PRODUCTS OF GREEK LETTER ELEMENTS DUG UP FROM
THE THIRD MORAVA STABILIZER ALGEBRA

RYO KATO AND KATSUMI SHIMOMURA

ABSTRACT. In (3], Oka and the second author considered the cohomology of
the second Morava stabilizer algebra to study nontriviality of the products of
beta elements of the stable homotopy groups of spheres. In this paper, we
use the cohomology of the third Morava stabilizer algebra to find nontrivial
products of Greek letters of the stable homotopy groups of spheres: a1+, B27t,
<a1,a1,ﬁ§/p)%ﬁ1 and (B1,p,v:) for t with p { t(t2 — 1) for a prime number
p > 5.

1. INTRODUCTION

Greek letter elements are well known generators of the stable homotopy groups
of spheres localized at a prime p. Studying products among these elements is an
interesting subject, and studied by several authors. For example, at an odd prime
p, all products of alpha elements are trivial. In [3], we used H*S(2) to study
nontriviality of the product of beta elements. In this paper, we use H*S(3) to
find relations of Greek letters. The multiplicative structure of H*S(3) is given by
Yamaguchi [7], but unfortunately, it has some typos. So here, our computation is
based on Ravenel’s. )

Let f3,/, be the generator of the Es-term E2P"1(S) of the Adams-Novikov spec-
tral sequence converging to the homotopy groups 7. (S) of the sphere spectrum S.
Hereafter, ¢ = 2p — 2 as usual. A relation given by Toda implies that 3,,, dies in
the Adams-Novikov spectral sequence at a prime p > 2. At the prime two, ﬁg i 0
by [2, Prop. 8.22], while at the prime numbers three and five, Ravenel showed that
ﬁ;’ Ip survives to a homotopy element of 7,(S) and oy ﬂ;’ o= 0 for the generator ag
of my_1(S). Here, we show the following

Theorem 1.1. At a prime p > 3, ﬂg/p survives to m(ps_1)q—2(S) and alﬂg/p =0.

Corollary 1.2. At a prime p > 3, the Toda bracket (al,al,ﬂ;’/p> (: alﬁpz/p2) is
defined.

Remark 1.3. It is already known that i3, /p? Survives in the Adams-Novikov
spectral sequence by the work of R. Cohen [1]. Corollary 1.2 states that the Cohen’s
element is a Toda bracket (a1, a7, Bﬁ/p>.

We notice that at the prime 3, Ravenel showed these in [4].
Let 1, B2 and v (¢t > 0) be the generators of Coker J of dimensions pg — 2,
(2p+1)g — 2 and (tp? + (t — 1)p +t — 2)q — 3, respectively.

Theorem 1.4. Let p > 5, and t be a positive integer with p { t(t> — 1). Then,

the elements a1y, Baye, (o, aq, ﬁﬁ/p>,@1'yt and {B1,p,7v:) generate subgroups of the
1



2 RYO KATO AND KATSUMI SHIMOMURA
stable homotopy groups of spheres isomorphic to Z/p. Besides, even in the case
pl(t+ 1), Biye and (B1,p, ) are generators of order p.

Note that (581, p, %) = (%, p, 51). We also notice that if ¢ = 1, then (v, p, 81) =
0, while 8271 is non-trivial (see section five).
From here on, we assume that the prime number p is greater than three.

2. H*S(3) REVISITED

We begin with recalling some notation from Ravenel’s green book [4]. Let BP
denote the Brown-Peterson spectrum. Then, the pair

(BP., BP.(BP)) = (Z([v1,va,...], BP.[t1,ta,...])

is a Hopf algebroid. Here, the degrees of v; and t; are 2p* — 2. The structure maps
act as follows:

nr(vi) = v1+pt
nr(ve) = wva+vit) +pta mod (p?,v})
2
nr(vs) = wvg+ vt +vith + pts
pord 2+ ) mod (52,02, 08)
Alt])) = HR1+104
(2.1) Alts) = @1+t @t +1®@ts —v1bio
2
Alts) = t301+t® t’fs +t ®t§2+ 1®t; mod (vy,v2)
Alts) = ta®@1+t30t +t0th +t1@th +1Q1y
71}3[)12 IIlOd (1)171)2)
Ats) = t5®1+t4®tp +t3®t” +t2®tp +hth +1@ts
—v3bay — v4b13 mod (p,v1,v2)
for
(2.2)
1 k41 k41 k41 ]_ k+1 . k1
by = 7<At1p -t ®@l1-1ot) ):f < e
(s - ) = VS e
1 k41 k41 ket k41 prt
bop, = , (A(tQ)P’““ -8 @1-t ® t{’ -1ttt - blkﬂ)
Let K(3). = F,[v3,v5 '] have the BP,-module structure given by v;v§ = v§v; =
v§+1 if = 3, and = 0 otherwise, and
¥(3) = K(3).®pp, BP. (BP) ®BP* K(3).

K(3). [tl,tg,...]/(’l)gtp — vk "ti:i>0) (by [4, 6.1.16])

is the Hopf algebra with structure inherited from BP,(BP). Define the Hopf alge-
bra S(3) by S(3) = ¥(3) @k s).Fp, where K(3). acts on F), by vz -1 = 1. Then,

S(3) = Fylt1 ta, ... ]/ (# —t; 1> 0).

Now we abbreviate Extgs)(F}, F) to H*S(3).
Consider integers d; (= ds; in [4, 6.3.1])

4 — 0 1<0
"\ max(i,pdi_3) i> 0.

and
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Then, there is a unique increasing filtration of the Hopf algebroid S(3) with deg
7 = d; for 0<j < 3.
Theorem 2.3. (Ravenel[4, 6.3.2]) The associated Hopf algebra E°S(3) is isomor-

phic to the truncated polynomial algebra of height p on the elements tf] fori >0
and j € Z/3, with coproduct defined by

Ay = { Sheo @85 i<3,
' Q1+ 1@ +bigj40 0> 3.

Let L(3) be the Lie algebra without restriction with basis x;; for i > 0 and
j € Z/3 and bracket given by

s 5 2d] = 5f+jxi+k7j — 5i:+lmi+k’l for ¢ + k < 3,
R 0 otherwise,

where 0% = 1 if i = j mod 3 and 0 otherwise, and L(3,k) the quotient of L(3)
obtained by setting x; ; = 0 for ¢ > k. Then, Ravenel noticed in [4, 6.3.8]:

Theorem 2.4. H*(L(3,k)) for k < 3 is the cohomology of the exterior complex
E(h; j)on one-dimensional generators h; ; with i <k and j € Z/3, with coboundary

i—1
d(hi,j) = Z hs,jhi—s,s—i-j-
s=1

From now on, we abbreviate h; ; to h;, and hy; to h;.
Under the above filtration, Ravenel constructed the May spectral sequences

Theorem 2.5. (Ravenel [4, 6.3.4, 6.3.5]) There are spectral sequences
(a) BEo = H*(L(3,3)) = H*(EoS(3)) and
(b) Ey = H*(EoS(3)) = H"(5(3))-

Since these spectral sequences collapse, H*S(3) is additively isomorphic to H*L(3, 3).
Therefore, we have a projection
(2.6) 7: H*S(3) — EH*S(3) = H*(EoS(3)) = H*L(3,3).

Note that the Massey product (h;, hi11, hit2, hi) is homologous to véz_pw bi42 rep-

resented by v§2_p)pib17i+2 of (2.2), and 7 assigns the Massey product to ;1o €
H*L(3,3). Ravenel determined in [4, 6.3.34] the additive structure of H*L(3,3).
In particular, we have the following:

Theorem 2.7. H*L(3,3) contains submodules generated by the linear independent
elements:

hikiCs, bokiCs, hol, kol, hobobal and hyl.
Here, | = hahaihsg, ki = hojhiy1 (1 = 0,1), by = hihsa + hathog + hs1hi, by =
hohs1 + haohaa + haoho and (3 = hso + ha1 + haz.
Proof. In the table of the proof of [4, 6.3.34], we find the elements
ho, hi, ko, by, ba, 1, U'=hohashs, and (s,

as well as the first element hik;(5 of the theorem. We also have the element
—hi1k1hsg = h1hohaihsg in the table, which is the last element hil of the theorem.
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Besides hiki1hs1 and hikihss are in the table too. We see that boky = —hik1hs1 +
h1k1hs2 and so the second element is given by bok1(3 = —h1k1h31(s + h1k1h32(5.
The element hgbgb2l(3 is computed as

hohgha1hso(h1hsa + ha1hao + hai1hi)(hohst + haoohag + haoho) (hso + hs1 + hs2)
= —2hgohihahaohaihaohsohsihas.

Therefore, hobgbal is the dual of the generator —7C3, and the elements hgbgbsl and
hol are generators. Similarly, a computation

koll'Cs = haohihaohoihsohohaohsi (hso + hs1 + hsa)
= hohihahaohoihashsohsihso

shows that kgl is the dual of the generator I'(s. O

Lemma 2.8. In H*L(373), hokl =0 and kokl = 0.

Proof. From the proof of [4, 6.3.34], we read off the relations hok; = ezphe and
kok1 = esog1 in H*L(3,2). Since e3g cobounds hgg in H*L(3, 3), the lemma follows.
[l

3. GREEK LETTER ELEMENTS

Let E5%(X) denote the E,-term of the Adams-Novikov spectral sequence con-
verging to the homotopy group m;_(X) of a spectrum X. Then the Es-term is
Extpp, (p)(BPx, BP,(X)). We here consider the Ext-group Extgp, (gp)(BP:, M)
for a BP,(BP)-comodule M as the cohomology of the cobar complex Q};P*(BP)M

(cf. [2]). Consider a sequence A = (ag,ay,...,a,) of non-negative integers so that
the sequence p®, o', ... ,v%" is invariant and regular. For such a sequence A,

Miller, Ravenel and Wilson introduced in [2] n-th Greek letter elements nia) in

the Adams-Novikov Es-term Ej ’t(A)(S) by

(3.1) g@x) = a1 0an(vin) € Ey t(A)(S>

for vin € Ext%?f"(gp)_l)(BP BP,/I(A,n)). Here, s(A) = an/an-1,0n-2,"-- a0
and t(A) = 2a,(p™ — 1) 230, Y ai(pt —1), I(A, k) denotes the ideal of BP, gener-

ated by p, v, ... ,kal , and 04 41 is the connecting homomorphism associated
to the short exact sequence

0 — BP,/I(A, k) 2> BP,/I(A,k) — BP,/I(A k +1) — 0.

In particular, we write @ = n, g =7 and v = n(®. So far, only when n < 3,
many conditions for that Greek letter elements survives to homotopy elements are
known. We abbreviate n (2‘) to 7]((17:) if A=(1,...,1,a,) as usual. For example, we
consider (-elements defined by

Bs = 81y (0) € BEy'H(8)
(3.2) for B, = 61,1),2(v5) € By (V(0)), and
(1,1),2(v2
2’ 1’ i’ 7
Bpi/zﬂ = ﬁp’/zﬂ,l = 6(17191),15 1#)2(”5 ) € E, Hptp )(S)-
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Hereafter we assume that the prime p is greater than three. We have the Smith-
Toda spectrum V (k) for k = 0,1, 2 defined by the cofiber sequences

st sLvod s,
(3.3) $9V(0) 2 V(0) 5 V(1) L% £0+1Y(0)  and
e+Vay (1) L v(1) 2 v(2) £ seherty (),
Here, a € [V(0),V(0)]4 is the Adams map and 3 € [V(1),V(1)]pt1)q is the vo-
periodic element due to L. Smith. Note that the BP,-homology of these spectra
are BP,(V(k)) = BP, /I for the ideal I}, of BP, generated by v; for 0 <i < k
with vg = p. We consider the Bousfield-Ravenel localization functor Lz with respect
to vy ' BP. The Ex-term Ej(L3V(2)) of L3V (2) is isomorphic to K (3), @ H*S(3),
whose structure is given in [4] (see also [7]), and we consider the composite
r: E3(S) 5 B3 (V(2) L E3(LsV(2) & H*(S(3)) & H*L(3,3).

Here the first map is induced from the inclusion ¢: S — V(2) to the bottom cell,
the second is from the localization map, the third is obtained by setting vs = 1 and
the last is the projection (2.6).

Lemma 3.4. The map r assigns the Greek letter elements as follows:

T'(Oé]_) = hOa r(ﬁl) - _bo, T'(ﬁz) = 2k07

W) = —HE—DI—tt—DkiGs and 1(By) = —b.
We also have 3] = hy — 0P hg € EyPI(V(0)) for the generators h; of E%’piq(V(O))
represented by 2.

Proof. First we consider the images of the Greek letter elements under the map
ts: E5(S) — E3(V(2)). In the cobar complex Q% p, (5pyBPs; by (2.1), d(v1) = pty,

d(vgi) = v{’it’fiﬂ - vpbﬂt’fi mod (p) for i > 0, d(v3) = 2v1v2t? + V222 mod (p, v?),

and d(v}) = tvzvé_ltfz + (;)vgvg_Qt?)Q + (;)vgvé_3t‘;’p2 mod (p, v, v3), which imply

Saya(vi) = [t], danye() = [ —ol '],
01,1)2(v3) = [2v9t] +2v1t?’+v{’ 1?4],2 d(1,p),2(v5) = [ty —v) Pf] and
Saas(®y) = [t 4+ (§vavs " + (§)odus 0 +03z] = 7,

for cochains y € Qpp (ppyBP:/(p) and z € Qpp (pp)BP./(p,v1). Here, [2] denotes
a cohomology class represented by a cocycle x. The first one shows a; = hg, and the

second gives the last statement of the lemma. We further see that d(t’fk) = —pbi1r_1
for k > 1 and d(vg) = pt mod I((2,1,1),k) for k=2,3by (2.1)in € Q}BP*(BP)BP*.
Moreover, [byj]’s are assigned to by in H*L(3,3) under the projection 7, and we
obtain

T(S(l,pk—l)’l(hk — ’Ufk_pkilhk_l) = —by_1 fork=1,2,
ré1) ([2vat] + 01837]) = 2k, ] )
Suane(T) = [tt—-1os B et + ()i @1 +w] = 4, and
2 2
ré (V) = t(t —1)(t — 2)haoks +t(t — V)rdq 111 ([th @ + 37 @ 6377]).

Here, w is a linear combination of terms in the ideal (v1,v2)%. Thus the relations
other than r(~;) follows.
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‘We note that by in (22) corresponds to hoihsg+hsiha1 by A(t5)p in (21) Since

2 2 2
d(th) = —t{ @t] +v]b1y —pbag by (2.1), we obtain (1 1 1)1 ([th®t] —&-%t’f@t?p ) =
—(ha1hso + hs1ha1)ha + ho1by = —31 — k1 (3, which shows the relation on r(y;). O

Recall the cofiber sequences (3.3) and the vs-periodic element vy € [V(2), V(2)]4,
(g3 = (p?> + p+1)q) due to H. Toda. Then, the Greek letter elements in homotopy
are defined by

(35) ay = ja'i, B = jB; for B = jiftiii and . = jjijayinini
for t > 0, and the Greek elements in the Fs-term survives to the same named one

in homotopy by the Geometric Boundary Theorem (cf. [4]).

Proof of Theorem 1.4. We begin with noticing that the element b; in H*L(3,3) is
the image of the Massey product {(h;, hit1, hit2, h;) under 7, which is homologous to

b; represented by by; in (2.2). We further note that the Toda brackets {aq, a1, ﬁﬁ /p>

and (B1,p,v) are detected by aiby and hivy of E3(S), respectively. Indeed, in
the first bracket, dop—1(b2) = alﬂg/p by Corollary 4.4 below, and in the second

bracket, (81,p,v) = j{0B1,p,7:). Under the condition on ¢, Lemmas 3.4, 2.7 and
2.8 imply that each element of aiv:, Boy:, a1boy:f1 and hivye, as well as (17,
generates a submodule isomorphic to Z/p of the Es-term E3(S). These are, of
course, permanent cycles, and nothing kills them in the Adams-Novikov spectral
sequence since each element has a filtration degree less than 2p — 1. ([l

4. ﬂg/p IN THE HOMOTOPY OF SPHERES

Let X and X be the (p — 1)¢g- and (p — 2)g-skeletons of the Brown-Peterson
spectrum BP. Then, we have the cofiber sequences

(4.1) SLXEwX A5 and X4 x &L g-ba XL v
Then,
BP,(X) = BP,[z]/(2?) and BP.(X)= BP.[z]/(z'")

as subcomodules of BP,(BP), where x corresponds to ¢t;. From [4, Chap.7], we
read off the following:

(4.2) bl =0¢€ E;p’pSQ(X), which implies
EFTOM(X)=0 ifs>pandt < (s—1)p*+ (s+1+e)p.

Lemma 4.3. by: E3*T¢"(S) — E§S+2+e’(t+p)q(5’) is monomorphic if s > p and
t<(s—1p*+(s+e)p.

Proof. Note that by = AN, and the lemma follows from (4.2) and the exact se-
quences

E223+e,(t+p—1)q(X) f@_’)Egere,tq(S) >\_/>E228+1+6,(t+p—1)Q(Y)
2s+e+1,(t+ 2s+e+1,(t+p—1)q v\ A 25+2+-¢,(t+
E; ( P)Q(X) — E; (t+p )Q(X) X B ( P)Q(S)

induced from the cofiber sequences in (4.1). O
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Ravenel showed that dap_1 (3,2 /p2) = ,6;’ /o mod Ker 37 in the Adams-Novikov

spectral sequence for 7, (S) (cf. [4, 6.4.1]). Here, the mapping 3} on E22p+17(p3+1)q(5)
is a monomorphism by Lemma 4.3:

Corollary 4.4. In the Adams-Novikov spectral sequence for m.(S), dop—1(Bp2/p2) =
2p+1,(p3+1 2p+1,(p3+1
alﬂg/p € E2£71 (p )q(S) = B (P )q(S)'

Proof of Theorem 1.1. Consider the first cofiber sequence in (4.1). Since the Adams-
“ 3
Novikov Ea-term E;HS’(’J +S)q(X) vanishes for s > 0 by (4.2), the element ¢, (82 /p2)

3
€ E3?"9(X) survives to a homotopy element %3,z > € m,(X). In general, we see
that

(4.5) Leti: S — X denote the inclusion to the bottom cell. Then, \i(r) = ayx
for x € E3(S).

Put 3, = 7. (Byp) € Eg’qu(Y), and we see that )\*(Bz/p) = alﬂg/p, and so we see

that ﬂz /p detects an essential homotopy element K,*(Xﬁpz /p2) € T (X) by Corollary

4.4 and [5], which we also denote by ﬂz/p.

Now turn to the second cofiber sequence in (4.1). The relation by = 0 of (4.2)
yields a cochain y = Zf;ol zly; € Q?P71BP.(X) such that d(y) = b}, where
yi € Q®71BP,. It follows that d(y) = 0] — d(zP"Ny,-1 € Q*BP.(X) for
y = f;oz 2y, € Q?P7'BP,(X). In particular d(y,—1) = 0 € Q*"1BP, and
d(yp—2) = (1 — p)t1 ® yp—1. By definition, these imply N, (y,—1) = b). Con-
sider the exact sequence obtained by applying the homotopy groups to the second
cofiber sequence. Then, L;(Bﬁ/p) = 0 by (4.2), and so Bi/p must be pulled back
to an element ¢ € m,(S) detected by y,—1. Since by = AN, boyp—1 = hob], and
<h0, ey h0>yp,1 = h0<h0, ey h(),yp,1>7 we see that

W = (ho, ..., ho,yp_1) Z0 € E2PP°9(S) mod ker ho.

Put v} = (ho,...,ho,yp—1) + ¢ for ¢ € kerhy C E;p’pgq(S). Then, b} — ¢ survives
to B2, € m.(9).

p/p
The element a1 /3y, is detected by ho(by — ¢) = hob{ in the Adams-Novikov
E>-term, which is killed by by by Corollary 4.4. (I

5. REMARKS

5.1. A relation on Toda bracket. The relation (s, p,v:) = (v, p, Bs) follows im-
mediately from results of Toda: By definition, (s, p,v¢) = 78(s)V(#)t and (v¢,p, Bs) =
IV Bs)t for By = j16%1 and 7y = jijey'izii. Since V(2) and V(3) are V(0)-
module spectra, 8(3) = 0 and 6(y) = 0 by [6, Lemma 2.3]. Similarly, 6(ix) = 0
and 0(jr) = 0 for k = 1,2. Therefore, [6, Lemma 2.2] implies §(55)) = 0 and
0(v(t)) = 0. Therefore, B(s)vt) = Y(t)Bs) by [6, Cor. 2.7] as desired.

5.2. On the action of ;. Note that v; = a18,-1. Then, axy1 = a3f3,-1 = 0,

<041,041,5;’/,,>5W1 = —041<041,041,5§/p>515p—1 = (a1, 1, 01) ﬁ/pﬂlﬂp—l = 0 since

(a1,a1,a1) =0, and (y1,p, 1) = Bp—1{c1,p, B1) = Bp—1jaj1Biri = 0.
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Fort > 2,
/61‘/ = 6(171)’1(5(171)’2<’U§) = 5(171)’1<[t’11571t117 + (;)’U1U272t%p + ’U%ZL’])
= [tt— i @ t) -t b + (H)vh i @ t77] mod (p, 1)
t(t — 1)k 2kg — tvl 'y mod (p,v1)
and a18, 1 € E3(8°) is projected to ho(2ko — 2vabo)(205 ko 4+ 05 2by) =
—208 2 hokobo — 2hovE b2 in E3(V(2)) under the induced map i, from the in-
clusion i: S — V(2) to the bottom cell. Here, ko = [to ® £} + 3t1 ® t}"].
2
Then, this element is detected by —2v8 ko € E? = Eg’(p D9 X A V(2)) in
the small descent spectral sequence. The Kkiller of this element, if any, stays in
2 2
the Ey-terms E2 = E2W X AV(2), B} = EXP27D9X A V(2)) and
2
EY = EyW 24X A V(2)). These are zero, and we see that the product is not
zero.
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