the following:

Theorem 2.7. H∗L(3, 3) contains submodules generated by the linear independent
elements:

h1k1ζ3, b0k1ζ3, h0l, k0l, h0b0b2l and h1l.

Here, l = h2h21h30, ki = h2ihi+1 (i = 0, 1), b0 = h1h32 + h21h20 + h31h1, b2 =
h0h31 + h20h22 + h30h0 and ζ3 = h30 + h31 + h32.

Proof. In the table of the proof of [4, 6.3.34], we find the elements

h0, h1, k0, b0, b2, l, l′ = h0h22h31, and ζ3,

as well as the first element h1k1ζ3 of the theorem. We also have the element
−h1k1h30 = h1h2h21h30 in the table, which is the last element h1l of the theorem.
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Besides h1k1h31 and h1k1h32 are in the table too. We see that b0k1 = −h1k1h31 +
h1k1h32 and so the second element is given by b0k1ζ3 = −h1k1h31ζ3 + h1k1h32ζ3.

The element h0b0b2lζ3 is computed as

h0h2h21h30(h1h32 + h21h20 + h31h1)(h0h31 + h20h22 + h30h0)(h30 + h31 + h32)
= −2h0h1h2h20h21h22h30h31h32.

Therefore, h0b0b2l is the dual of the generator − 1
2ζ3, and the elements h0b0b2l and

h0l are generators. Similarly, a computation

k0ll
′ζ3 = h20h1h2h21h30h0h22h31(h30 + h31 + h32)

= h0h1h2h20h21h22h30h31h32

shows that k0l is the dual of the generator l′ζ3. ¤

Lemma 2.8. In H∗L(3, 3), h0k1 = 0 and k0k1 = 0.

Proof. From the proof of [4, 6.3.34], we read off the relations h0k1 = e30h2 and
k0k1 = e30g1 in H∗L(3, 2). Since e30 cobounds h30 in H∗L(3, 3), the lemma follows.

¤

3. Greek letter elements

Let Es,t
r (X) denote the Er-term of the Adams-Novikov spectral sequence con-

verging to the homotopy group πt−s(X) of a spectrum X. Then the E2-term is
ExtBP∗(BP )(BP∗, BP∗(X)). We here consider the Ext-group ExtBP∗(BP )(BP∗, M)
for a BP∗(BP )-comodule M as the cohomology of the cobar complex Ω∗

BP∗(BP )M

(cf. [2]). Consider a sequence A = (a0, a1, . . . , an) of non-negative integers so that
the sequence pa0 , va1

1 , . . . , van
n is invariant and regular. For such a sequence A,

Miller, Ravenel and Wilson introduced in [2] n-th Greek letter elements η
(n)
s(A) in

the Adams-Novikov E2-term E
n,t(A)
2 (S) by

(3.1) η
(n)
s(A) = δA,1 · · · δA,n(van

n ) ∈ E
n,t(A)
2 (S)

for van
n ∈ Ext0,2an(pn−1)

BP∗(BP ) (BP∗, BP∗/I(A,n)). Here, s(A) = an/an−1, an−2, · · · , a0

and t(A) = 2an(pn−1)−2
∑n−1

i=0 ai(pi−1), I(A, k) denotes the ideal of BP∗ gener-
ated by pa0 , va1

1 , . . . , v
ak−1
k−1 , and δA,k+1 is the connecting homomorphism associated

to the short exact sequence

0 → BP∗/I(A, k)
v

ak
k−−→ BP∗/I(A, k) → BP∗/I(A, k + 1) → 0.

In particular, we write α = η(1), β = η(2) and γ = η(3). So far, only when n ≤ 3,
many conditions for that Greek letter elements survives to homotopy elements are
known. We abbreviate η

(n)
s(A) to η

(n)
an if A = (1, . . . , 1, an) as usual. For example, we

consider β-elements defined by

(3.2)
βs = δ(1,1),1(β′

s) ∈ E
2,t(1,1,s)
2 (S)

for β′
s = δ(1,1),2(vs

2) ∈ E
1,t(1,1,s)
2 (V (0)), and

βpi/pi = βpi/pi,1 = δ(1,pi),1δ(1,pi),2(v
pi

2 ) ∈ E
2,t(1,pi,pi)
2 (S).
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Hereafter we assume that the prime p is greater than three. We have the Smith-
Toda spectrum V (k) for k = 0, 1, 2 defined by the cofiber sequences

(3.3)

S
p−→ S

i−→ V (0)
j−→ ΣS,

ΣqV (0) α−→ V (0) i1−→ V (1)
j1−→ Σq+1V (0) and

Σ(p+1)qV (1)
β−→ V (1) i2−→ V (2)

j2−→ Σ(p+1)q+1V (1).

Here, α ∈ [V (0), V (0)]q is the Adams map and β ∈ [V (1), V (1)](p+1)q is the v2-
periodic element due to L. Smith. Note that the BP∗-homology of these spectra
are BP∗(V (k)) = BP∗/Ik+1 for the ideal Ik of BP∗ generated by vi for 0 ≤ i < k
with v0 = p. We consider the Bousfield-Ravenel localization functor L3 with respect
to v−1

3 BP . The E2-term E∗
2 (L3V (2)) of L3V (2) is isomorphic to K(3)∗ ⊗H∗S(3),

whose structure is given in [4] (see also [7]), and we consider the composite

r : E∗
2 (S) ι∗−→ E∗

2 (V (2))
η−→ E∗

2 (L3V (2))
ρ−→ H∗(S(3)) π−→ H∗L(3, 3).

Here the first map is induced from the inclusion ι : S → V (2) to the bottom cell,
the second is from the localization map, the third is obtained by setting v3 = 1 and
the last is the projection (2.6).

Lemma 3.4. The map r assigns the Greek letter elements as follows:

r(α1) = h0, r(β1) = −b0, r(β2) = 2k0,
r(γt) = −t(t2 − 1)l − t(t − 1)k1ζ3 and r(βp/p) = −b1.

We also have β′
1 = h1−vp−1

1 h0 ∈ E1,pq
2 (V (0)) for the generators hi of E1,piq

2 (V (0))
represented by tp

i

1 .

Proof. First we consider the images of the Greek letter elements under the map
ι∗ : E∗

2 (S) → E∗
2 (V (2)). In the cobar complex Ω∗

BP∗(BP )BP∗, by (2.1), d(v1) = pt1,

d(vpi

2 ) ≡ vpi

1 tp
i+1

1 − vpi+1

1 tp
i

1 mod (p) for i ≥ 0, d(v2
2) ≡ 2v1v2t

p
1 + v2

1t2p
1 mod (p, vp

1),
and d(vt

3) ≡ tv2v
t−1
3 tp

2

1 +
(

t
2

)
v2
2vt−2

3 t2p2

1 +
(

t
3

)
v3
2vt−3

3 t3p2

1 mod (p, v1, v
4
2), which imply

δ(1),1(v1) = [t1], δ(1,1),2(v2) = [tp1 − vp−1
1 t1],

δ(1,1),2(v2
2) = [2v2t

p
1 + v1t

2p
1 + vp−1

1 y], δ(1,p),2(v
p
2) = [tp

2

1 − vp2−p
1 tp1] and

δ(1,1,1),3(vt
3) = [tvt−1

3 tp
2

1 +
(

t
2

)
v2v

t−2
3 t2p2

1 +
(

t
3

)
v2
2vt−3

3 t3p2

1 + v3
2z] = γt,

for cochains y ∈ Ω1
BP∗(BP )BP∗/(p) and z ∈ Ω1

BP∗(BP )BP∗/(p, v1). Here, [x] denotes
a cohomology class represented by a cocycle x. The first one shows α1 = h0, and the
second gives the last statement of the lemma. We further see that d(tp

k

1 ) = −pb1k−1

for k ≥ 1 and d(vk) ≡ ptk mod I((2, 1, 1), k) for k = 2, 3 by (2.1) in ∈ Ω1
BP∗(BP )BP∗.

Moreover, [b1k]’s are assigned to bk in H∗L(3, 3) under the projection π, and we
obtain

rδ(1,pk−1),1(hk − vpk−pk−1

1 hk−1) = −bk−1 for k = 1, 2,
rδ(1,1),1([2v2t

p
1 + v1t

2p
1 ]) = 2k0,

δ(1,1,1),2(γt) = [t(t − 1)vt−2
3 tp2 ⊗ tp

2

1 +
(

t
2

)
vt−2
3 tp1 ⊗ t2p2

1 + w] = γ′
t and

rδ(1,1,1),1(γ′
t) = t(t − 1)(t − 2)h30k1 + t(t − 1)rδ(1,1,1),1([t

p
2 ⊗ tp

2

1 + 1
2 tp1 ⊗ t2p2

1 ]).

Here, w is a linear combination of terms in the ideal (v1, v2)2. Thus the relations
other than r(γt) follows.
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We note that b20 in (2.2) corresponds to h21h30+h31h21 by ∆(t5)p in (2.1). Since
d(tp2) = −tp1⊗tp

2

1 +vp
1b11−pb20 by (2.1), we obtain rδ(1,1,1),1([t

p
2⊗tp

2

1 + 1
2 tp1⊗t2p2

1 ]) =
−(h21h30 +h31h21)h2 +h21b1 = −3l−k1ζ3, which shows the relation on r(γt). ¤

Recall the cofiber sequences (3.3) and the v3-periodic element γ ∈ [V (2), V (2)]q3

(q3 = (p2 + p + 1)q) due to H. Toda. Then, the Greek letter elements in homotopy
are defined by

(3.5) αt = jαti, βt = jβ′
t for β′

t = j1β
ti1i and γt = jj1j2γ

ti2i1i

for t > 0, and the Greek elements in the E2-term survives to the same named one
in homotopy by the Geometric Boundary Theorem (cf. [4]).

Proof of Theorem 1.4. We begin with noticing that the element bi in H∗L(3, 3) is
the image of the Massey product 〈hi, hi+1, hi+2, hi〉 under π, which is homologous to
bi represented by b1i in (2.2). We further note that the Toda brackets 〈α1, α1, β

p
p/p〉

and 〈β1, p, γt〉 are detected by α1b2 and h1γt of E∗
2 (S), respectively. Indeed, in

the first bracket, d2p−1(b2) = α1β
p
p/p by Corollary 4.4 below, and in the second

bracket, 〈β1, p, γt〉 = j〈β′
1, p, γt〉. Under the condition on t, Lemmas 3.4, 2.7 and

2.8 imply that each element of α1γt, β2γt, α1b2γtβ1 and h1γt, as well as β1γt,
generates a submodule isomorphic to Z/p of the E2-term E∗

2 (S). These are, of
course, permanent cycles, and nothing kills them in the Adams-Novikov spectral
sequence since each element has a filtration degree less than 2p − 1. ¤

4. βp
p/p in the homotopy of spheres

Let X and X be the (p − 1)q- and (p − 2)q-skeletons of the Brown-Peterson
spectrum BP . Then, we have the cofiber sequences

(4.1) S
ι−→ X

κ−→ ΣqX
λ−→ S1 and X

ι′−→ X
κ′

−→ S(p−1)q λ′

−→ ΣX.

Then,

BP∗(X) = BP∗[x]/(xp) and BP∗(X) = BP∗[x]/(xp−1)

as subcomodules of BP∗(BP ), where x corresponds to t1. From [4, Chap.7], we
read off the following:

(4.2) bp
1 = 0 ∈ E2p,p3q

2 (X), which implies

E2s+e,tq
2 (X) = 0 if s ≥ p and t < (s − 1)p2 + (s + 1 + e)p.

Lemma 4.3. b0 : E2s+e,tq
2 (S) → E

2s+2+e,(t+p)q
2 (S) is monomorphic if s ≥ p and

t ≤ (s − 1)p2 + (s + e)p.

Proof. Note that b0 = λλ′, and the lemma follows from (4.2) and the exact se-
quences

E
2s+e,(t+p−1)q
2 (X) κ′

−→ E2s+e,tq
2 (S) λ′

−→ E
2s+1+e,(t+p−1)q
2 (X)

E
2s+e+1,(t+p)q
2 (X) → E

2s+e+1,(t+p−1)q
2 (X) λ−→ E

2s+2+e,(t+p)q
2 (S)

induced from the cofiber sequences in (4.1). ¤
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Ravenel showed that d2p−1(βp2/p2) ≡ α1β
p
p/p mod Ker βp

1 in the Adams-Novikov

spectral sequence for π∗(S) (cf. [4, 6.4.1]). Here, the mapping βp
1 on E

2p+1,(p3+1)q
2 (S)

is a monomorphism by Lemma 4.3:

Corollary 4.4. In the Adams-Novikov spectral sequence for π∗(S), d2p−1(βp2/p2) =

α1β
p
p/p ∈ E

2p+1,(p3+1)q
2p−1 (S) = E

2p+1,(p3+1)q
2 (S).

Proof of Theorem 1.1. Consider the first cofiber sequence in (4.1). Since the Adams-
Novikov E2-term E

sq+3,(p3+s)q
2 (X) vanishes for s > 0 by (4.2), the element ι∗(βp2/p2)

∈ E2,p3q
2 (X) survives to a homotopy element Xβp2/p2 ∈ π∗(X). In general, we see

that

(4.5) Let ι : S → X denote the inclusion to the bottom cell. Then, λ∗ι(x) = α1x
for x ∈ E∗

2 (S).

Put βp/p = ι∗(βp/p) ∈ E2,p2q
2 (X), and we see that λ∗(β

p

p/p) = α1β
p
p/p, and so we see

that β
p

p/p detects an essential homotopy element κ∗(Xβp2/p2) ∈ π∗(X) by Corollary
4.4 and [5], which we also denote by β

p

p/p.
Now turn to the second cofiber sequence in (4.1). The relation bp

1 = 0 of (4.2)
yields a cochain y =

∑p−1
i=0 xiyi ∈ Ω2p−1BP∗(X) such that d(y) = bp

1, where
yi ∈ Ω2p−1BP∗. It follows that d(y) = bp

1 − d(xp−1)yp−1 ∈ Ω2pBP∗(X) for
y =

∑p−2
i=0 xiyi ∈ Ω2p−1BP∗(X). In particular d(yp−1) = 0 ∈ Ω2p−1BP∗ and

d(yp−2) = (1 − p)t1 ⊗ yp−1. By definition, these imply λ′
∗(yp−1) = bp

1. Con-
sider the exact sequence obtained by applying the homotopy groups to the second
cofiber sequence. Then, ι′∗(β

p

p/p) = 0 by (4.2), and so β
p

p/p must be pulled back
to an element ξ ∈ π∗(S) detected by yp−1. Since b0 = λλ′, b0yp−1 = h0b

p
1, and

〈h0, . . . , h0〉yp−1 = h0〈h0, . . . , h0, yp−1〉, we see that

bp
1 ≡ 〈h0, . . . , h0, yp−1〉 6≡ 0 ∈ E2p,p3q

2 (S) mod kerh0.

Put bp
1 = 〈h0, . . . , h0, yp−1〉 + c for c ∈ ker h0 ⊂ E2p,p3q

2 (S). Then, bp
1 − c survives

to βp
p/p ∈ π∗(S).

The element α1β
p
p/p is detected by h0(b

p
1 − c) = h0b

p
1 in the Adams-Novikov

E2-term, which is killed by b2 by Corollary 4.4. ¤

5. Remarks

5.1. A relation on Toda bracket. The relation 〈βs, p, γt〉 = 〈γt, p, βs〉 follows im-
mediately from results of Toda: By definition, 〈βs, p, γt〉 = jβ(s)γ(t)i and 〈γt, p, βs〉 =
jγ(t)β(s)i for β(s) = j1β

si1 and γ(t) = j1j2γ
ti2i1. Since V (2) and V (3) are V (0)-

module spectra, θ(β) = 0 and θ(γ) = 0 by [6, Lemma 2.3]. Similarly, θ(ik) = 0
and θ(jk) = 0 for k = 1, 2. Therefore, [6, Lemma 2.2] implies θ(β(s)) = 0 and
θ(γ(t)) = 0. Therefore, β(s)γ(t) = γ(t)β(s) by [6, Cor. 2.7] as desired.

5.2. On the action of γ1. Note that γ1 = α1βp−1. Then, α1γ1 = α2
1βp−1 = 0,

〈α1, α1, β
p
p/p〉β1γ1 = −α1〈α1, α1, β

p
p/p〉β1βp−1 = −〈α1, α1, α1〉βp

p/pβ1βp−1 = 0 since
〈α1, α1, α1〉 = 0, and 〈γ1, p, β1〉 = βp−1〈α1, p, β1〉 = βp−1jαj1βi1i = 0.
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For t ≥ 2,

βt = δ(1,1),1δ(1,1),2(vt
2) = δ(1,1),1([tvt−1

2 tp1 +
(

t
2

)
v1v

t−2
2 t2p

1 + v2
1x])

≡ [t(t − 1)vt−2
2 t2 ⊗ tp1 − tvt−1

2 b0 +
(

t
2

)
vt−2
2 t1 ⊗ t2p

1 ] mod (p, v1)
≡ t(t − 1)vt−2

2 k0 − tvt−1
2 b0 mod (p, v1)

and α1β2βp−1 ∈ E5
2(S0) is projected to h0(2k0 − 2v2b0)(2vp−3

2 k0 + vp−2
2 b0) =

−2vp−2
2 h0k0b0 − 2h0v

p−1
2 b2

0 in E5
2(V (2)) under the induced map i∗ from the in-

clusion i : S0 → V (2) to the bottom cell. Here, k0 = [t2 ⊗ tp1 + 1
2 t1 ⊗ t2p

1 ].

Then, this element is detected by −2vp−2
2 k0 ∈ E3

1 = E
2,(p2+p−1)q
2 (X ∧ V (2)) in

the small descent spectral sequence. The killer of this element, if any, stays in
the E1-terms E2

1 = E
2,(p2+p)q
2 (X ∧ V (2)), E1

1 = E
3,(p2+2p−1)q
2 (X ∧ V (2)) and

E0
1 = E

4,(p2+2p)q
2 (X ∧ V (2)). These are zero, and we see that the product is not

zero.
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