ON PRODUCTS OF BETA AND GAMMA ELEMENTS IN THE
HOMOTOPY OF THE FIRST SMITH-TODA SPECTRUM

KATSUMI SHIMOMURA AND MAO-NO-SUKE SHIMOMURA

ABSTRACT. In this paper, we determine the first cohomology of the monochro-
matic comodule M21 at an odd prime, and apply the results to show non-
trivialities of some products of beta and gamma elements in the homotopy
groups of the Smith-Toda spectrum V' (1). The cohomology for a prime greater
than three was determined by the first author [10]. Here, we verify them and
determine the cohomology at the prime 3 by elementary calculation. The
cohomology will be a stepping stone for computing the cohomology of the
monochromatic comodule Mg’, which we hope to determine for a long time.

1. INTRODUCTION

Let p be an odd prime number, and S(,) denote the stable homotopy category
of p-local spectra. Let S € &(,) denote the sphere spectrum. Then, the mod
p Moore spectrum M and the first Smith-Toda spectrum V(1) are given by the
cofiber sequences

(1.1) ST SHMLYS and YIM S M2 v(1) L neti,

Here, p € mo(S5) = Zy), and a € [M, M|, denotes the Adams map. Hereafter, we
put

q=2p—2€.
In order to study the homotopy groups m,(X) of a spectrum X, we adopt the
Adams-Novikov spectral sequence

(1.2) ESY(X) = H*'BP,(X) = m_4(X).
Hereafter, we abbreviate as
H*'M = Ext3p pp) (BPe, M)

for a BP.(BP)-comodule M over the Hopf algebroid
(1.3) (BP., BP.(BP)) = (Z)[vi,va, . ..], BP:[t1,t2,...])

based on the Brown-Peterson spectrum BP € §(,,). We note that v;’s are Hazewinkel’s
generators and the degrees of v; and t; are |v;| = 2p® — 2 = |t;| (cf. [2, (1.1)]).
Let

(1.4) I, =(p,v1,...,vp—1) and J; = (p, vl,v%)
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(vp = p) denote the invariant ideals of BP,.. Since BP,(«) = wvi, the cofiber
sequences (1.1) induce the short exact sequences

0— BP, & BP, s BP,/I, -0 and
0— BP./I, ™ BP./I, Y BRI, 0
along with the isomorphisms

BP,(S)= BP,, BP,(M)=BP,/I,, and BP,(V(1))= BP,/I,.

(1.5)

Furthermore, we have a short exact sequence

(1.6) 0— BP./I -2 BP,/I, 2 BP,/J; 0

for j > 1. We denote by 8o: H*BP,/I; — H**'\BP,, 8,: H*BP,/I, — H**\BP, /I,
and Ej; HSBP*/JJ- — HSHBP*/IQ, the connecting homomorphisms associated to
the short exact sequences (1.5) and (1.6). We define the Greek letter elements by:

B.=01(v;) €E}(M)=H'BP,/I, forvie H'BP,/I,
Bs =0001(v5) € E3(S)= H?BP, for v € H'BP, /I, and
7!, =0;(v§)  €E}V(1)=H'BP./I, forv§e HBP,/J;,

and 7] = 7, € E3(V(1)). We notice that 1 < j < p" if p"|s, so that v§ €
HYBP,/J;.

Let Z and N denote the set of all integers and its subset consisting of all non-
negative integers, respectively. We denote by Z®) (= Z \ pZ) and N®)(= N \ pN)
the set of the integers prime to p, and decompose Z®) into the three summands:

7°) = 7511211 Zo, for
(1.7) Zo={scZ® |pt(s+1)}, Zi={scZ® |p?|(s+1)}, and
Zo={s€Z® |p|(s+1)and p*t (s + 1)}.
We consider subsets of N:
2N5o = {s € N| s is even > 2}, 2N = {s € N| s is odd},
Ny ={seN® |p?f(s+p+1), orp*|(s+p+1)}, and
No = {s € N® | p}(s+2), or p® | (s +2)(s+2+p)}
Furthermore, we put Zj =7Z; NN for : = 0,1,2. We introduce the subsets U, U
and U, of N(®) x N given by
Uy = (NP x 2N) U (Z§ x N),
U{ = (N® x {0}) U (N; x 2N50) U ((Z§ NN2) x N) U (Z§ x {1}),
Uy = (N; x 2N) U (((Zg NN2)UZ]) x N)U (N®) x {1}) and
Uy = (N1 x {0}) U (N®) x ({1} U2Ns0)) U ((Zg UZT) x N).

Our main result is the following:

Theorem 1.8. Let p be an odd prime. In the Adams-Novikov Ea-term for com-
puting m.(V (1)), By and B, act on the gamma elements 7y, ,; ((s,r) € N® x N
and 1 < j <p") by:
5. By 20 for (s,1) € Uy if p= 5, and for (s,r) € U if p=3,
ﬁ’s’pr/jEQ #0 for (s,r) €Uz if p> 5, and for (s,r) € Uy if p=3,
in E3(V(1)).
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We notice that there is a way to define %/pr/j for j < a, (a, in (2.7)) so that

vg_lfy;’pr /i = Yepr» and the theorem holds for such extended gamma elements. We

also notice that 8, = (3)vy *By + s(2 — s)vy~' B, mod I, (cf. [5, Lemma 4.4]), and

SO
= (t\_ _ B _
’}/gpr/jﬂt = (2) ’7;/1)T/j—t+2/62 + t(2 - t),ygpr/j—t-l-lﬁl'

Thus, Theorem 1.8 implies non-triviality of the products of igp,,. /j and 3,.

The Adams-Novikov differential d, = 0 if ¢ t (r — 1) by the sparseness of the
spectral sequence (1.2). This shows that the products in the theorem are not in the
image of any differentials d,.. It is well known that the elements 3, and 3, converge
to the homotopy elements 5 and B2 € 7. (S), respectively, in the spectral sequence

(1.2) for X = 5.
=/

Corollary 1.9. Let p be an odd prime. If Vepr /i € EY(V (1)) is a permanent cycle
detecting Vgpr/j € m.(V (1)), then, VQ;r/j»Bz‘ # 0 (i = 1,2) in the homotopy groups
m(V (1)) for (s,r) given in Theorem 1.8.

Toda [12, Th. 1] and Oka [4, Th. 4.2] showed that +{ and 7], , are permanent

cycles for p > 7.

Corollary 1.10. Let p > 7 and r and s be integers with (s,r) € N®) x N. Then,
in m.(V(1)),

Vi 1iP1 # 0 if ris even or pf (s + 1),
VopryiB2 0 if PP A (s+p+1) or pPl(s +p+1),
Vg’pg,,.ﬂ/jﬁg #£0 forr>1ifpt(s+1)(s+2), p?l(s+1) or p?|(s +2)(s+2+p).

and 'y;'p/jﬁQ #0, where j = 1,2.

Theorem 1.8 follows from Theorem 2.9, which states the structure of the first
cohomology of the monochromatic comodule Mj. The cohomology H!MJ} was
determined by the first author [10] based on the computation in [9] at a prime > 5.
In this paper, we determine the cohomology based on elementary calculation at an
odd prime. The generators are explicitly given so that we can use the result easily
in further computation. This result will be a stepping stone for determining the
long desired cohomology H*Mg.

This paper is organized as follows: In the next section, we state the main result,
Theorem 2.9, which gives the structure of H!MJ}. In section three, we prove Theo-
rems 2.9 and 1.8 assuming Lemma 3.4, whose proof will be given in the last section.
Section four is devoted to introducing some formulas, cochains and relations for the
following sections. We refine the elements z3 ; given in [2, (5.11)] to define x;, which
induce the cochains y,; and y, ; € Q' E(3). in section five.

The authors would like to express their gratitude to the referee for his careful
reading of the manuscript and useful suggestions.

2. THE STRUCTURE OF H'M}

In this section, we state the structure of H!MJ for an odd prime p obtained in
this paper. The structure was given in [10], which was done for the prime p > 5.
We begin with defining the monochromatic BP,(BP)-comodules N and M}
inductively by
N° =BP,/I,,, M:=v} N

s+nt'n
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for the ideal I,, in (1.4) and the short exact sequence

(2.1) 0— N =% M3 =% N3t — 0

([2, §3. A.]). Since BP, is a BP,(BP)-comodule with structure map ng, the right
unit map of the Hopf algebroid BP,(BP), these monochromatic comodules have
the structure maps induced from ng.

Let E(3) denote the third Johnson-Wilson spectrum, which yields a Hopf alge-
broid

(E(3)+, E(3)«(B(3))) = (Zp)[v1, v2,v3,05 ), E(3)« ®pp. BP.(BP) ®pp, B(3).).
Its structure maps are induced from the Hopf algebroid (BP,, BP,(BP)) in (1.3).
Since we have the Miller-Ravenel change of rings theorem

H*M = Extyp pp)(BP, M) = Extls)_(g) (EQ3)« E(3). @pp, M)

for a vs-local BP,(BP)-comodule M ([1, Th. 3.10]), we denote the cohomology of
an E(3).(E(3))-comodule M also by

H*M = Exts), (m(3)) (E(3)« M).

By virtue of the change of rings theorem, we denote simply by M: the E(3).(E(3))-
comodule E(3). ®pp, MS. In this paper, we consider the Ext group as the coho-
mology group of the cobar complex

(2.2) WM =M @ps), EG)«(EQ)) @p@). - Ops). EG)-(E(3))

(s factors of E(3).(E(3))) with well known differentials d,.: Q"M — Q"M (see
(4.1)).

The cohomology H!M? of the monochromatic comodules with s +n = 3 are
determined in the following cases (cf. [8, 6.3.12. Th., 6.3.14. Th.], [2, Th. 5.10]) :

HOMY = K(3).,
H'M$ = K(3).{ho, h1, h2, (s},

(2.3) H2MY = K (3).{gi, ki, bis hiCs | i € Z/3} and
HOM} = K(2)./kQ2). & P k2)./(v5){z}/v5}.

i>0,5€Z(®)

Indeed, we read off H* MY = K (3), ® H*S(3) from [8, 6.2.1. Prop.], where S(3) is
the Hopf algebra defined in [8, §6.2]. The cohomology groups H* M and HYM? for
p > 5 are also determined by Ravenel [8, 6.3.34. Th.] and Nakai [3], respectively.
Here,

k(2). = Z/plva), K(2)s = Z/plva,vy '] and K(3) = Z/p[vs,v3 ']
(K(3)« = E(3)./I3 = My). The elements z;(= x3;) are introduced in [2, (5.11)]

such that z; = vgl mod I3 (see Lemma 5.1), and the generators h;, (3, g;, k; and
b; are defined by cocycles in the cobar complex Q*E(3)./I5 as follows:

Hereafter, [z] denotes the cohomology class represented by a cocycle x, and the
representatives in (2.4) are defined by
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2 2 2
Z = —v3tcts + 11;;1’#3’ R A A
i i (3 i+1
Gi=1 @t + 367 ot]
(2.5) K=ot + St et " and
p—1 1 ) )
b= - (Z) Y
k=1 p

Here, ct3 is the Hopf conjugation of t3 (see Lemma 4.3). We notice that G;, K;
and by ; are also cocycles of Q*E(3),/I2, and of Q*BP, /I in [2, (1.9)].

Remark 2.6. The generators g; and k; in (2.3) are given by the Massey products
(hiy hit1, hi) and (hjy1, hiy1, h;), respectively, in [8, 6.3.4. Th.]. These are repre-

k3 i+1 [ 3

sented by cocycles G = t§ @t} ! +t) ®cth and K/ in (4.20) in the cobar complex
Q*E(3)+/I2, since these Massey products have no indeterminacy. By (4.21), K7 is
homologous to K;. We also see that dy (£ 5 ) = —2G,; — G/, and G/ is homologous
to —2@G;. Since p is odd, we may replace generators g; and k; by [G;] and [K;], and
set as (2.4).

We introduce integers e(n), an, js,n and j; ,, for integers n (> 0) and s by

e(n) = ppn:f for n > 0,
1 for n =0,
@1) ap = qp" + p"p:1—1 for odd n > 1,
p" +pp’;:1_1 for even n > 2,
2 for s € Zy and n = 0,
2p° —p+1 for s € Zo and n = 2,
. 2a, +1 for s € Zg, even n > 4,
27 Jon = Ap4+2 — Qn41 for s € Z1 and even n > 0,
p+1 for s € Z(® and n = 1,
e(3)p" 2 —p+1 for s € ZP and odd n > 3,
2 for pts(s—1),
2p for s =tp+1 and ptt(t — 1),

p?+1 fors=tp>+1and pft,

(272)  jio= |
an +p for s =tp™ + 1 withn > 2 and p1t,
an +1 for s =1p™ + e(n) with even n > 2 and pt (¢t — 1),
an +2 for s =1p"” +e(n) with odd n > 2 and pt (¢t — 1),
2p for s € Zg and n = 1,
2pay, 1+ p for s € Zy and odd n > 3,
(2.7.3) Jom = § Plnt1 — Pan for s € Z1 and odd n > 1,
p24+p for s € Z®) and n = 2,

e(3)p" 2 —1+1 for s € Z® and even n > 4.

Here, 1 =0if p > 5 and = 1 if p = 3, Z;’s are the subsets of the integers Z defined
in (1.7), and the integers a, are ag, in [2, (5.13)]. We note that

(28) antan1=e@p"2-1(n=2) and P +ans—p" " = a, (n>3).
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Theorem 2.9. Let p be an odd prime. H'MJ is the direct sum of k(2).-module
B = K(2)/k(2){ho, h1, (2,3} and k(2).-cyclic modules generated by

(C3)spn/a, for (s,n) € Z®W) x N,
(ho)spr/j.. for (s,n) € ((ZoUZ1) x 2N) U (Z® x 2N),
(h1)spn g, for (s,n) € ((Zo UZp) X ﬁ) U ((Z(p) X 2N) \{(1,0)}), and
(h2)tp—1/p—1 fort € Z.

We note that there is a little difference between the cases for p > 5 and p = 3. In
the theorem, (2(= (h1)1) denotes the homology class of z in (4.18) (see also (3.8)),
the generators (§),,; for £ = [X] in H* MY denote

(&)ss = [v3X/vh+ -]

for a cocycle v3X/ v} + -+ of the cobar complex Q' MJ with an element - killed
by v%fl. The element vo acts on (£),/; by
(210) 7)2(5)5/1' = (f)s/j—l and ’02(6)5/1 =0,

and so, (£),/; generates a cyclic k(2),-module isomorphic to k(2)*/(v§)

F(2)A(€)s5} = k(2)</(v3).

3. PROOFS OF THEOREMS 2.9 AND 1.8

In this section, we assume Lemma 3.4, which will be verified by a routine calcu-
lation in section six, and prove Theorems 2.9 and 1.8.

3.1. Proof of Theorem 2.9. For the monochromatic comodules defined in section
two, we have a short exact sequence

(3.1) 0— MJ 5 My 2 My — 0,

where n(z) = x /vy (¢f. [2, (3.10)]), which induces the long exact sequence
(3.2) oo HOME 2 HUMO I 5L 2 HUOME 2 HPMO
From [2, (5.18)], we read off the following:

Proposition 3.3. The cokernel of §o: HOM3 — H'MY is a Z/p-module generated
by (ho)o, (h1)o,

(hO)sp% s € LU 7, (ho)tp2k+1 te Z(p),
(h1)gper t e 7P, (h1) sp2r+ s € ZyUZy,
(hg)tp_l te Z, and (CS)t teZ

for k > 0. Here, Z; is a subset of Z given in (1.7), and (§)s = vi€ for & € {h;, (5 |
i€Z/3}.

Let (1), € Q'E(3), denote a cochain satisfying
(z)s =vjz mod Is.

Lemma 3.4. There exzist following cochains in Q1 E(3),/I2:



ON PRODUCTS OF BETA AND GAMMA ELEMENTS 7

1) (ty)sper and (t])sp2rsr for s € Zg such that

s(s + 13y PGy k=0,

s(s + 1)v§p27p+11’§p272pG1 =1,
dl((tl)sp%) = 2ass,, (sp—2)p** !

~3s(s + 1ok K, k22, p>5

—2s(s+ 1)1}%&%“”;%*1(35—2)(bl’o +th®Z') k>2, p=3;and
s(s 4+ 1)vPuiP Gy k=0,

k
S(S + 1)U§Pa2k+}71}§310—2)p2 bl,l k>1.

dl((t€)3p2k+1) = {

2) (ty)sper and (t])gpersr for s =tp* — 1 € Zy such that

_ . askpa—aspy1, (tp—1)p2Ftt
dl((t1)5p2k) = Uy U3 bl 0 and

)

2k+42
di((t]) sprrs1) = Bk Paky (P =) ’ b1 fork>0.
3) (t1)speerr and () g2n for s € ZP) such that
t(t — 1)wsPu ' Gy k=1,
ftvg2+1v§tp_1)pG1 k=2,
k—1
—otp@ PP Gy odd | > 3,
k—
2y PP IP Ko evenk >4
k
—(t — 1o TolP PG even k> 2,

—(t — D)o =Dy odd > 3

di ((t}f)tpk-s-l) =

dy ((tllj)tp’“re(k)) = {

s(s — 1)v3vs 2K, k=0,
24 2_,1
d1((t€)sp2k) = _Svge(:)vgffzfl (Is(oz_ -1) 2k—2 k= 1,
—3svy v TP K p>5, k>2,

2k—2 2k—2
—svg 6(3)1{%98_4)3 (bio+2Z' @t]) p=3, k>2; and

_ —soB TP g k=0,
dl((tl)sp2k+1) = sv;(S)p2k71_p+1v§8p2_p_1)p2k71bl,l > 1

4) (tzl’Q)tp,l such that dl((tff)tp,l) = o PP, 4.
Here, G;, K; and by ; are the cocycles of Q*E(3)./Iz in (2.5), Z' is an element in
Lemma 5.1, and x = v§y denotes the congruence modulo Jq41.
Let dy ((x);) = v}y mod J;; be a congrucence in Lemma 3.4. Then, 01(([x])e/5) =
[y] for the connecting homomorphism ¢; in (3.2). Here, ([z])¢/;(= [(z)t/vé}) €

H'M} denotes the cohomology class of the cocycle (z)/v] of Q'MJ. Thus, the
cochains in Lemma 3.4 give rise to elements (ho)g,r/;, . and (k1) syr/j  of H'M;
as well as the d1-images of them. Furthermore, we have elements

(C3)tp"/an = _’L‘;C?)/’U;" € H1M21
for the elements z, (= z3,,) introduced in [2, (5.11)] (see Lemma 5.1) with
(haCs)i-1 n=0

(3.5) 61((<3)tpn/an) = (h0<3)(tp—1)p"—1 n iS Odd,
(h1C3)(tp_1)pn71 n is even > 2
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by [2, (5.18)] (or Lemma 5.1). We notice that as a k(2),.-module, K(2)./k(2).{{} =
Z[p{(€)os; |7 =2 1} with v2(§)o/; = (§)osj—1 and v2(§)o1 = 0 (see (2.10)).

Let B be the k(2).-module of the theorem. Each direct summand of B is a
submodule of H! M4, which defines a k(2),-module map f: B — H'M3. Further-
more, assigning (£)s/1 € B to the generator (§)s of the cokernel of dg, we have a
homomorphism 7, : H!MY — B by Proposition 3.3. These homomorphisms fit in
the commutative diagram

_ . 5
oM -2ty g g g2y
— s oo
HOM} 2> ' M9 —> g M} —2 g M) 21> H2MY,

where we define §] by 01 f. It suffices to show that the upper sequence is exact by
[2, Remark 3.11]. By the definition of B, the subsequence H°MJ} Do, H'MY) BEN

5/
B 2 B is exact and the composite B 2 B - H2MJ) is zero.
Suppose that the §]-images of the generators are linearly independent, and take
¢ € Ker ¢} to be a homogeneous element. Then,

£=> k& for generators & of B and scalars ¢;, € k(2)., and

0="05(8) = >, ek (k)

for the image ¢ of ¢; under the projection k(2). — Z/p sending v to zero. Since
01(&x)’s are linearly independent, we see ¢, = 0, and so we have ¢} € k(2), such
that ¢, = vac),. Therefore,

£=2 1, v2c,&k € Imuy,

and we see the upper sequence of the above diagram is exact if the dj-images of the
generators are linearly independent.

The §f-image is a Z/p-submodule of H2MY in (2.3) generated by the generators
of the form (p)s for p € {gi, ki, bi, hi(3 | i € Z/3} by Lemma 3.4 and (3.5). Moreover,
Lemma 3.4 and (3.5) show that the J]-image of each generator & has the only one
summand of form (p)s:

(hoG3)tp—1yp2ns  (h1G3)(tp—1)p2n—1,  (h2@3)i—1, (92)s—1-p>
(k1)s—2,  (k2)(s—2)p>  (bo)ap—1)p2ntt (P >5),  (b2)tp—yp,

except for
9o (90)8p72 (90)(tp71)p2"
91 (gl)(sp72)p (gl)(tpfl)p (gl)tp2n+pe(2n72)
o | o)t [ () oo 1 | Gl | (2 5)
ko || (Ko)szn—1(3¢-1) (ko)os—4 (p=3)
bo || (bo)s2n—1(35—2) | (bo)s2nt1(3e—1) (bo)sg2n—2(95—4) (p=3)
by (bl)(sp—Q)pzn (bl)(tp—l)pQ"‘*'2 (bl)tp2"'+1+pe(2n—1) (bl)(spQ—p—l)p2"—1 ‘

These show that the ¢}-images 07 (&) for the generators & of B are different from
each other, and so they are linearly independent. O
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3.2. Proof of Theorem 1.8. Let §9: H* N3 — H*T1 N be the connecting homo-
morphism associated to the short exact sequence (2.1), and consider the diagram

H2MY 2% (x3); H2N} —25 H3NY = E3(V(1))
z
H'My —— H?*MY) —= H*M)

of exact sequences for §; in (3.2). The connecting homomorphism §; associated to
(1.6) is factorized into the composite d; : H*BP,/J; EZR H*N3 i H*TINY for the
homomorphism 7; given by 7;(z) = x/vj. It follows that
(3.6) Vepr/i = 09(vs?" Jvh) € H'NG = E3(V(1)) for v§” /v] € H°N}.
Since 69 is a k(2).-module map, we have
(1) od Ay = vd 85 /uh) = 08(ed T fd) = (05 Joa) = Vi
It is well known that
By =—bo=[-bro], and B,=2k=[2K¢] € H’Ny
for the cocycles b1 o and Ko in (2.5) (¢f. [5, Lemma 4.4]). This defines elements
o3P B, vy € HEN} for i = 1,2, and
59 (vs"" B; /v2) & %prﬂ € B3 (V(1)).

We also see that for v3p B; € H2M37
1« (03" BZ) = L2(”3p Bi/v2) € H? M.
From Lemma 3.4, we read off that the elements vsp B1 = —(bo)spr and vgprﬁz =
2(ko)spr € H>MY have a possibility to be in the image of &7 if
(a) p25and(s,r)€(Z7fUZ;)xﬂ,or o -
(b) p=3and (s,7) € (Ny x 2N5o) U ((Z7 UZF) x 2N) U (N3 x 2N5),
and if
(a) p>5and (s,1) € (Niilx 2N) U (2] x @1) U (N2 x 2N5), or
(b) p=3and (s,r) € (N; x {0}) U (Z3 x 2N5),

respectively. Here, N; = N®) \ N; for i = 1,2. Therefore, if a pair (s,r) satisfies
the condition of the theorem then the element v3p B, is not in the 1mage of 41,

and survives to L2(1)3p ﬁz/vg) under the homomorphism 7,. Thus, v3" ,Bi/vg #0€
H?NJ under the conditions.
Ravenel determined in [8, 6.3.24. Th.] and [7, (3.2) Th.] that

H2Mg — K(Q)*{h0§7h1§2;b07b17§} p= 3
K(2).{hoC2, h1C2, 90,1}  p>5’

where (y = UPHCQ [—z] for (2 in [2, Prop. 3.18)] and z in (4.18). This shows that
the elements v3p B,/va for i = 1,2 are not in the image of (K/2)*7 and hence survive to

Vi Bi € B3(V (1)), Moreover, o(,,. 8, # 0 € B3(V(1) i v ™', By = 2B,

is not zero. O

(3.8)



10 KATSUMI SHIMOMURA AND MAO-NO-SUKE SHIMOMURA

4. SOME COCHAINS IN THE COBAR COMPLEX Q*FE(3),

In the rest of this paper, we consider F(3).(E(3))-comodules whose structure
maps are induced from the right unit map ngr: E(3). — E(3).(E(3)). We consider
the cobar complex Q*M of a comodule M in (2.2), whose differentials are given by

(4.1) do(v) = nr(v) —v € Q*E(3),, and

: di(z)=1®z—-A@)+r®1 e Q?E@3).
for v € QVE(3), = E(3). and = € Q' E(3), = E(3).(E(3)). For the differentials dy
and di, we have relations (cf. [11, (2.3.2)]):

o) = vdo(v') + do()na(v"),

dy (vz) = do(v) ® x 4+ vdy (),

di(zy) =—2Q@y—yRzr+di(x)Ay+ (z®1+1®x)di(y) and
di(znr(v)) = di(z)(1 @ nr(v)) =z @ do(v)
for v,v" € E(3), and z,y € E(3).(F(3)). A formula for the Hopf conjugation
¢: BP,(BP) — BP,(BP)is givenin [6, (3)], and implies immediately the following:
Lemma 4.3. The Hopf conjugation c: E(3).(E(3)) —> E3).(E(3)) acts as
Bty and oty =tot? —tict] —t; mod L.

(4.2)

Ctl = —tl, Ctg =

For the right unit ng: BP, — BP.(BP), we have a well known formula

n—1
(4.4)([6, (11)]) nr(vn) = v, +vp_1t]  —oP_1t1 mod I,_1.
A routine calculation using (4.1) and (4.4) shows the following;:
Lemma 4.5. Put 0, = Y./, u;’%““"%-l”’%“vg% € E(3).. Then,

2n—2
az2n—1
n tl

2n
do(op) =0vh & — vy mod .

In E(3).(E(3)), nr(vs) = 0 = ngr(vs), which give rise to relations

p® P’ p’
(4.6) vst] =tinr(vs)? — vty + 05 to  and

3 2 3
vgth = tQ’I]R(’Ug)p2 — voth — vowP + 08 t3 mod Iy

(cf. [6, (12), (16)], [8, 4.3.21. Cor.]), where w € E(3).(E(3)) (= wl(vg,vgt’fz, —vbty)
in [8, 4.3.21. Cor.]) is an element defined by
(4.7) pw = vh + vgtfg - vgztp +y? — nr(vs)P
for y € (p,v1) in nr(vs) = vs + vgt” —vhty +y (see (4.4)).
The diagonal A: E(3).(E(3)) — E(3)«(E(3)) @), E(3)«(E(3)) of the Hopf
algebroid E(3).(E(3)) acts on the elements t; and ct; as follows:
Alty)) =t1 @1 +1®t,
Alt) =t2 @1+ 1 @1 + 1@t —vibp mod (p,07),
A(tg) Et3®1+t2®tf +t1®t§+1®t371}2b1,1 mod IQ and
3 2
At) =ta@1+t30t) +to@th +t1 @5 +1®1t4 —vsb1 o mod I3
(cf. [6, Th. 8], [8, 4.3.15. Cor.]), and so
dl CtQ) = *t}f ®t1,
2
(4.9) di(cts) =cth @ty +t] @cta —vaby; mod I and
3 2
d1(0t4) = t{ ® ctg — Ctg ® cty + Ct;g Rt — Ugbl,g mod I3,

(4.8)

—~
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since A(cx) = (¢ ® ¢)TA(x) for the switching map T given by T(z Q y) = y ® z,
where by 1 is the cocycle in (2.5).

The fact dl(tle) = —pby; mod (p?) implies not only that the cochain b ; €
O?E(3)./(p) is a cocycle, but also the following lemma.

Lemma 4.10. The cochain w in (4.7) satisfies

w= 71}20571#{2 mod Jo and di(w) = —vbby o+ vh b1 o mod I.

242 o

Corollary 4.11. Put W, = Y7 p faan-2impTTE P Then,

2n—1

dl(Wn) = —’Ug bLQn + ’U(212"b1,0 mod 5.

We generalize the relations (4.6) and obtain the following proposition from [8,
(4.3.1), 4.3.11 Lemma] and [6, Th. 1] (¢f. [9, Prop. 2.1]):

Proposition 4.12. There exist elements T, for n > 0 satisfying T,, = t¥ mod I3
and
pFtt p* P p’ 2
vy try1 +tenr(vs)? = 01Ty + vaTy ) + 3Ty  mod (p,v7)

for k >0, In particular, To =1, Ty =}, To = t5 and Ts = t§ + w mod I».

Proof. We begin with recalling some notations from [8, §4.3]. For a sequence
J = (j1,J2,-- -+ jm) of positive integers, we set |J| = m and ||J| = Y%, ji, and
an element vy € F(3). is defined recursively by v sy = 'Uj'UgJ. Let wg(S) for
a set S be symmetric polynomials of degree p™ such that wo(S) = > g and
ersx = > oD wk(S)pnfk. We then define sets S, out of a set S = {a;;}
recursively by

S I11=171
Sp={aij|i+j=n}u U {vrw 7 (Sp—y)?

|J|>0
By [8, (4.3.1), 4.3.11 Lemmal, we see

(4.13) = Y b))’ = 3 0t = we(D,) mod (p)

i+j=n i+j=n

1.

for the sets
C= {tmR(vj)pl} and D = {Uit:;l}
In E(3).(E(3)), put

17011
w(Sy) = Zv?wUHl(Sn,HJH)” and T, =t —w(C,) +w(Dy,).
J

Then, the proposition follows from (4.13) and the congruences

n—2 n—3
wo(Cn) =05 tnoo+ t2m3773(032p * + V1w (Cr—1) + vow(Cp_2)? + v3w(Cy )
2
wo(Dy) = vith | +vath o + sl o + viw(Dp—1) + vow(Dy—2)P + v3w(Dy—3)P

seen by the relation

pllCes D=1k T pllJI=1J1+k—1

k
Uk, ) W) (1) (Sn— i (k, 7)) = vpvY W) 7141 (Sn——7)) 0O
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Lemma 4.14. Forn >0,

n
p—1,e(n)y _ —i p M le(n—i)+p—1_ e(i) p' P p—2 2
nr(vy Vs ):Z(—l)” vy Ug by, —vywh+v1vy wnir mod (p,vi).
i=0

Here,
n

i e(i— ~le(n—i
(4.15) wo =Y (=1 Tpp(ef ).
i=1
Proof. In this proof, every congruence is considered modulo (p,v$). By Proposition
k ~ k1 ~ 2
4.12, we have tynr(vh ) =T — b i ter1 for Ty = v1Thyo + 02T | + 3Ty, , which

implies inductively
n

e(n i ple(i—1)5 itle(n—i 2e(n
tinr(v5 ™) = =3 (=1)i0f T Tmp] ) (—1)m0f M,
and hence =t
t (vpe(")) = vy P w + ol PP paw?” + (—1)”vp2e(")t
(4.16) 1MRr\V3 = 1Vg n+2 2 n+1 3Wnp 2 n+1

—p— e(n — 2 e(n

ooy " (Bnn(vs) = vath)nn(vf ") 4 vy nr (057 ).

Now we prove the lemma by induction. For n = 0, it follows from the facts:
nr(v2) = v + v1t] by (4.4) and wy = —t.

Assuming the case for n, we obtain the case for n + 1 from (4.16) and

e(n —p? — — e(n — 2 e(n
I B e T e S L S G AR SIUADH G
0" a5 ) = ond e (),
2

given by nr(vh 'vs) = v8 vz +uath — bty +vith) —vivh 2 tEnR(vs). Here, ng(vs)
is given in [2, (5.7)]. O

Send the congruence in Lemma 4.14 under d;, and compare the vi-multiples.
Then, we deduce the following corollary (cf. [9, Prop. 2.3]). Indeed, if v; 05~ *d; (w4 1)
= A+ v B mod (p,v}) for some A, B involving no vy, then A =0 mod (p, v?) and

p—2 _

Uy dl(wn+1) = B mod IQ.

Corollary 4.17. For the elements wy, in (4.15),

n—1
i ptle(n—i i n_ e(n
di(Wnt1) = — Z(—l)nﬂvg ( )wi+1 @th . —(-1) 112( +1)bn mod I.
=0

Here, b, is an element in di(t,) = a, + v1b, mod (p,v?) for a, and b, involving
no v1. In particular, ba = b1 o by (4.8).

We have the cocycle z in Q'E(3)./Is:
(4.18) z = vst] + vacth — V8t = thnr(vs) — vath + vhcty = —wq + vhets,
which represents the element —v2™'¢, € H'MY (¢f. [2, Prop. 3.18 ¢)], (3.8)). In
particular,

(4.19) thnr(vs) = z + vath — vhcty  mod Is.
We further have cocycles G and K/ € Q?E(3). /I for i € {0,1,2} defined by

i i 1 . i i i 1 i i
(420) Gi=ctf @t + 8 T @t and K =t @ + St e

which are homologous to G; and K; in (2.5), respectively. Indeed,
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for i € {0,1,2}, and for g; and €&; € Q' E(3), given by

(4.22) g =t -8 T and b= St s
We also have a similar relation
(4.23) di(thty) = —(t] @ ta + cta @ t)) — 2Ky mod Is.

Lemma 4.24. In Q'E(3)., put

wp = T]R(’Ug)tg — Ugtg —+ Ugtltg, Wo = QﬁR(Ug)t?p — ’Ugf(), (Mld
&2 = —Ww3 — pe(Q)tpt

Then, modulo I,

dl(w )E t1®2’7’02b1172’02G0,

di(w2) = =t ® z — v2aG1 + V5 Ky, and

2 2

di(@2) =08 z @) + 208 PR, + vg(g)bl,o.
Proof. In this proof, we consider congruences modulo /5. A routine calculation
shows the congruence for d; (wy):

2
di(nr(vs)ts) (z —t1 @ (2 + vath +vhts — oBt" ) —t2 @ (vat] |, —vht1 )

(4.
)

—
®v

dl(f’l}gtg (tl (24 t2 + tg ® tl b U2b1 1)
dy (VB t5) = R AGRELZ 'ty + b LbOL,+HO+1H® ),
(i)
in which the underlined terms with the same subscript cancel each other and the
wavy underlined terms make —2vGj.
For d; (w2), we calculate

—~
[N
oo

2 2 2 2
dl(%ng(vg)tlp) = -t @ (z+vath —vhety ) — %Ugtlp ] + %vgtlp Rt.
(4.2) ~a KOOI g S

(4.19)
Add d;y (—vh¥), and we obtain the desired conguence by (4.21).
We verify d; (ws) by

dl(U)g) 517 *’Uge@)’w Rty + ’02 w2 ® tp — Uy e(3 )bl 0
(4%8) —vé’e@)( th) @ to . + v ( z+v20t2 )@ th — v, «®p, 0
pe(2), (4.15) 2@
d1 (’U2 Z{tg) (4523) ((tp X t2 + Ctg [029] tp ) + 2K0) |:|

5. THE ELEMENTS z; AND DERIVING ELEMENTS y; AND .
n [2, (5.11)], Miller, Ravenel and Wilson introduced elements z3; € vy 'BP,.
We refine them, and define the elements z; € E(3). by

p' p?—1 (p 1)p?+1

z; =vy fori=0,1,2, xg = xh — v} ,
2)p3—p—1 —e(2 1
x4 = 2 — 6( )p*—p— (p e(2))p’+p+
_ pazk—1 (p Lp 8(3)1)” —e(3), (7 —e(2)p* T Hp
Topt1 = Thy, — 5" x% 1 Py — U3 , and

_ 6(3)1) —6(3) (»* —6(2))p2k+p+1
L2k42 = $2k+1 — 2v, U3

for k > 2.
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Lemma 5.1 (cf. [9, Prop. 3.1]). In Q'E(3)., we have

do(zo) = 1)2#1)2 —vbt; mod I2,
do(z1) = vhvl~ Y — va 71tp mod Jop,, and
do(z;) = 0% (zP 71" + B;) mod Je@)ypi-2  fori>2
Here, ¢; = 1+(2_1)i, and B; are as follows
) 2 3 2k
B; | —vbvusPt, vgz_pvg(s)(z — By | a2 TPy eCR) Py )
) 2k +1
B; || 032 PpSF D (92— yBety)

for c(k) = (p*> —p—1)p*~2. Fori >4, add v;i’l“vg(i)Z’ to B; if we consider the
congrucence modulo Je(3ypi—241. Here, Z' is a cocycle homologous to aZ for some
a€Z/p.

Proof. This follows from a routine calculation: For ¢ < 2, it follows from (4.4) and
from (4.6).
2 2
We obtain do(z3) from (4.19) and do(vlf ™7 ™) = op=1r (1121?’1’2 — vhty) —

ngvgp_l)pz_p(tan(vg,) — vhty) mod Jo(z) by (4.2), (4.4) and the congruence on

do(xg) We note that nR( P = BT P — v§2z by [2, (3.20)], and obtain
2 2 2
do ( (p*—e(2))p” +p+1> — U:(),p —e(2))p (vgzp—USZZ)—vg%ép —e(2))p *ptzf(vgﬂ +v92P) +
vh S §p —e(2)p” t2 mod Jg3). The congruence on dy(z4) follows from this and the
congruence on dg(zs) together with the definition of the element x3.
Inductively suppose that

do(wan) = vl g8 =L 7 4 S @PIme@) 07 e @R ey

mod Je(g)pzkfx
Then, we calculate

2k—1 2 2k—1 2
do(ffgk) = ,Ugamcxg]:: 1)ptp + U;(S)p —6(2)pv§p —e(2))p (2P, — vg t’; )

pazi—1_(p—1)p
do(—vy Lo 1 U3)

2k—1
(z) B P (ot — b)) +0f @ TPl T (et — wbet)
4
( U 3)P2k '—e(3) (:D —e(2))p**~ 1+:D+1) _ ;(3) p*F T —e(3) (P2*6(2))P2k_1(v2zp —’012722’)
—<Z b
2k—1 2k—1
(332k+1) gazk-i-l) 1 (P 1)Pt +U e(3)p —e(2) (P —e(2))p (22 U20t2) and

2k 2 2k
do(aby ) = ,Ugazk-#l:rgl)c 11)17 40 e(3)p* —e(2)p, (p —e(2)p (QZpi,UQQCtZQ?)

2 2k
vé’“%ﬂ(acskil ool O o OB (20— o ett)
_ Ugazk-u 2k+1 + ;(3)10 F—e(2)p :())P —e(2))p?* (2 p 052*12 B ,U§2+P*1t2)
k b 2k 2 2k
do(—QUS(S) F—e(3) §P —e(2))p? +P+1) = _21};(3);0 *3(3),02())17 —e(2))p (vg2P — ngz)

2k 2 2k
. do(wogso) = V5" 2’“+1xpk+11tp +v§(3)p _e(z)vép @, vhts).

These complete the induction.
Put do(z;) = v§' (b~ ftp + B; + 3 C) mod Je(3)pi-141 for a cochain C.
It is easy to see dy (vZ (P~ 2™ + B;)) = 0 mod Je(z)pi-141. It follows that C' is
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a cocycle of QMY and so C represents a cohomology class avg(i)Cg € H'MY for
some a € Z/p by (2.3). O

Put
do(z;) =vy'A; +v5'B;  for A; = al” tp o
(e; = W) We introduce elements y; and y! € Q' E(3), by

_ s st b st S
Ysi =ity — s Biy1, and yg, =it} + jvy'

5 Py W

K2

Lemma 5.2. For the elements y; and y.,

d1(ys,0) = s(s+ 1)vivy P~ 1G,
di(ys1) = s(s + 1)U§p”§p 2GO
di(ys2) = —s(s+ 1)v; 2p” “PygP 72p(tp ® z —vhz)

—S(S—|—1) 2a2k41—P s;D 2(t1®z—v GO) 1 =2k+1 J
an
—s(s+1)v, 2z~ pxiiﬁ 2t @ 2z —vBKp) i=2k+2,

/ — p+1 P~ 2p
d1(93,1 :751)22 U3 . Ky
—p—1
dl(y;,Q = —svh +p”§p P Ko
/N — a3t —p, spP—p*—p D1
di(ys3) = sy U3 (z @t — vya')

jsW
=
—
N
s » <
\;/ S— N :;/ S— N N
|
/—/H|

(z@th —uvbKy) =2k

5v§(3)pi72—p—lvgszf—p—l)p%*z
(2z@t; —vhGY) i=2k+ 1.

e(3)p'?—p—1_ (sp>—p—1)p*F "
5V, U3

Here, v = (b + Yot + ot + 1670t and o' = 8 ot + 3 o2

and these congruences are considered modulo J,11, where a is the largest power of
vy in each congrucence. Furthermore, replace K() and Ky in the congruences on

d1(ys,26+2) and d; (yg,%) by K+ vt @ Z' and Ko+ vaZ' @t} respectively, if we
consider the congrucences modulo J,4o.

Proof. We note that di(B;y1) = —di1(4i11) = —do(z P*l) ® tp5i+1

mod Io and

do(x})+sz; " Pdo(a ) = (525 do(w:)? mod Jag,. Indeed, do(w5) = s}~ do (i) +

(;) $2dy(x )2 mod J3,,. We also see that dy (A2 = do (2~ )®t2p " 24P~ 1tp ®
=do(z') @ 137" =24, ® ¥ mod J,, ,1o. Then, we calculate

di(ysi) = do(z) @t " — sdo(x] T ") @ Bipr + szt Pdo(at ) @t

(4.2) v
= (Sgl) 572 dg(24)? ®t” T s(s+ 1)z S_pdo(:z:,) ®Bi+1 mod Jaa, 4
d (ye 1) (4:2) 1d0(.’1’31) ® tp + 5 al 5 1d0( ) ®t — S’U2 f ]'A ® tp .
= svgixf_l(Bi ® t’l’ + 2do(2f Het? ) mod J,(3)pi—241
Now we obtain the lemma from Lemma 5.1. O

6. PROOF OF LEMMA 3.4

In this section, we define the cochains (t’l’i)s and verify the d;-differential of
them.
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6.1. The cochains (t;),2x and (t]),2s+1 for s € Zy. We define the cochains by

P

(tl)s = Ys,0, (tzl))eg = ys,21,
(tl)spz =UYs,2 — S(S + 1)1);}9 *;D,U;p 72pw2,
() gpr = Y 2ps1 — 5(s + 103" a3l 2w,

a —p?—p sp— ~ 2
(t1)sp2r+e = Ys,2kt2 — S(s + 1)05 ey px22+21 (202 +vh (2217 + v3to))
for k£ > 1. Then, the lemma for this case follows immediately from Lemmas 5.2, 5.1

and 4.24 together with (4.21). Note also 2asx1+1 — p + 2 = 2pasgy, + p. For example,
for the case p = 3 and k > 2, we compute modulo Ja,,, +2,

di((t1)s2k5) = da(ys,2) — s(s + 13"~ 2237"3d (20 + v3 (2287 + v3E)))
= —s(s+ Dua®* P2 (213 ® z - vg’(ﬁb + vt ® 7))
4.24 — 5(s 4+ Dvztr 2gds2 (2(@32 Rt + 211%2K0d +v3°b10)

(4.21)
+od( =208 +6 ez )+ui(ky, —@d)))

6.2. The cochains (t;),2» and (&})
define the cochains (t;)(p2—1)

sp2i1 for s € Zy. We put s = tp® — 1, and
2k and (tzlj)(th—l)p%Jrl by

p
k+2 2k+1 2k—2 2 2k
azk+1 _ (t—1)p® p2htt D —p (tp*=1)p
Vg (tl)(tp2_1)p2k = —vy w — do(vy . v o
2k+2 2k—1
P -p (tp—1)p
+vg U3 , and

(1) (tp2—1ypnr = (tl)?tphl)pz’“

for the elements oy, in Lemma 4.5, w in (4.7) and W, in Corollary 4.11. Then,
this case follows from Lemmas 4.5 and 4.10, Corollary 4.11 and (2.8). We also use

. 2ht1 2k+1 |, 2k+2 2k 2k
relations w?” = —vh  of P! mod Ja,,,,+1 by Lemma 4.10 and (4.6),
2k41 )2kl
and b¥ = bl opt3 = PP P b19x mod I3 by (4.6). For example
1,2 ,2k+ 3 ) )
A2kt1 _ (t*l)p2k+2 p2k+1 p2k+2_p2k pzk
’U2 (tl)(tpzil)ka 4:5 v3 2k+1 g% 2 U32 2k tle >2 2k
i D —p?" 72 (tp”—1)p Pt p azk—1
—U3 ) 2:13 (vg 7 —y t1)
— ,a2k+1, (tp"—1)p
= vy " vy t1 mod Ja,, 41,
since p?* 1 — p?F=2 L gop | = agpyy in (2.8), and
2k+2 2k+2 2k+1
a2k+1 S (t—=1)p p
vy T (81 (tp2—1)p2+) Sy Y b2
4.11 p2k+27p2k—1 (tp_l)p2k+1 p2k—l ask
+vy U3 (- biok + 3 bio)
k42

mod Jg,,,,+1. Since p p?k =1 4 a9y = agpyo in (2.8), we obtain the case for

(t1) sp2n-

6.3. The cochains (t;),,2r+1 and (}),,2 for s € Z(). We begin with defining
(t)s = v3t? + svavsteth — s(s — 1)vdvy 2.
Then, we calculate by (4.2), (4.4), (4.8) and (4.22), and obtain
di (1)) = s(s — 1)v3vs 2K, mod Js.

Now we consider the cases for p | s(s — 1).
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6.3.1. The cochains (t}),x 1 for k> 1. We define the cochains by

()ep41 = U3 2+ tvhvPty — td T et}
(t2)ip2 41 = Th2 + tod20{P Py,
() g _$2k+lz+t”a%“v§t”_l)p w1 + 1o (B ey and

7
azkt2—p° (tp 1)p*hTt 2
(t])eprrsagn = Thy o2 + Ly (W2 + vh 2t7)

in Q'E(3), for k > 1,t € ZW  x, in (5.1), z in (4.18) and w; in Lemma 4.24.
We verify this case by a routine calculation using (4 2), (4.4), (4. 18) (4.8) and
3
(4.9). We see that t] ® z = nR(vg)tl @t + ’Ugtp @ cth — vhvE 't © ty and
3 2

nr(v3)ty = vhty + vacth mod J,11 by (4.18), (4.4) and (4.6). It follows that
t’1’3®z = —d; (V0ty) +vady (cth) mod J,y 1, and then d (viP2) = tobviP 7P (—dy (vhts) +
vady (cth)) + (D)3 v '3 @ 17 mod Japir. Thus, we obtain dy((t])p41)-

The congruences on dy ((¢ )tp 11) for k > 2 follow directly from Lemmas 5.1 and
4.24 and the results on dy ((t])(tp2—1)p2t—1) shown in the previous subsection. For
example,

_ 2k
dy (1) tpanr141) = d (2 11) @ 2 + tva%“v(tp D, (w1)
1
+tv, asg+p+ dl(( )(tpz_l)p2k 1) N
_tva2k+1f0§t;ﬂ 1)p2* tH® Z +tva2k+1 ;()’tpfl)p (_wa _%b B QUgGO)
415§4 +tv“2k+P+1+Pa2k ;Dazk 1v(tp 1)p3F b
3.4 2) 3 1,1

mod Ja2k+1+;0+1 :

6.3.2. The cochains (t])ypk ey for k > 2. We put 7 =2n —14¢ (e € {0,1}), and
-3 5 5
(tp)tp“re(r) = xt (wr+1 + Up ad anR(UZ—l) + vgrwrtllj )

for w, in (4.15). Note that w, = v§e<r72)wg = vge(r 22 mod Jp by (4.15) and

(4.18). Then, (tp)tp'"J,»e(T) = xiwr+1 = —vépu-e( )tll’ mod I3. Furthermore, we
calculate
di((t ) ) = tvarv(tp*l)phltpE Q@ w + ! WP w ®tp""1
1 1/tpr+e(r) 5—1 W p(v weet?
4.17 r_prT3 2n—4+e  2n—2+¢ n—3+e
4.5 _Ug P Wy ® (Ug Etzlj " — U§2 3+ t117 b)
it 4 Bu)
= —(t — Dodr ol U 2 mod J,, 4,

together with (4.2) and (2.8). This case now follows from Lemma 4.24 by setting
a,, tp"+pe(r—2
() retr) =~ vy + (¢ = 1) 570" 0 P

6.3.3. The cochains (1])p2x for k > 1 and (t)gp2e+1 for k > 0. We define (¢),
by

(t ) = y; 1> (tf)ﬂa? :2?/;,27
3)p—p—1 —p—1
(t1)5p3 - ys 3+ SUQ( )PQP 2U§5p P 2)p(Zt1 2_ wl)a )
P _ — v e@p—p=p=1, (sp"—p=1)p" (~1 _ ,p° 4P 7
(t1) spa 54 2 L3yt 1_p3 X (Sp p_(l) 2 2 1)
(t1)sp2r+t = Ygopy1 + 2505 (2t1 —wy), and
2k _ _ _
(tf) ohto ys 2k+275v2€(3)p p>—p—1 (Sp p—1)p?* D,
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where @) = Wy — v} +ptpt (‘3)113_1)2 cth. Except for dq((t])sps), the lemma for
this case follows from Lemmab 5.2, 4.24 with (4.2).
For dy ((t])sps), we make a calculation

W9 —ws tlnR(Ug'H) — vathnr (V) + vp'Htp

4%4 4.
" 12)(4519)(3 +vath —vf Ct2)77R(U3) — vathnr(vs) + vt
= B(z+vbty) — b et?  mod J,o.

(4.4)
Applying the Hopf conjugation ¢ to the congruences of (4.6) shows the relations
3 2 3 2 2
(6.1) t) nr(vs) = vhty +vecth  and cth nr(vs) = vf cta — vocth,  mod Jpiq.
Then, mod Jp42,
tp ®@vhz = tl nR(vg)p ® z (E (v§2tp + vgctpg) ®z
6.1

3
(451 vl tf@z—i—vgct nR(Ug) ®tp+vp+1ctp ® cth

8) " 2 3
(E)Ug tf@z—i—vg(vg cty — vacth )®tp+vp+lct’2’ ®cth and
6.1
4
th @vbvhty = VBt) nr(vs)P @ ta = vhul t’f@tg.

(6.1)
Therefore,

dy (V508 Pty ol et?) Z —vbo? (t” @ty +ta @t + T @] + 1 @ 17F)
. W’BWW
§4.s) iy ® cth, —cth @cty +cth @17 —vib,)
4.9 ’
tf4 ® Wy = v§2t’1’ ® z + b (w — vgct J® tp + vp+1ctp ®cty
+ohob ¢ Dty — W ® cth,

The sum of the waved underlined terms is fvgvg (2t 0+, @) = fvgvgz Ky,
and bf , = v3 “Pby o mod I3 by (4.6). Then, mod J, 2,

(6.2) tp ® Wy + d1(v21)3 Pty + 0BT eth) = vgztf ®z— 21151152[(0 - U§+11}§2b170.
Now we calculate di((t])sp+) mod Je(z)p241 for odd prime p as follows:

di(y}.4) 22805(3)” PTTTR ff —B (Ko + 022 1))

di(— sve(3)p -p>—p—1 (SP —p— 1)1)( &, ”2 thio))

b 2 302 e (Sp o mpzﬁigg,%
—35y AL (Sp Al vh Z®tp—|—2vp +pKo+vp oy, 1,0
(o Py ve(:a) Pty 2ot + @ z))
(6%2) 305(3)10 *pflv:()’sp —p—2)p? (Mb _ 2v§v§2Ko _ v§+ 2b1’0)

N2 2 2 4y, 2 2 2
_503(3)17 p*—p lvésp p—1)p (vg z®t117a+21)§ +pK0—|—v§ +p+1b1,0
2
+of (208 +8e zb)).

6.4. The cochains (tzf)tp,l for t € Z. Put

2
P _ —1, (t=1)p
(87 Jtp—1 = —vy U3 w

Then, the lemma for this case follows from Lemma 4.10.
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