A NOTE ON HOPKINS' PICARD GROUPS OF THE STABLE HOMOTOPY CATEGORIES OF L_n -LOCAL SPECTRA

KATSUMI SHIMOMURA

ABSTRACT. For a stable homotopy category [6], M. Hopkins introduced a Picard group (cf. [11], [4]) as a category consisting of isomorphism classes of invertible objects. For the stable homotopy category of L_n -local spectra, M. Hovey and H. Sadofsky [7] showed that the Picard group is actually a group containing the group of integers as a direct summand. We constructed an injection in [8] from the other summand of the Picard group to the direct sum of the E_r -terms $E_r^{r,r-1}$ over $r \geq 2$ of the Adams-Novikov spectral sequence converging to the homotopy groups of the L_n -localized sphere spectrum. In this paper, we show in a classical way that the injection is a bijection under a condition.

1. INTRODUCTION

Throughout this paper we fix a prime p. Let $S_{(p)}$ denote the stable homotopy category consisting of all p-local spectra. For a spectrum E, a spectrum $X \in S_{(p)}$ is E-local if $[C, X]_* = 0$ for C with $E \wedge C = pt$. We denote by \mathcal{L}_E the full subcategory of E-local spectra, and have the Bousfield localization functor $L_E \colon S_{(p)} \to \mathcal{L}_E$ with respect to E. A spectrum $Q \in \mathcal{L}_E$ is *invertible* in \mathcal{L}_E if there is a spectrum $Q' \in \mathcal{L}_E$ such that $L_E(Q \wedge Q') = L_E S^0$ for the sphere spectrum S^0 . M. Hopkins introduced the Picard group $\operatorname{Pic}(\mathcal{L}_E)$ of \mathcal{L}_E consisting of isomorphism classes of invertible spectra (cf. [11], [4]). Hereafter, we abuse notation and an invertible spectrum Qdenotes a class of $\operatorname{Pic}(\mathcal{L}_E)$ represented by Q.

Let $BP \in \mathcal{S}_{(p)}$ denote the Brown-Peterson spectrum whose homotopy groups are $BP_* = \pi_*(BP) = \mathbb{Z}_{(p)}[v_1, v_2, \dots]$ over generators with degree $|v_i| = 2p^i - 2$. In this paper, we consider the spectrum $E = v_n^{-1}BP$ for a fixed integer $n \ge 1$, and denote by \mathcal{L}_n and L_n traditionally the category \mathcal{L}_E and the functor L_E , respectively. The category and the functor are the same as $\mathcal{L}_{E(n)}$ and $L_{E(n)}$ for the *n*-th Johnson-Wilson spectrum E(n) (cf. [9]), whose homotopy groups are $E(n)_* = \pi_*(E(n)) = \mathbb{Z}_{(p)}[v_1, v_2, \dots, v_n, v_n^{-1}] \subset v_n^{-1}BP_*$.

We have some results on the Picard group $\operatorname{Pic}(\mathcal{L}_n)$. Hereafter, we set

$$q = 2p - 2$$

Theorem 1.1 ([7, Prop. 1.4, Lemma 1.5, Th. 5.4, Th. 6.1]). $\operatorname{Pic}(\mathcal{L}_n)$ is a group with multiplication defined by the smash product and $\operatorname{Pic}(\mathcal{L}_n) \cong \mathbb{Z} \oplus \operatorname{Pic}^0(\mathcal{L}_n)$ for a subgroup $\operatorname{Pic}^0(\mathcal{L}_n)$. In particular, $\operatorname{Pic}(\mathcal{L}_n) \cong \mathbb{Z}$ if $q > n^2 + n$ and $\operatorname{Pic}(\mathcal{L}_1) \cong \mathbb{Z} \oplus \mathbb{Z}/2$ if p = 2.

Theorem 1.2 ([3]). $\operatorname{Pic}(\mathcal{L}_2) \cong \mathbb{Z} \oplus \mathbb{Z}/3 \oplus \mathbb{Z}/3$ if p = 3.

Theorem 1.3 ([7, Th. 2.4]). If $Q \in \operatorname{Pic}^{0}(\mathcal{L}_{n})$, then $E(n)_{*}(Q) \cong E(n)_{*}$ as an $E(n)_{*}(E(n))$ -comodule.

Consider the $v_n^{-1}BP$ -based Adams spectral sequence $\{E_r^{s,t}(X), d_r\}$ for a spectrum X converging to homotopy groups $\pi_*(L_nX)$. We notice that the E_2 -term $E_2^{s,t}(Q)$ for $Q \in \operatorname{Pic}^0(\mathcal{L}_n)$ is isomorphic to $\operatorname{Ext}_{E(n)*(E(n))}^{s,t}(E(n)_*, E(n)_*)$ by Theorem 1.3 and [8, Th. 3.3] (see Theorem 2.2). Thus, we see that $E_2^{s,t}(Q) \cong E_2^{s,t}(S^0)$ for an invertible spectrum Q of $\operatorname{Pic}^0(\mathcal{L}_n)$. Let $\operatorname{Pic}^0(\mathcal{L}_n)_k$ be a subgroup consisting of invertible spectra Q of $\operatorname{Pic}^0(\mathcal{L}_n)$ such that $d_s(1_Q) = 0 \in E_s^{s,s-1}(Q)$ for s < kq+1, where $1_Q \in E_2^{0,0}(Q) \cong \mathbb{Z}_{(p)}$ denotes the generator. Put

$$G\operatorname{Pic}^{0}(\mathcal{L}_{n}) = \bigoplus_{k>0} \left(\operatorname{Pic}^{0}(\mathcal{L}_{n})_{k}/\operatorname{Pic}^{0}(\mathcal{L}_{n})_{k+1}\right).$$

Then, in [8], we set up a homomorphism

(1.4)
$$\varphi \colon G\operatorname{Pic}^{0}(\mathcal{L}_{n}) \to \bigoplus_{k>0} E_{kq+1}^{kq+1,kq}(S^{0})$$

sending $[Q] \neq 0 (= [L_n S^0])$ to an element $w \neq 0 \in E_{kq+1}^{kq+1,kq}(S^0)$ such that $d_{kq+1}(1_Q) = w 1_Q \in E_{kq+1}^{kq+1,kq}(Q)$.

Theorem 1.5 ([8, Th. 2]). The homomorphism φ is a monomorphism.

For a small n, the E_2 -term has a horizontal vanishing line:

Lemma 1.6 (cf. [9, (10.10)]). Suppose $n . Then, <math>E_2^{s,t}(S^0) = 0$ for $s > n^2 + n$.

By Theorem 1.5 and Lemma 1.6, we deduce that the second isomorphism in Theorem 1.1 holds in the case where $q = n^2 + n$ unless (p, n) = (2, 1):

Corollary 1.7. Suppose that p > 2 or n > 1. Then, $\operatorname{Pic}(\mathcal{L}_n) \cong \mathbb{Z}$ if $q \ge n^2 + n$.

In this paper, we show the following:

Theorem 1.8. Suppose that there is an integer r_0 such that $E_2^{rq+2,rq}(S^0) = 0$ for $r > r_0$. Then, for $\omega \in E_{r_0q+1}^{r_0q+1,r_0q}(S^0)$, we have an invertible spectrum X_{ω} such that $\varphi([X_{\omega}]) = \omega$.

Corollary 1.9. Suppose that n < p-1 and let r_0 be the maximal integer less than $(n^2+n)/q$. Then, the composite $GPic^0(\mathcal{L}_n) \xrightarrow{\varphi} \bigoplus_{k>0} E_{kq+1}^{kq+1,kq}(S^0) \to E_{r_0q+1}^{r_0q+1,r_0q}(S^0)$ is an epimorphism.

Corollary 1.10. For n and r_0 in Corollary 1.9, if $E_{r_0q+1}^{r_0q+1,r_0q}(S^0) \neq 0$, then \mathcal{L}_n admits an exotic invertible spectrum, or an invertible spectrum other than L_nS^k .

Corollary 1.11. If $n and <math>n^2 + n \le 2q$, then $\operatorname{Pic}^0(\mathcal{L}_n)$ is isomorphic to $E_2^{q+1,q}(S^0) \cong \operatorname{Ext}_{E(n)_*(E(n))}^{q+1,q}(E(n)_*, E(n)_*).$

In the corollary, if the condition $n^2 + n \leq q$ holds, then it is Corollary 1.7. If $q+1 \leq n^2 + n$, then the isomorphism $\operatorname{Pic}^0(\mathcal{L}_n) \cong E_2^{q+1,q}(S^0)$ holds in the following cases:

p	5	7	11	13	17	19
n	3	4	5	6	7	8

For the case where p = 23 and n = 9, we have $n^2 + n = 90 > 89 = 2q + 1$. We note that we have the isomorphism for the cases (p, n) = (2, 1) and (3, 2) by Theorems 1.1 and 1.2, though n = p - 1. We have a conjecture that $E_2^{s,t}(S^0) = 0$ for $s > n^2$

if n . If this is true, then the table extends up to <math>p = 29 and n = 10 after replacing the condition by $q + 1 \le n^2 < 2q + 1$.

The author would like to thank the referee for pointing out some errors in a draft.

2. Recollection from [8]

Let E denote $v_n^{-1}BP$. We recollect some facts from [8, §3-4]: The spectrum E yields a Hopf algebroid $(E_*, E_*(E))$ in a usual way. Here,

$$E_{*}(E) = E_{*} \otimes_{BP_{*}} BP_{*}(BP) \otimes_{BP_{*}} E_{*} \text{ and} \\ E(n)_{*}(X) = E(n)_{*} \otimes_{BP_{*}} BP_{*}(X) = E(n)_{*} \otimes_{E_{*}} E_{*}(X)$$

for a spectrum X, where $E_* = v_n^{-1}BP_*$ and $E_*(E)$ is flat over E_* . An invertible spectrum Q is characterized by its E_* -homology:

Theorem 2.1 ([8, Prop. 3.2] (cf. [8, Th. 1.1], [7, Th. 2.4])). A spectrum $Q \in \mathcal{L}_n$ is invertible if and only if there is an isomorphism $E_*(Q) \cong E_*$ of $E_*(E)$ -comodules.

We have a relation between the E_2 -terms of the *E*-based and the E(n)-based Adams spectral sequences:

Theorem 2.2 ([8, Th. 3.3]).

$$\operatorname{Ext}_{E_{*}(E)}^{*,*}(E_{*},M) \cong \operatorname{Ext}_{E(n)_{*}(E(n))}^{*,*}(E(n)_{*},E(n)_{*} \otimes_{E_{*}} M)$$

for an $E_*(E)$ -comodule M, on which v_n acts isomorphically.

The unit map $i: S^0 \to E$ yields a cofiber sequence

(2.3)
$$S^0 \xrightarrow{i} E \xrightarrow{j} \overline{E} \xrightarrow{k} S^1$$

which gives rise to the *E*-based Adams tower

$$(2.4) \begin{array}{c} S^{0} \xleftarrow{} & \overline{E} \xleftarrow{} & \overset{k \wedge 1}{\longrightarrow} & \overline{E} & \overset{k \wedge 1}{\longrightarrow} & \overline{E}^{m} \xleftarrow{} & \overset{k \wedge 1}{\longrightarrow} & \overline{E}^{m+1} \xleftarrow{} & \overset{k \wedge 1}{\longleftarrow} & \cdots \\ i \downarrow & \downarrow & \downarrow i \wedge 1 & \downarrow & \downarrow i \wedge 1 \\ E & \xrightarrow{} & d^{0} & E \wedge \overline{E} & \xrightarrow{} & d^{1} & \cdots & \overbrace{d^{m-1}}^{j \wedge 1} & E \wedge \overline{E}^{m} \xrightarrow{} & d^{\overline{m}} & E \wedge \overline{E}^{m+1} \xrightarrow{} & d^{\overline{m+1}} & \cdots , \end{array}$$

in which dotted arrows denote degree -1 maps, \overline{E}^m denotes the *m*-fold smash product of \overline{E} and $d^m = (i \wedge \overline{E}^{m+1})(j \wedge \overline{E}^m) = d^0 \wedge \overline{E}^m$. Hereafter, we denote $f \wedge W \colon X \wedge W \to Y \wedge W$ for a map $f \colon X \to Y$ by $X \wedge W \xrightarrow{f \wedge 1} Y \wedge W$ in diagrams. Let $k^m \colon \overline{E}^m \to S^m$ denote the composite $k(k \wedge \overline{E}) \cdots (k \wedge \overline{E}^{m-1})$ of the above sequence. We have a spectrum \overline{E}_m and maps i_m and j_m fitting in a cofiber sequence

(2.5)
$$\overline{E}^m \xrightarrow{k^m} S^m \xrightarrow{i_m} \Sigma \overline{E}_m \xrightarrow{j_m} \Sigma \overline{E}^m.$$

Throughout the paper, we omit suspensions for maps of spectra. So the maps i_m and j_m in (2.5) denote Σi_m and Σj_m for $i_m : : S^{m-1} \to \overline{E}_m$ and $j_m : \overline{E}_m \to \overline{E}^m$, respectively. In particular, we see that

Indeed, the cofiber sequence (2.5) for m = 1 agrees with the one (2.3) (up to suspension), and so we identify \overline{E}_1 with E.

KATSUMI SHIMOMURA

The cofiber sequence (2.5) gives rise to another *E*-based Adams tower

$$(2.7) \qquad \overline{E}_{0} = pt \quad \overline{E}_{1} \quad \overline{E}_{1} \quad \overline{E}_{m} \quad \overline{E}_{m-1} \quad \overline{E}_{m} \quad \overline{E}_{m-1} \quad \overline{E}_{m+1} \quad$$

with the same d^m 's as (2.4). Here, the maps $i^S_m, \; j^S_m$ and k^S_m are defined by the commutative diagram

$$S^{m} = S^{m} \longrightarrow * \longrightarrow S^{m+1}$$

$$i_{m+1} \downarrow \qquad \qquad \downarrow i_{m} \qquad \qquad \downarrow \qquad \qquad \downarrow i_{m+1}$$

$$\overline{E}_{m+1} \xrightarrow{k_{m}^{S}} \Sigma \overline{E}_{m} \xrightarrow{i_{m}^{S}} \Sigma E \wedge \overline{E}^{m} \xrightarrow{j_{m}^{S}} \Sigma \overline{E}_{m+1}$$

$$j_{m+1} \downarrow \qquad \qquad \downarrow j_{m} \qquad \qquad \qquad \downarrow j_{m+1}$$

$$\overline{E}^{m+1} \xrightarrow{k \wedge 1} \Sigma \overline{E}^{m} \xrightarrow{i \wedge 1} \Sigma E \wedge \overline{E}^{m} \xrightarrow{j \wedge 1} \Sigma \overline{E}^{m+1}$$

of cofiber sequences, which is obtained from Verdier's axiom. Note that these maps satisfy

(2.8)
$$i_m^S = (i \wedge 1)j_m, \quad i_m^S i_m = 0 \text{ and } k_m^S i_{m+1} = i_m$$

A smash product of the tower (2.7) and a spectrum X defines the $E\text{-}\mathrm{based}$ Adams spectral sequence

$$E_2^{s,t}(X) = \operatorname{Ext}_{E_*(E)}^{s,t}(E_*, E_*(X)) \Longrightarrow \pi_{t-s}(\operatorname{holim}_m(\Sigma^{1-m}\overline{E}_m \wedge X)).$$

Note that $\underset{m}{\text{bolim}}(\Sigma^{1-m}\overline{E}_m \wedge X) = L_n X$. We consider a similar tower

over the same bottom sequence as (2.7). Put

$$(2.10) Q = \underset{k_m^Q}{\operatorname{holim}} \Sigma^{1-m} Q_m$$

Then, we have a spectral sequence

(2.11)
$$E_2^{s,t} = \operatorname{Ext}_{E_*(E)}^{s,t}(E_*, E_*) \Longrightarrow \pi_{t-s}(Q)$$

obtained by applying homotopy groups $\pi_*(-)$ to (2.9), and see the following lemma by [2, Prop. 1.9].

Lemma 2.12. The spectral sequence (2.11) is isomorphic to the *E*-based Adams spectral sequence for computing $\pi_*(Q)$ via an isomorphism which is the identity on the E_2 -term.

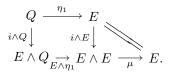
Proof. By the same argument as [2, Prop. 1.9], we verify that the spectral sequence (2.11) is isomorphic to the modified *E*-based Adams spectral sequence for computing $\pi_*(Q)$. Now the lemma follows from [2, Prop. 1.9].

The lemma implies that the E_r -term of (2.11) agrees with the one of the *E*-based Adams spectral sequence:

$$E_r^{s,t} \cong E_r^{s,t}(Q).$$

Proposition 2.13. If a tower (2.9) exists, then Q in (2.10) is an invertible spectrum of \mathcal{L}_n . Furthermore, if $d_{rq+1}(1_Q) = \omega 1_Q \neq 0 \in E_{rq+1}^{rq+1,rq} = E_{rq+1}^{rq+1,rq}(Q)$ for the generator $1_Q \in E_2^{0,0} = E_2^{0,0}(Q)$ in the spectral sequence (2.11), then $\varphi(Q) = \omega$ for the monomorphism φ in (1.4).

Proof. Let $\mu: E \wedge E \to E$ be the multiplication of the commutative ring spectrum E, and let $\eta_m: Q \to \Sigma^{1-m}Q_m$ denote the canonical map such that $k_{m-1}^Q \eta_m = \eta_{m-1}$. Then, we have a map $\eta: E \wedge Q \xrightarrow{E \wedge \eta_1} E \wedge E \xrightarrow{\mu} E$. Let $\mathcal{C} = \{X \in \mathcal{S}_{(p)} \mid X \text{ is finite, } \eta \wedge X : E \wedge Q \wedge X \simeq E \wedge X\}$. Then, \mathcal{C} is a thick subcategory of finite spectra. Ravenel [10, 8.3] constructed a finite torsion free spectrum Y, whose E-based Adams E_2 -term has a horizontal vanishing line: there exists an integer s_0 such that $E_2^{s,*}(Y) = 0$ for $s > s_0$. By [8, Prop. 4.3], we see that $Y \in \mathcal{C}$. This together with the thick subcategory theorem [5, Th. 7] implies that $S^0 \in \mathcal{C}$, and so $\eta: E \wedge Q \simeq E$. This also induces an isomorphism of E_*E -comodules. This fact is verified as follows: Since the cofiber sequence $E \xrightarrow{E \wedge i} E \wedge E \xrightarrow{E \wedge j} E \wedge \overline{E}$ obtained from (2.3) splits by $\mu(E \wedge i) = 1_E$ (the identity map on E), we have a map $\overline{\mu}: E \wedge \overline{E} \to E \wedge E$ such that $(E \wedge i)\mu + \overline{\mu}(E \wedge j) = 1$ for the identity $1: E \wedge E \to E \wedge E$. We see that $d\eta_1 = dk_1^Q \eta_2 = 0$ by (2.9). Then, we compute $(E \wedge j)(E \wedge \eta_1) = (\mu \wedge \overline{E})(E \wedge i \wedge \overline{E})(E \wedge \eta_1) = (\mu \wedge \overline{E})(E \wedge \eta_1) = 0$. We also see that $\eta_1 = \eta(i \wedge Q)$ by the commutative diagram



It follows that $(E \wedge i)\eta = (E \wedge i)\mu(E \wedge \eta_1) = (1 - \overline{\mu}(E \wedge j))(E \wedge \eta_1) = E \wedge \eta_1 = (E \wedge \eta)(E \wedge i \wedge Q)$, and we obtain a commutative diagram

$$\begin{array}{ccc} E \land Q & \xrightarrow{\eta} & E \\ E \land i \land Q \downarrow & & \downarrow E \land i \\ E \land E \land Q & \xrightarrow{} & E \land E \end{array}$$

Therefore, η induces a homomorphism $E_*(Q) \to E_*$ of comodules, and the former part of the proposition follows from Theorem 2.1.

The latter follows from Lemma 2.12.

We call the following finite sub-tower of (2.9) an *m*-tower :

 $(2.14)_{m} \qquad \qquad Q_{0} = pt \leftarrow Q_{1} \leftarrow \overset{k_{1}^{Q}}{\longleftarrow} \cdots \leftarrow \overset{k_{m-1}^{Q}}{\longleftarrow} Q_{m} \leftarrow \overset{k_{m}^{Q}}{\longleftarrow} Q_{m+1}$ $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow^{d=i_{1}^{Q}} \overset{j_{1}^{Q}}{\xrightarrow{j_{1}^{Q}}} \overset{j_{m-1}^{Q}}{\xrightarrow{j_{m}^{Q}}} \overset{j_{m}^{Q}}{\xrightarrow{j_{m}^{Q}}} \overset{j_{m}^{Q}}{\xrightarrow{j_{m}^{Q}}} \xrightarrow{j_{m}^{Q}} Q_{m+1}$ $E \xrightarrow{d^{0}} E \wedge \overline{E} \xrightarrow{d^{1}} \cdots \xrightarrow{d^{m-1}} E \wedge \overline{E}^{m}.$

KATSUMI SHIMOMURA

Let M be an E-module spectrum with structure map $\nu \colon E \land M \to M$. Then, the unit map i of E and the map $d = i_1^Q$ in (2.9) give rise to an exact sequence

(2.15)
$$[E \wedge \overline{E}, M]_t \xrightarrow{(i_1^Q)^*} [E, M]_t \rightleftharpoons_{\overline{\sigma}}^{i^*} [S^0, M]_t \to 0$$

for each $t \in \mathbb{Z}$ with splitting σ given by $\sigma(x) = \nu(E \wedge x)$ for $x \in \pi_t(M)$ (cf. [8, p. 329]). Consider a tower $(2.14)_m$ for an integer m and define a homomorphism $\psi_m : \pi_{m+t-1}(M) \to [Q_m, M]_t$ by

(2.16)
$$\psi_m(x) = \sigma(x)(k^Q)^{m-1},$$

where $(k^Q)^s = k_1^Q \cdots k_s^Q$ in (2.9).

Lemma 2.17 ([8, Lemma 4.5]). Suppose that an m-tower $(2.14)_m$ for m > 1 exists and let M be an E-module spectrum. Then, we have a split short exact sequence

$$0 \to \pi_{m+t-1}(M) \xrightarrow{\psi_m} [Q_m, M]_t \xrightarrow{(j_{m-1}^Q)^*} (\operatorname{Im} (d^{m-1})^*)_t \to 0.$$

Here, $(d^{m-1})^* \colon [E \wedge \overline{E}^m, M]_t \to [E \wedge \overline{E}^{m-1}, M]_t$ is induced from $d^{m-1} \colon E \wedge \overline{E}^{m-1} \to E \wedge \overline{E}^m$.

Lemma 2.18. Let m > 1 and let $\psi_m : \pi_{m+t-1}(E \wedge \overline{E}^k) \to [Q_m, E \wedge \overline{E}^k]_t$ be the homomorphism defined by (2.16) with $\nu = \mu \wedge \overline{E}^k$ for the multiplication μ of E and for an integer $k \ge 0$. Then, the diagram

commutes for the induced maps d_* from $d = d^k \colon E \wedge \overline{E}^k \to E \wedge \overline{E}^{k+1}$.

Proof. Since $i^*d_* = d_*i^* : [E, E \wedge \overline{E}^k]_* \to \pi_*(E \wedge \overline{E}^{k+1})$ and σ in (2.15) is a splitting for the homomorphism i^* , we see that $i^*(d_*(\sigma(x))) = d_*(x) = i^*(\sigma(d_*(x)))$ for $x \in \pi_{m+t-1}(E \wedge \overline{E}^k)$. Then, we have an element $y \in [E \wedge \overline{E}, E \wedge \overline{E}^{k+1}]_*$ such that $(i_1^Q)^*(y) = d_*(\sigma(x)) - \sigma(d_*(x))$. Therefore, noticing that $i_1^Q(k^Q)^{m-1} = 0$, we compute for $x \in \pi_{m+t-1}(E \wedge \overline{E}^k)$,

$$\psi_m d_*(x) = \frac{\sigma(d_*(x))(k^Q)^{m-1}}{\sigma(d_*(x))(k^Q)^{m-1}} = \left(d_*(\sigma(x)) - (i_1^Q)^*(y) \right) (k^Q)^{m-1} = d_*(\sigma(x))(k^Q)^{m-1} = \frac{\sigma(d_*(x))(k^Q)^{m-1}}{\sigma(d_*(x))(k^Q)^{m-1}} = \frac{\sigma(d_*(x))(k^Q)^{m-1}}{\sigma(d_*(x))(k^Q)^{m-1$$

3. Construction of invertible spectra

Consider a spectral sequence $\{{}^{m}E_{r}^{s,t}\}$ obtained by applying the homotopy groups $\pi_{*}(-)$ to an *m*-tower $(2.14)_{m}$. Then, the E_{2} -term of the spectral sequence is isomorphic to the E_{2} -term of the *E*-based Adams spectral sequence for computing $\pi_{*}(S^{0})$ up to (m-1)-stage: ${}^{m}E_{2}^{s,t} \cong E_{2}^{s,t}(S^{0})$ for $s \le m-1$. Consider a nontrivial element $[w] \in E_{rq+1}^{rq+1,rq}(S^{0})$ for $w \in \pi_{rq}(E \wedge \overline{E}^{rq+1})$ and r > 0. Note that $\pi_{rq}(E \wedge \overline{E}^{rq+1})$ is also an E_{1} -term of the spectral sequence $\{{}^{m}E_{r}^{s,t}\}$. If the element w survives to an element of ${}^{m}E_{rq+1}^{rq+1,rq}$ for $rq+1 \le m$, then we denote it by $\langle w \rangle$.

Lemma 3.1. Suppose that we have a nontrivial element $[w] \in E_{rq+1}^{rq+1,rq}(S^0)$ for $w \in \pi_{rq}(E \wedge \overline{E}^{rq+1})$ and r > 0. Then there exists an (rq+2)-tower $(2.14)_{rq+2}$ such that $d_{rq+1}(1) = \langle w \rangle \in {}^{rq+2}E_{rq+1}^{rq+1,rq}$ for $1 \in {}^{rq+2}E_2^{0,0} \cong E_2^{0,0}(S^0)$ in the spectral sequence $\{{}^{rq+2}E_{r'}^{s,t}\}$ associated to the tower.

Proof. We take the same rq-tower as (2.7) up to rq-stage. That is, $Q_s = \overline{E}_s$ for $s \leq rq + 1$ and $\ell_s^Q = \ell_s^S$ for $s \leq rq$, where ℓ stands for one of letters i, j and k. Put $i_{rq+1}^Q = i_{rq+1}^S + \psi_{rq+1}(w) \in [\overline{E}_{rq+1}, E \wedge \overline{E}^{rq+1}]_0$ for the maps i_{rq+1}^S in (2.7) and ψ_{rq+1} in (2.16) where $k^Q = k^S$. Then, $i_{rq+1}^Q j_{rq}^Q = i_{rq+1}^Q j_{rq}^S = i_{rq+1}^S j_{rq}^S = d$, since $(j_{rq}^S)^* \psi_{rq+1} = 0$ by Lemma 2.17. Let Q_{rq+2} be a cofiber of i_{rq+1}^Q , and we have an (rq+1)-tower. By Lemma 2.18, we see that $d_*\psi_{rq+1}(w) = \psi_{rq+1}d_*(w) = 0$ for $d = d^{rq+1}$, since w is a d_* -cocycle. Since $d_*i_{rq+1}^S = 0$ by (2.7), we deduce $d_*i_{rq+1}^Q = 0$, and hence we obtain a map i_{rq+2}^Q : $Q_{rq+2} \to E \wedge \overline{E}^{rq+2}$ such that $d = i_{rq+2}^Q j_{rq+1}^Q$. Thus, we have an (rq+2)-tower by setting Q_{rq+3} to be a cofiber of i_{rq+2}^Q .

Now consider the spectral sequence $\{r^{q+2}E_r^{s,t}\}$. Note that the generator $1 \in r^{q+2}E_2^{0,0}$ is represented by the unit map *i*. Then, the differentials of the spectral sequence on the generator 1 is given by

$$d_s(1) = [a] \in {}^{rq+2}E_s^{s,s-1} \quad \text{if } i_s^Q i_s = a \in \pi_{s-1}(E \wedge \overline{E}^s)$$

by definition for $s \leq rq + 1$. Here, i_s is the map of (2.5). By the last relation of (2.8) and (2.6), we see that

(3.2)
$$(k^S)^{s-1}i_s = i \text{ for } s \ge 1.$$

This together with $i_s^S i_s = 0$ of (2.8) shows that the differential of the spectral sequence acts as $d_s(1) = 0$ for $s \leq rq$. Consider (2.15) for $M = E \wedge \overline{E}^{rq+1}$ and $\nu = \mu \wedge \overline{E}^{rq+1}$. Then, we have $\sigma(w)i = i^*\sigma(w) = w$. We compute

$$\psi_{rq+1}(w)i_{rq+1} = \frac{1}{(2.16)} \sigma(w)(k^S)^{rq}i_{rq+1} = \frac{1}{(3.2)} \sigma(w)i = w,$$

and so, $i_{rq+1}^Q i_{rq+1} = (i_{rq+1}^S + \psi_{rq+1}(w))i_{rq+1} = \psi_{rq+1}(w)i_{rq+1} = w$. This implies $d_{rq+1}(1) = \langle w \rangle \in {}^{rq+2}E_{rq+1}^{rq+1,rq}$ in the spectral sequence.

Lemma 3.3. Suppose that we have a tower $(2.14)_m$ for m > 1. If $E_2^{m+1,m-1}(S^0) = 0$, then the tower extends up to m + 1 stage.

Proof. It suffices to show that the map $i_m^Q : Q_m \to E \wedge \overline{E}^m$ in the given tower $(2.14)_m$ is replaced by a map i_m^Q satisfying $i_m^Q j_{m-1}^Q = d^{m-1}$ and $d^m i_m^Q = 0$. Indeed, the relation $d^m i_m^Q = 0$ yields a map $i_{m+1}^Q : Q_{m+1} \to E \wedge \overline{E}^{m+1}$ such that $i_{m+1}^Q j_m^Q = d^m$, and we obtain a tower $(2.14)_{m+1}$ by taking Q_{m+2} as a cofiber of i_{m+1}^Q .

By Lemma 2.18, we have the commutative diagram

KATSUMI SHIMOMURA

in which the horizontal sequences are exact by Lemma 2.17. Let $i'_m \in [Q_m, E \wedge \overline{E}^m]_0$ denote the given map i^Q_m . Then, $d^{m-1} = i'_m j^Q_{m-1}$, and so $(j^Q_{m-1})^* (d^m i'_m) = d^m d^{m-1} = 0$ for $d^m i'_m \in [Q_m, E \wedge \overline{E}^{m+1}]_0$. Therefore, we have an element $o \in \pi_{m-1}(E \wedge \overline{E}^{m+1})$ such that $\psi_m(o) = d^m i'_m$. Moreover, $\psi_m(d^{m+1})_*(o) = (d^{m+1})_*\psi_m(o) = d^{m+1}d^m i'_m = 0$. Since ψ_m is a monomorphism, we have $(d^{m+1})_*(o) = 0$. The assumption $E_2^{m+1,m-1}(S^0) = 0$ indicates that the left column of the diagram is exact, and so we have an element $\widetilde{o} \in \pi_{m-1}(E \wedge \overline{E}^m)$ such that $(d^m)_*(\widetilde{o}) = o$. Now set $i^Q_m = i'_m - \psi_m(\widetilde{o})$. Then, $i^Q_m j^Q_{m-1} = i'_m j^Q_{m-1} - (j^Q_{m-1})^* \psi_m(\widetilde{o}) = d^{m-1}$ and

$$d^{m}i_{m}^{Q} = d^{m}i_{m}' - (d^{m})_{*}\psi_{m}(\tilde{o}) = d^{m}i_{m}' - \psi_{m}(d^{m})_{*}(\tilde{o})$$

= $d^{m}i_{m}' - \psi_{m}(o) = 0$

as desired.

Proof of Theorem 1.8. Consider the $(r_0q + 2)$ -tower of Lemma 3.1. For each $m \ge r_0q+2$, the condition of Lemma 3.3 is fulfilled by the assumption $E_2^{rq+2,rq}(S^0) = 0$ for $r > r_0$ and the fact that $E_2^{*,t}(S^0) = 0$ unless $t \equiv 0 \mod q$. It follows that the tower extends to an infinite tower. Now the theorem follows from Proposition 2.13.

References

- J. F. Adams, Stable homotopy and generalised homology, Chicago Lecture Notes in Math. U. of Chicago Press, Chicago, Ill., 1974.
- [2] E. S. Devinatz, Morava modules and Brown-Comenetz duality, Amer. J. Math. 119 (1997), 741–770.
- [3] P. Goerss, H-W. Henn, M. Mahowald and C. Rezk, On Hopkins' Picard groups for the prime 3 and chromatic level 2, J. Topology 8 (2015), 267–294.
- [4] M. J. Hopkins, M. Mahowald and H. Sadofsky, Constructions of elements in Picard groups, Contemp. Math., 158, 89–126, Amer. Math. Soc., Providence, RI, 1994.
- [5] M. J. Hopkins and J. H. Smith, Nilpotence and stable homotopy theory II. Ann. of Math., 148 (1998), 1–49.
- [6] M. Hovey, J. H. Palmieri, and N. P. Strickland, Axiomatic stable homotopy theory, Mem. Amer. Math. Soc. 128 (1997).
- [7] M. Hovey and H. Sadofsky, Invertible spectra in the E(n)-local stable homotopy category, J. London Math. Soc. 60 (1999), 284–302.
- [8] Y. Kamiya and K. Shimomura, A relation between the Picard groups of the E(n)-local homotopy category and E(n)-based Adams spectral sequence, Contemp. Math. **346** (2004), 321–333.
- [9] D. C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984), 351-414.
- [10] D. C. Ravenel, Nilpotence and Periodicity in Stable Homotopy Theory, Ann. of Math. Studies, Number 128, Princeton, 1992.

[11] N. P. Strickland, On the *p*-adic interpolation of stable homotopy groups, Adams Memorial Symposium on Algebraic Topology Volume 2 (Nigel Ray and Grant Walker, eds.), 1992, London Mathematical Society Lecture Notes 176, 45–54.

Department of Mathematics, Faculty of Science, Kochi University, Kochi, 780-8520, Japan

 $E\text{-}mail\ address:$ katsumi@kochi-u.ac.jp