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Abstract. For a stable homotopy category [6], M. Hopkins introduced a Pi-

card group (cf. [11], [4]) as a category consisting of isomorphism classes of
invertible objects. For the stable homotopy category of Ln-local spectra,

M. Hovey and H. Sadofsky [7] showed that the Picard group is actually a

group containing the group of integers as a direct summand. We constructed
an injection in [8] from the other summand of the Picard group to the di-

rect sum of the Er-terms Er,r−1
r over r ≥ 2 of the Adams-Novikov spectral

sequence converging to the homotopy groups of the Ln-localized sphere spec-
trum. In this paper, we show in a classical way that the injection is a bijection

under a condition.

1. Introduction

Throughout this paper we fix a prime p. Let S(p) denote the stable homotopy
category consisting of all p-local spectra. For a spectrum E, a spectrum X ∈ S(p) is
E-local if [C,X]∗ = 0 for C with E∧C = pt. We denote by LE the full subcategory
of E-local spectra, and have the Bousfield localization functor LE : S(p) → LE with
respect to E. A spectrum Q ∈ LE is invertible in LE if there is a spectrum Q′ ∈ LE
such that LE(Q∧Q′) = LES

0 for the sphere spectrum S0. M. Hopkins introduced
the Picard group Pic(LE) of LE consisting of isomorphism classes of invertible
spectra (cf. [11], [4]). Hereafter, we abuse notation and an invertible spectrum Q
denotes a class of Pic(LE) represented by Q.

Let BP ∈ S(p) denote the Brown-Peterson spectrum whose homotopy groups are

BP∗ = π∗(BP ) = Z(p)[v1, v2, . . . ] over generators with degree |vi| = 2pi−2. In this

paper, we consider the spectrum E = v−1n BP for a fixed integer n ≥ 1, and denote
by Ln and Ln traditionally the category LE and the functor LE , respectively. The
category and the functor are the same as LE(n) and LE(n) for the n-th Johnson-
Wilson spectrum E(n) (cf. [9]), whose homotopy groups are E(n)∗ = π∗(E(n)) =
Z(p)[v1, v2, . . . , vn, v

−1
n ] ⊂ v−1n BP∗.

We have some results on the Picard group Pic(Ln). Hereafter, we set

q = 2p− 2.

Theorem 1.1 ([7, Prop. 1.4, Lemma 1.5, Th. 5.4, Th. 6.1 ]). Pic(Ln) is a group
with multiplication defined by the smash product and Pic(Ln) ∼= Z⊕Pic0(Ln) for a
subgroup Pic0(Ln). In particular, Pic(Ln) ∼= Z if q > n2+n and Pic(L1) ∼= Z⊕Z/2
if p = 2.

Theorem 1.2 ([3]). Pic(L2) ∼= Z⊕ Z/3⊕ Z/3 if p = 3.

Theorem 1.3 ([7, Th. 2.4]). If Q ∈ Pic0(Ln), then E(n)∗(Q) ∼= E(n)∗ as an
E(n)∗(E(n))-comodule.
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Consider the v−1n BP -based Adams spectral sequence {Es,tr (X), dr} for a spec-
trum X converging to homotopy groups π∗(LnX). We notice that the E2-term

Es,t2 (Q) for Q ∈ Pic0(Ln) is isomorphic to Exts,tE(n)∗(E(n))(E(n)∗, E(n)∗) by Theo-

rem 1.3 and [8, Th. 3.3] (see Theorem 2.2). Thus, we see that Es,t2 (Q) ∼= Es,t2 (S0)
for an invertible spectrum Q of Pic0(Ln). Let Pic0(Ln)k be a subgroup consisting
of invertible spectra Q of Pic0(Ln) such that ds(1Q) = 0 ∈ Es,s−1s (Q) for s < kq+1,

where 1Q ∈ E0,0
2 (Q) ∼= Z(p) denotes the generator. Put

GPic0(Ln) =
⊕
k>0

(
Pic0(Ln)k/Pic0(Ln)k+1

)
.

Then, in [8], we set up a homomorphism

(1.4) ϕ : GPic0(Ln)→
⊕
k>0

Ekq+1,kq
kq+1 (S0)

sending [Q] 6= 0(= [LnS
0]) to an element w 6= 0 ∈ Ekq+1,kq

kq+1 (S0) such that dkq+1(1Q) =

w1Q ∈ Ekq+1,kq
kq+1 (Q).

Theorem 1.5 ([8, Th. 2]). The homomorphism ϕ is a monomorphism.

For a small n, the E2-term has a horizontal vanishing line:

Lemma 1.6 (cf. [9, (10.10)]). Suppose n < p − 1. Then, Es,t2 (S0) = 0 for s >
n2 + n.

By Theorem 1.5 and Lemma 1.6, we deduce that the second isomorphism in
Theorem 1.1 holds in the case where q = n2 + n unless (p, n) = (2, 1):

Corollary 1.7. Suppose that p > 2 or n > 1. Then, Pic(Ln) ∼= Z if q ≥ n2 + n.

In this paper, we show the following:

Theorem 1.8. Suppose that there is an integer r0 such that Erq+2,rq
2 (S0) = 0 for

r > r0. Then, for ω ∈ Er0q+1,r0q
r0q+1 (S0), we have an invertible spectrum Xω such that

ϕ([Xω]) = ω.

Corollary 1.9. Suppose that n < p− 1 and let r0 be the maximal integer less than

(n2+n)/q. Then, the composite GPic0(Ln)
ϕ−→
⊕

k>0E
kq+1,kq
kq+1 (S0)→ Er0q+1,r0q

r0q+1 (S0)
is an epimorphism.

Corollary 1.10. For n and r0 in Corollary 1.9, if Er0q+1,r0q
r0q+1 (S0) 6= 0, then Ln

admits an exotic invertible spectrum, or an invertible spectrum other than LnS
k.

Corollary 1.11. If n < p − 1 and n2 + n ≤ 2q, then Pic0(Ln) is isomorphic to

Eq+1,q
2 (S0) ∼= Extq+1,q

E(n)∗(E(n))(E(n)∗, E(n)∗).

In the corollary, if the condition n2 + n ≤ q holds, then it is Corollary 1.7. If
q+ 1 ≤ n2 +n, then the isomorphism Pic0(Ln) ∼= Eq+1,q

2 (S0) holds in the following
cases:

p 5 7 11 13 17 19
n 3 4 5 6 7 8

For the case where p = 23 and n = 9, we have n2 + n = 90 > 89 = 2q+ 1. We note
that we have the isomorphism for the cases (p, n) = (2, 1) and (3, 2) by Theorems

1.1 and 1.2, though n = p− 1. We have a conjecture that Es,t2 (S0) = 0 for s > n2
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if n < p − 1. If this is true, then the table extends up to p = 29 and n = 10 after
replacing the condition by q + 1 ≤ n2 < 2q + 1.

The author would like to thank the referee for pointing out some errors in a
draft.

2. Recollection from [8]

Let E denote v−1n BP . We recollect some facts from [8, §3-4]: The spectrum E
yields a Hopf algebroid (E∗, E∗(E)) in a usual way. Here,

E∗(E) = E∗ ⊗BP∗ BP∗(BP )⊗BP∗ E∗ and
E(n)∗(X) = E(n)∗ ⊗BP∗ BP∗(X) = E(n)∗ ⊗E∗ E∗(X)

for a spectrum X, where E∗ = v−1n BP∗ and E∗(E) is flat over E∗.
An invertible spectrum Q is characterized by its E∗-homology:

Theorem 2.1 ([8, Prop. 3.2] (cf. [8, Th. 1.1], [7, Th. 2.4])). A spectrum Q ∈ Ln is
invertible if and only if there is an isomorphism E∗(Q) ∼= E∗ of E∗(E)-comodules.

We have a relation between the E2-terms of the E-based and the E(n)-based
Adams spectral sequences:

Theorem 2.2 ([8, Th. 3.3]).

Ext∗,∗E∗(E)(E∗,M) ∼= Ext∗,∗E(n)∗(E(n))(E(n)∗, E(n)∗ ⊗E∗ M)

for an E∗(E)-comodule M , on which vn acts isomorphically.

The unit map i : S0 → E yields a cofiber sequence

(2.3) S0 i−→ E
j−→ E

k−→ S1,

which gives rise to the E-based Adams tower

(2.4)

S0 E · · · E
m

E
m+1 · · ·

E E ∧ E · · · E ∧ Em E ∧ Em+1 · · · ,
u

i

u

k

u i∧1

u

k∧1
u

k∧1

ui∧1

u

k∧1

u i∧1

u

k∧1

A
A
A
AACj

w
d0

A
A
AAC
j∧1

w
d1

A
A
AACj∧1

w
dm−1

A
AAC

j∧1

w
dm

w
dm+1

in which dotted arrows denote degree −1 maps, E
m

denotes the m-fold smash

product of E and dm = (i ∧ Em+1
)(j ∧ Em) = d0 ∧ Em. Hereafter, we denote

f ∧ W : X ∧ W → Y ∧ W for a map f : X → Y by X ∧ W f∧1−−→ Y ∧ W in

diagrams. Let km : E
m → Sm denote the composite k(k ∧E) · · · (k ∧Em−1) of the

above sequence. We have a spectrum Em and maps im and jm fitting in a cofiber
sequence

(2.5) E
m km−−→ Sm

im−−→ ΣEm
jm−−→ ΣE

m
.

Throughout the paper, we omit suspensions for maps of spectra. So the maps im
and jm in (2.5) denote Σim and Σjm for im : : Sm−1 → Em and jm : Em → E

m
,

respectively. In particular, we see that

(2.6) i1 = i : S0 → E1 = E.

Indeed, the cofiber sequence (2.5) for m = 1 agrees with the one (2.3) (up to
suspension), and so we identify E1 with E.
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The cofiber sequence (2.5) gives rise to another E-based Adams tower

(2.7)

E0 = pt E1 · · · Em Em+1 · · ·

E E ∧ E · · · E ∧ Em E ∧ Em+1 · · ·
u

u

u
d=iS1

u

kS1
u

kSm−1

uiSm

u

kSm

u i
S
m+1

u

kSm+2

AA
AA
AA
AA

w
d0

A
A
AC
jS1

w
d1

A
A
AACjSm−1

w
dm−1

A
AACjSm

w
dm

w
dm+1

with the same dm’s as (2.4). Here, the maps iSm, jSm and kSm are defined by the
commutative diagram

Sm Sm ∗ Sm+1

Em+1 ΣEm ΣE ∧ Em ΣEm+1

E
m+1

ΣE
m

ΣE ∧ Em ΣE
m+1

u
im+1

w

u
im

w

u u
im+1

w
kSm

u
jm+1

w
iSm

u
jm

w
jSm

u
jm+1

w
k∧1

w
i∧1

w
j∧1

of cofiber sequences, which is obtained from Verdier’s axiom. Note that these maps
satisfy

(2.8) iSm = (i ∧ 1)jm, iSmim = 0 and kSmim+1 = im.

A smash product of the tower (2.7) and a spectrum X defines the E-based Adams
spectral sequence

Es,t2 (X) = Exts,tE∗(E)(E∗, E∗(X)) =⇒ πt−s(holim
m

(Σ1−mEm ∧X)).

Note that holim
m

(Σ1−mEm ∧X) = LnX. We consider a similar tower

(2.9)

Q0 = pt Q1 · · · Qm Qm+1 · · ·

E E ∧ E · · · E ∧ Em E ∧ Em+1 · · ·
u

u

u
d= iQ1

u

kQ1
u

kQm−1

uiQm

u

kQm

u i
Q
m+1

u

kQm+2

AA
AA
AA
AA

w
d0

A
A
AC
jQ1

w
d1

A
A
AACjQm−1

w
dm−1

A
AACjQm

w
dm

w
dm+1

over the same bottom sequence as (2.7). Put

(2.10) Q = holim
kQm

Σ1−mQm.

Then, we have a spectral sequence

(2.11) Es,t2 = Exts,tE∗(E)(E∗, E∗) =⇒ πt−s(Q)

obtained by applying homotopy groups π∗(−) to (2.9), and see the following lemma
by [2, Prop. 1.9].

Lemma 2.12. The spectral sequence (2.11) is isomorphic to the E-based Adams
spectral sequence for computing π∗(Q) via an isomorphism which is the identity on
the E2-term.

Proof. By the same argument as [2, Prop. 1.9], we verify that the spectral sequence
(2.11) is isomorphic to the modified E-based Adams spectral sequence for comput-
ing π∗(Q). Now the lemma follows from [2, Prop. 1.9]. �
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The lemma implies that the Er-term of (2.11) agrees with the one of the E-based
Adams spectral sequence:

Es,tr
∼= Es,tr (Q).

Proposition 2.13. If a tower (2.9) exists, then Q in (2.10) is an invertible spec-

trum of Ln. Furthermore, if drq+1(1Q) = ω1Q 6= 0 ∈ Erq+1,rq
rq+1 = Erq+1,rq

rq+1 (Q) for

the generator 1Q ∈ E0,0
2 = E0,0

2 (Q) in the spectral sequence (2.11), then ϕ(Q) = ω
for the monomorphism ϕ in (1.4).

Proof. Let µ : E ∧E → E be the multiplication of the commutative ring spectrum

E, and let ηm : Q → Σ1−mQm denote the canonical map such that kQm−1ηm =

ηm−1. Then, we have a map η : E ∧ Q E∧η1−−−→ E ∧ E µ−→ E. Let C = {X ∈ S(p) |
X is finite, η ∧X : E ∧ Q ∧X ' E ∧X}. Then, C is a thick subcategory of finite
spectra. Ravenel [10, 8.3] constructed a finite torsion free spectrum Y , whose E-
based Adams E2-term has a horizontal vanishing line: there exists an integer s0
such that Es,∗2 (Y ) = 0 for s > s0. By [8, Prop. 4.3], we see that Y ∈ C. This
together with the thick subcategory theorem [5, Th. 7] implies that S0 ∈ C, and
so η : E ∧ Q ' E. This also induces an isomorphism of E∗E-comodules. This

fact is verified as follows: Since the cofiber sequence E
E∧i−−→ E ∧ E E∧j−−−→ E ∧ E

obtained from (2.3) splits by µ(E ∧ i) = 1E (the identity map on E), we have
a map µ : E ∧ E → E ∧ E such that (E ∧ i)µ + µ(E ∧ j) = 1 for the identity

1: E ∧ E → E ∧ E. We see that dη1 = dkQ1 η2 = 0 by (2.9). Then, we compute

(E ∧ j)(E ∧ η1) = (µ∧E)(E ∧ i∧E)(E ∧ j)(E ∧ η1) = (µ∧E)(E ∧ d)(E ∧ η1) = 0.
We also see that η1 = η(i ∧Q) by the commutative diagram

Q E

E ∧Q E ∧ E E.

w
η1

u
i∧Q

''''''
u

i∧E

w
E∧η1

w
µ

It follows that (E ∧ i)η = (E ∧ i)µ(E ∧ η1) = (1 − µ(E ∧ j))(E ∧ η1) = E ∧ η1 =
(E ∧ η)(E ∧ i ∧Q), and we obtain a commutative diagram

E ∧Q E

E ∧ E ∧Q E ∧ E

w
η

uE∧i∧Q
u E∧i

w
E∧η

Therefore, η induces a homomorphism E∗(Q) → E∗ of comodules, and the former
part of the proposition follows from Theorem 2.1.

The latter follows from Lemma 2.12. �

We call the following finite sub-tower of (2.9) an m-tower :

(2.14)m

Q0 = pt Q1 · · · Qm Qm+1

E E ∧ E · · · E ∧ Em.
u

u

u
d= iQ1

u

kQ1
u

kQm−1

u
iQm

u

kQm

[[
[[
[[

w
d0

[
[[]
jQ1

w
d1

[
[[]jQm−1

w
dm−1

[
[]jQm
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Let M be an E-module spectrum with structure map ν : E ∧M → M . Then,

the unit map i of E and the map d = iQ1 in (2.9) give rise to an exact sequence

(2.15) [E ∧ E,M ]t
(iQ1 )∗

−−−→ [E,M ]t
i∗−→ [S0,M ]t → 0←−σ

for each t ∈ Z with splitting σ given by σ(x) = ν(E ∧ x) for x ∈ πt(M) (cf. [8,
p. 329]). Consider a tower (2.14)m for an integer m and define a homomorphism
ψm : πm+t−1(M)→ [Qm,M ]t by

(2.16) ψm(x) = σ(x)(kQ)m−1,

where (kQ)s = kQ1 · · · kQs in (2.9).

Lemma 2.17 ([8, Lemma 4.5]). Suppose that an m-tower (2.14)m for m > 1 exists
and let M be an E-module spectrum. Then, we have a split short exact sequence

0→ πm+t−1(M)
ψm−−→ [Qm,M ]t

(jQm−1)
∗

−−−−−→ (Im (dm−1)∗)t → 0.

Here, (dm−1)∗ : [E∧Em,M ]t → [E∧Em−1,M ]t is induced from dm−1 : E∧Em−1 →
E ∧ Em.

Lemma 2.18. Let m > 1 and let ψm : πm+t−1(E ∧ Ek) → [Qm, E ∧ E
k
]t be the

homomorphism defined by (2.16) with ν = µ∧Ek for the multiplication µ of E and
for an integer k ≥ 0. Then, the diagram

πm+t−1(E ∧ Ek) [Qm, E ∧ E
k
]t

πm+t−1(E ∧ Ek+1
) [Qm, E ∧ E

k+1
]t

w
ψm

u
d∗

u
d∗

w
ψm

commutes for the induced maps d∗ from d = dk : E ∧ Ek → E ∧ Ek+1
.

Proof. Since i∗d∗ = d∗i
∗ : [E,E∧Ek]∗ → π∗(E∧E

k+1
) and σ in (2.15) is a splitting

for the homomorphism i∗, we see that i∗(d∗(σ(x))) = d∗(x) = i∗(σ(d∗(x))) for

x ∈ πm+t−1(E ∧ Ek). Then, we have an element y ∈ [E ∧ E,E ∧ Ek+1
]∗ such

that (iQ1 )∗(y) = d∗(σ(x)) − σ(d∗(x)). Therefore, noticing that iQ1 (kQ)m−1 = 0, we

compute for x ∈ πm+t−1(E ∧ Ek),

ψmd∗(x) =====
(2.16)

σ(d∗(x))(kQ)m−1 =
(
d∗(σ(x))− (iQ1 )∗(y)

)
(kQ)m−1

= d∗(σ(x))(kQ)m−1 =====
(2.16)

d∗ψm(x). �

3. Construction of invertible spectra

Consider a spectral sequence {mEs,tr } obtained by applying the homotopy groups
π∗(−) to an m-tower (2.14)m. Then, the E2-term of the spectral sequence is isomor-
phic to the E2-term of the E-based Adams spectral sequence for computing π∗(S

0)

up to (m−1)-stage: mEs,t2
∼= Es,t2 (S0) for s ≤ m−1. Consider a nontrivial element

[w] ∈ Erq+1,rq
rq+1 (S0) for w ∈ πrq(E ∧E

rq+1
) and r > 0. Note that πrq(E ∧E

rq+1
) is

also an E1-term of the spectral sequence {mEs,tr }. If the element w survives to an

element of mErq+1,rq
rq+1 for rq + 1 ≤ m, then we denote it by 〈w〉.
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Lemma 3.1. Suppose that we have a nontrivial element [w] ∈ Erq+1,rq
rq+1 (S0) for

w ∈ πrq(E ∧ E
rq+1

) and r > 0. Then there exists an (rq + 2)-tower (2.14)rq+2

such that drq+1(1) = 〈w〉 ∈ rq+2E
rq+1,rq
rq+1 for 1 ∈ rq+2E

0,0
2
∼= E0,0

2 (S0) in the spectral

sequence {rq+2E
s,t
r′ } associated to the tower.

Proof. We take the same rq-tower as (2.7) up to rq-stage. That is, Qs = Es for
s ≤ rq + 1 and `Qs = `Ss for s ≤ rq, where ` stands for one of letters i, j and k.

Put iQrq+1 = iSrq+1 + ψrq+1(w) ∈ [Erq+1, E ∧ E
rq+1

]0 for the maps iSrq+1 in (2.7)

and ψrq+1 in (2.16) where kQ = kS . Then, iQrq+1j
Q
rq = iQrq+1j

S
rq = iSrq+1j

S
rq = d,

since (jSrq)
∗ψrq+1 = 0 by Lemma 2.17. Let Qrq+2 be a cofiber of iQrq+1, and we have

an (rq + 1)-tower. By Lemma 2.18, we see that d∗ψrq+1(w) = ψrq+1d∗(w) = 0
for d = drq+1, since w is a d∗-cocycle. Since d∗i

S
rq+1 = 0 by (2.7), we deduce

d∗i
Q
rq+1 = 0, and hence we obtain a map iQrq+2 : Qrq+2 → E ∧ Erq+2

such that

d = iQrq+2j
Q
rq+1. Thus, we have an (rq + 2)-tower by setting Qrq+3 to be a cofiber

of iQrq+2.

Now consider the spectral sequence {rq+2E
s,t
r }. Note that the generator 1 ∈

rq+2E
0,0
2 is represented by the unit map i. Then, the differentials of the spectral

sequence on the generator 1 is given by

ds(1) = [a] ∈ rq+2E
s,s−1
s if iQs is = a ∈ πs−1(E ∧ Es)

by definition for s ≤ rq + 1. Here, is is the map of (2.5). By the last relation of
(2.8) and (2.6), we see that

(3.2) (kS)s−1is = i for s ≥ 1.

This together with iSs is = 0 of (2.8) shows that the differential of the spectral

sequence acts as ds(1) = 0 for s ≤ rq. Consider (2.15) for M = E ∧ Erq+1
and

ν = µ ∧ Erq+1
. Then, we have σ(w)i = i∗σ(w) = w. We compute

ψrq+1(w)irq+1 =====
(2.16)

σ(w)(kS)rqirq+1 ====
(3.2)

σ(w)i = w,

and so, iQrq+1irq+1 = (iSrq+1 + ψrq+1(w))irq+1 = ψrq+1(w)irq+1 = w. This implies

drq+1(1) = 〈w〉 ∈ rq+2E
rq+1,rq
rq+1 in the spectral sequence. �

Lemma 3.3. Suppose that we have a tower (2.14)m for m > 1. If Em+1,m−1
2 (S0) =

0, then the tower extends up to m+ 1 stage.

Proof. It suffices to show that the map iQm : Qm → E∧Em in the given tower (2.14)m
is replaced by a map iQm satisfying iQmj

Q
m−1 = dm−1 and dmiQm = 0. Indeed, the

relation dmiQm = 0 yields a map iQm+1 : Qm+1 → E ∧Em+1
such that iQm+1j

Q
m = dm,

and we obtain a tower (2.14)m+1 by taking Qm+2 as a cofiber of iQm+1.
By Lemma 2.18, we have the commutative diagram
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πm−1(E ∧ Em) [Qm, E ∧ E
m

]0 (Im (dm−1)∗)0

πm−1(E ∧ Em+1
) [Qm, E ∧ E

m+1
]0 (Im (dm−1)∗)0

πm−1(E ∧ Em+2
) [Qm, E ∧ E

m+2
]0 (Im (dm−1)∗)0,

w
ψm

u
(dm)∗

w
(jQm−1)

∗

u
(dm)∗

u
(dm)∗

w
ψm

u
(dm+1)∗

w
(jQm−1)

∗

u
(dm+1)∗

u
(dm+1)∗

w
ψm

w
(jQm−1)

∗

in which the horizontal sequences are exact by Lemma 2.17. Let i′m ∈ [Qm, E∧E
m

]0
denote the given map iQm. Then, dm−1 = i′mj

Q
m−1, and so (jQm−1)∗(dmi′m) =

dmdm−1 = 0 for dmi′m ∈ [Qm, E ∧ E
m+1

]0. Therefore, we have an element

o ∈ πm−1(E ∧ Em+1
) such that ψm(o) = dmi′m. Moreover, ψm(dm+1)∗(o) =

(dm+1)∗ψm(o) = dm+1dmi′m = 0. Since ψm is a monomorphism, we have (dm+1)∗(o) =

0. The assumption Em+1,m−1
2 (S0) = 0 indicates that the left column of the diagram

is exact, and so we have an element õ ∈ πm−1(E ∧ Em) such that (dm)∗(õ) = o.

Now set iQm = i′m − ψm(õ). Then, iQmj
Q
m−1 = i′mj

Q
m−1 − (jQm−1)∗ψm(õ) = dm−1 and

dmiQm = dmi′m − (dm)∗ψm(õ) ===
2.18

dmi′m − ψm(dm)∗(õ)

= dmi′m − ψm(o) = 0

as desired. �

Proof of Theorem 1.8. Consider the (r0q + 2)-tower of Lemma 3.1. For each m ≥
r0q+ 2, the condition of Lemma 3.3 is fulfilled by the assumption Erq+2,rq

2 (S0) = 0

for r > r0 and the fact that E∗,t2 (S0) = 0 unless t ≡ 0 mod q. It follows that the
tower extends to an infinite tower. Now the theorem follows from Proposition 2.13.
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