A NOTE ON HOPKINS’ PICARD GROUPS OF THE STABLE
HOMOTOPY CATEGORIES OF L,-LOCAL SPECTRA

KATSUMI SHIMOMURA

ABSTRACT. For a stable homotopy category [6], M. Hopkins introduced a Pi-
card group (cf. [11], [4]) as a category consisting of isomorphism classes of
invertible objects. For the stable homotopy category of Ly-local spectra,
M. Hovey and H. Sadofsky [7] showed that the Picard group is actually a
group containing the group of integers as a direct summand. We constructed
an injection in [8] from the other summand of the Picard group to the di-
rect sum of the E,-terms EI‘T71 over r > 2 of the Adams-Novikov spectral
sequence converging to the homotopy groups of the L,-localized sphere spec-
trum. In this paper, we show in a classical way that the injection is a bijection
under a condition.

1. INTRODUCTION

Throughout this paper we fix a prime p. Let S(,) denote the stable homotopy
category consisting of all p-local spectra. For a spectrum E, a spectrum X € S, is
E-local if [C, X], = 0 for C with EAC = pt. We denote by Lg the full subcategory
of E-local spectra, and have the Bousfield localization functor Lg: S,y — Lp with
respect to E. A spectrum Q € Lg is invertible in L if there is a spectrum Q' € Lg
such that Lg(Q A Q') = LgS° for the sphere spectrum S°. M. Hopkins introduced
the Picard group Pic(Lg) of Lg consisting of isomorphism classes of invertible
spectra (cf. [11], [4]). Hereafter, we abuse notation and an invertible spectrum Q
denotes a class of Pic(Lg) represented by Q.

Let BP € S, denote the Brown-Peterson spectrum whose homotopy groups are
BP, = m,(BP) = Z)|v1, va, . . .] over generators with degree |v;| = 2p’ — 2. In this
paper, we consider the spectrum E = v, 1 BP for a fixed integer n > 1, and denote
by L, and L,, traditionally the category Lg and the functor Lg, respectively. The
category and the functor are the same as Lp(,) and Lg(,) for the n-th Johnson-
Wilson spectrum E(n) (c¢f. [9]), whose homotopy groups are E(n). = m«(E(n)) =
Zp[v1,02, ... vn, v, C v ' BP,.

We have some results on the Picard group Pic(L,). Hereafter, we set

q=2p—2.
Theorem 1.1 ([7, Prop. 1.4, Lemma 1.5, Th. 5.4, Th. 6.1 ]). Pic(L,) is a group
with multiplication defined by the smash product and Pic(L,,) = Z & Pic’(L,,) for a
subgroup Pic®(L,,). In particular, Pic(L,) = Z if ¢ > n?>+n and Pic(Ly) = ZD7Z/2
if p=2.
Theorem 1.2 ([3]). Pic(Le) XZ®Z/3DZ/3 if p=3.

Theorem 1.3 ([7, Th. 2.4]). If Q € Pic®(L,), then E(n).(Q) = E(n). as an
E(n)«(E(n))-comodule.
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Consider the v, 1 BP-based Adams spectral sequence {E!(X),d,} for a spec-
trum X converging to homotopy groups m.(L,X). We notice that the Fs-term
ESN(Q) for Q € Pic®(L,) is isomorphic to ExtE(n) (E(n))(E(n)*,E(n)*) by Theo-
rem 1.3 and [8, Th. 3.3] (see Theorem 2.2). Thus, we see that Ey'(Q) = E3"(S°)
for an invertible spectrum @ of Pic®(L,). Let Pic(L,), be a subgroup consisting
of invertible spectra @ of Pic?(L,,) such that ds(1g) =0 € E$*~1(Q) for s < kq+1,
where 1g € ES’O(Q) = Z(p) denotes the generator. Put

GPic®(Ly) = @D (Pic®(Ln), /Pic® (L) 4, ) -
k>0
Then, in [8], we set up a homomorphism

(1.4) 0: GPic’(L,) — @Ellzgii a(50)
k>0
sending [Q] # 0(= [L,,5°]) to an element w # 0 € EF-1%(59) such that dygy1(1g) =

kq+1
kq+1,k
wlg € Ek:11+1 q(Q)

Theorem 1.5 ([8, Th. 2]). The homomorphism ¢ is a monomorphism.
For a small n, the Es-term has a horizontal vanishing line:

Lemma 1.6 (cf. [9, (10.10)]). Suppose n < p — 1. Then, EJ*(S°) = 0 for s >
n? +n.

By Theorem 1.5 and Lemma 1.6, we deduce that the second isomorphism in
Theorem 1.1 holds in the case where ¢ = n? + n unless (p,n) = (2,1):

Corollary 1.7. Suppose that p > 2 orn > 1. Then, Pic(L,) 2 Z if ¢ > n? + n.
In this paper, we show the following:

Theorem 1.8. Suppose that there is an integer ro such that E;'JH’W(SO) =0 for
r >rg. Then, forw € E:;’Zii "09(89), we have an invertible spectrum X, such that
o([Xo]) = w.

Corollary 1.9. Suppose thatn <p—1 and let ro be the maximal integer less than
(n2+n)/q. Then, the composite GPic®(L,) £ @~ 1]:;1111 50y E:é’gill 0e(50)
is an epimorphism.

Corollary 1.10. For n and ro in Corollary 1.9, if E:Sgill "049(5%) #£ 0, then L,

admits an exotic invertible spectrum, or an invertible spectrum other than L, S*.

Corollary 1.11. Ifn < p — 1 and n® +n < 2q, then Pic%(L,,) is isomorphic to

E3+174(S0) EXt?(—TlL)q(E(n))( (n)«, E(n).).

In the corollary, if the condition n? + n < ¢ holds, then it is Corollary 1.7. If
q+1 < n?+n, then the isomorphism Pic?(L,,) = E§+1’q(50) holds in the following
cases:

pl5]|7[11]13|17]|19
ni3[4(5]6 |78

For the case where p = 23 and n = 9, we have n? +n = 90 > 89 = 2¢ + 1. We note

that we have the isomorphism for the cases (p,n) = (2,1) and (3,2) by Theorems
1.1 and 1.2, though n = p — 1. We have a conjecture that E;’t(SO) =0 for s > n?
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if n < p — 1. If this is true, then the table extends up to p = 29 and n = 10 after
replacing the condition by ¢ + 1 < n? < 2¢ + 1.

The author would like to thank the referee for pointing out some errors in a
draft.

2. RECOLLECTION FROM (8]

Let E denote v, ' BP. We recollect some facts from [8, §3-4]: The spectrum E
yields a Hopf algebroid (E., E«(E)) in a usual way. Here,

E.(E)=E,®pp, BP.(BP)®pp, E, and
E(n).(X) = E(n). 055, BP.(X) = E(n). ©5. Es(X)

for a spectrum X, where E, = v, ! BP, and E,(FE) is flat over E..
An invertible spectrum @ is characterized by its F,-homology:

Theorem 2.1 ([8, Prop. 3.2] (¢f. [8, Th. 1.1], [7, Th. 2.4])). A spectrum Q € L,, is

~

invertible if and only if there is an isomorphism E,(Q) = E, of E.(E)-comodules.

We have a relation between the Es-terms of the E-based and the E(n)-based
Adams spectral sequences:

Theorem 2.2 ([8, Th. 3.3]).
Ext " gy (B, M) Z Ext i iy (E(M)s, E(n) ®p, M)
for an E.(E)-comodule M, on which v, acts isomorphically.
The unit map i: S° — E yields a cofiber sequence
(2.3) L ELEL S

which gives rise to the F-based Adams tower

§0 -t B R oL Bl A
(2.4) zl / li/\l%l %Ali y lint

EANE" 2 EAE™T =33

0 dl dmfl
in which dotted arrows denote degree —1 maps, E™ denotes the m-fold smash
product of E and d™ = (i A Emﬂ)(j AE™) = d° ANE™. Hereafter, we denote
FAW:XAW S YAW foramap f: X = Y by X AW 25 Y AW in
diagrams. Let k™: E™ — S™ denote the composite k(k AE)--- (kAE™ ") of the
above sequence. We have a spectrum FE,, and maps i,, and j,, fitting in a cofiber
sequence

(2.5) E" A gm iy v, I SET
Throughout the paper, we omit suspensions for maps of spectra. So the maps i,,

and j,, in (2.5) denote Xi,, and Xj, for ip: : S™ ! — E,, and jm: Em — B,
respectively. In particular, we see that

(2.6) ip=14:58" - F, =F.

Indeed, the cofiber sequence (2.5) for m = 1 agrees with the one (2.3) (up to
suspension), and so we identify E; with E.
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The cofiber sequence (2.5) gives rise to another E-based Adams tower

ks kfn m+42
Bo=pt < By < T By oo By <2
(27) l / J/d 11/' 37/ mi V J,Zm+1
EZ—— ENE — T EANE" 2 EAE™T o

with the same d™’s as (2.4). Here, the maps i and kS are defined by the

commutative diagram

m? ]m

sm S * Smtt

im+1J, J,im J, Jim+1
LS S .5

- m — m —m Im 1
Em+1 I EEm — YEANEFE - ZLE’m«Fl

j7n+ll ]m ll ijwvi»l
—m kAL —m m IAL
g L 7 M sp A BT S st

of cofiber sequences, which is obtained from Verdier’s axiom. Note that these maps
satisfy

(2.8) i5 = (A, inim =0 and kS imi1 = im.

A smash product of the tower (2.7) and a spectrum X defines the E-based Adams
spectral sequence

Ey'(X) = Exty! ) (Be, B (X)) = s (holim (X1 By, A X))

Note that holim(X1~™FE,, A X) = L, X. We consider a similar tower

k Q
=pt «---- Q1 <------ e Q=T Qi P

(2.9 1 = LH/ / | B 8

E=—— ENE — = EAE" R EAETT

over the same bottom sequence as (2.7). Put

(2.10) Q= hogm21*MQ7n.

m

Then, we have a spectral sequence
(2.11) E = ExtE (E)(E*,E*) = m_s(Q)

obtained by applying homotopy groups m.(—) to (2.9), and see the following lemma
by [2, Prop. 1.9].

Lemma 2.12. The spectral sequence (2.11) is isomorphic to the E-based Adams
spectral sequence for computing 7.(Q) via an isomorphism which is the identity on
the Eq-term.

Proof. By the same argument as [2, Prop. 1.9], we verify that the spectral sequence
(2.11) is isomorphic to the modified E-based Adams spectral sequence for comput-
ing 7,.(Q). Now the lemma follows from [2, Prop. 1.9]. O



PICARD GROUP OF L,-LOCAL SPECTRA 5

The lemma implies that the E,.-term of (2.11) agrees with the one of the E-based
Adams spectral sequence:

Byl = B(Q).

Proposition 2.13. If a tower (2.9) exists, then Q in (2.10) is an invertible spec-
trum of L. Furthermore, if dvg11(lg) = wlg # 0 € E:;Iillvrq — E:gi’ll’rq(Q) for
the generator 1o € Ey® = EQY(Q) in the spectral sequence (2.11), then p(Q) = w

for the monomorphism ¢ in (1.4).

Proof. Let u: EANE — E be the multiplication of the commutative ring spectrum
E, and let 7,,: Q@ — X'7™Q,, denote the canonical map such that k}%_ﬂ?m =
Nm—1. Then, we have a map n: E A Q P pAE Y B Let C = {X €Sy |
X is finite, A X: EAQAX ~ E A X}. Then, C is a thick subcategory of finite
spectra. Ravenel [10, 8.3] constructed a finite torsion free spectrum Y, whose E-
based Adams FEs-term has a horizontal vanishing line: there exists an integer sg
such that E3*(Y) = 0 for s > sg. By [8, Prop. 4.3], we see that Y € C. This
together with the thick subcategory theorem [5, Th. 7] implies that S° € C, and
son: EANQ ~ E. This also induces an isomorphism of E,F-comodules. This
fact is verified as follows: Since the cofiber sequence E B p A BN AT
obtained from (2.3) splits by u(E A i) = 1g (the identity map on E), we have
amap fi: EAE — E A E such that (E Ai)u+ f(E A j) = 1 for the identity
1: ENE — ENE. We see that dn; = dk?nQ = 0 by (2.9). Then, we compute
(BAJ)EAm) = (4 AEYE Ai AE)E A J)(E Am) = (uAE)EAd)(E Am) = 0.
We also see that 71 = n(i A Q) by the commutative diagram

QL’E

na| e N

E/\QETIHE/\E T’E

It follows that (EAi)p = (EANDWEAM) =1 —-TG(EAN))EAN)=EA)p =
(EAN)(ENiAQ), and we obtain a commutative diagram

EANQ —1— E
EAi/\Qi lE/\i
E/\E/\Q%E/\E

Therefore, n induces a homomorphism E,(Q) — E. of comodules, and the former
part of the proposition follows from Theorem 2.1.
The latter follows from Lemma 2.12. O

We call the following finite sub-tower of (2.9) an m-tower :

kS ko
m—1
Qo=pt Qi g, Mg,

14 | A g . %

?E/\E?"'*’E/\E

dml
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Let M be an E-module spectrum with structure map v: EA M — M. Then,
the unit map ¢ of E and the map d = z? in (2.9) give rise to an exact sequence

(2.15) WAEMLSZHEML;ﬂShmao

for each t € Z with splitting o given by o(x) = v(E A x) for © € m (M) (cf. [8,
p. 329]). Consider a tower (2.14),, for an integer m and define a homomorphism

Ym: Tpe-1(M) = [Qm, M]; by
(2.16) Ui (z) = o(2)(k9)" 7,
where (k@)* = k9 ... k2 in (2.9).

Lemma 2.17 ([8, Lemma 4.5]). Suppose that an m-tower (2.14)y, form > 1 exists
and let M be an E-module spectrum. Then, we have a split short exact sequence

1[)771 (Jfr\?l—l)* m—1\x*
0 = Tmpr—1 (M) == [@m, M]y ——— (Im (d""7)"); = 0.
1

Here, (d™1)*: [EAE",M], — |[ENE 71,]\/[],5 is induced from d™~': EAE" —
EANE™
Lemma 2.18. Let m > 1 and let ¥y : Tmyt—1(E /\Ek) = [Qm,E /\Ek}t be the

homomorphism defined by (2.16) with v = u/\Ek for the multiplication p of E and
for an integer k > 0. Then, the diagram

—k Ym —k
7Tm+t—l(E/\E ) — [eruE/\E ]t

| Ja

—k+1 —k+1
7Tm+t—l(E/\E ) 1;: [eruE/\E ]t

commutes for the induced maps d, from d = d*: E A B S E A B
Proof. Since i*d, = d.i*: [E, E/\Ek}* — m(E/\EkH) and o in (2.15) is a splitting
for the homomorphism *, we see that i*(d.(o(x))) = di(x) = i*(c(d«(x))) for

T € Tmt—1(E A Ek). Then, we have an element y € [E A E,E A Ek+1]* such
that (Q)*( ) =di(o(x)) — o(ds ( )). Therefore, noticing that z‘?(kQ)m*1 =0, we

compute for & € my4—1(E A E ),
Undi(a) == o(d.@)(;)" = (du(o@) - () (w)) (k)"
= do@)E) T == duthm (). 0

(2 16)

3. CONSTRUCTION OF INVERTIBLE SPECTRA

Consider a spectral sequence {mE:t} obtained by applying the homotopy groups
7 (—) to an m-tower (2.14),,. Then, the Es-term of the spectral sequence is isomor-
phic to the Fa-term of the E-based Adams spectral sequence for computing 7, (S°)
up to (m —1)-stage: "E5" = E3*(S°) for s < m — 1. Consider a nontrivial element
[w] € E:gill "(S9) for w € qu(E/\ErqH) and 7 > 0. Note that qu(E/\ErqH) is
also an Fj-term of the spectral sequence {"E®"'}. If the element w survives to an
element of mE:Zﬂ " for rq + 1 < m, then we denote it by (w).
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Lemma 3.1. Suppose that we have a nontrivial element [w] € E:;z_—tll,rq(s()) for

w € mpq(E /\EWH) and v > 0. Then there exists an (rq + 2)-tower (2.14)rq+2

such that drq11(1) = (w) € ’"q“‘QE:ZE’m for 1 € r+2E5° = E90(80) in the spectral

y .
sequence {T9T2E"} associated to the tower.

Proof. We take the same rqg-tower as (2.7) up to r¢-stage. That is, Qs = E for
s <rqg+1and (9 = (9 for s < rq, where ¢ stands for one of letters i, j and k.

Put igqﬂ = ip1 + Urgr1(w) € [Ergy1, E A ETQH]O for the maps iy, ,; in (2.7)
and ¥rq41 in (2.16) where k@ = k5. Then, i% i@ = i2 i3 = i3 15 = d,
since (ij)*qu_i_l = 0 by Lemma 2.17. Let Qr4+2 be a cofiber of i?qH, and we have
an (rq+ 1)-tower. By Lemma 2.18, we see that dit,qt1(w) = Yrgr1di(w) = 0
for d = d"9*!, since w is a d.-cocycle. Since d*ifq+1 = 0 by (2.7), we deduce

. . . —rq42
d*erqH = 0, and hence we obtain a map zf?q+2: Qrq+2 = EN E"? such that
d= igleg“. Thus, we have an (rq + 2)-tower by setting @Qrq+3 to be a cofiber

;Q
of 4,5 1o

Now consider the spectral sequence {T‘Hin’t}. Note that the generator 1 €

Tq+2E(2)’O is represented by the unit map i. Then, the differentials of the spectral
sequence on the generator 1 is given by

s,s—1
s

dy(1) = [a) € "1T°E if iQ,=aecm, 1 (EANE")

by definition for s < rq + 1. Here, i, is the map of (2.5). By the last relation of
(2.8) and (2.6), we see that

(3.2) (K5)*li, =4 for s > 1.

This together with i, = 0 of (2.8) shows that the differential of the spectral
sequence acts as ds(1) = 0 for s < rq. Consider (2.15) for M = E A E and
—rq+1

v=puAE " ". Then, we have o(w)i = i*o(w) = w. We compute

o) o (w) (k%) irg 41 = o(w)i=w,

Yrg+1 (w)irq+1

and 50, 1% yirgr1 = (1511 + Yrg1(w))irgi1 = Yrg41(w)irg11 = w. This implies
Lrq .
dyg41(1) = (w) € ”H‘QE:ZL’W in the spectral sequence. O

Lemma 3.3. Suppose that we have a tower (2.14), form > 1. If Ey*THm1(50) =
0, then the tower extends up to m + 1 stage.

Proof. Tt suffices to show that the map i%: Q,, — EAE™ in the given tower (2.14),,
is replaced by a map 9 satisfying if%jgfl = d™ ! and d™i% = 0. Indeed, the
relation d™i% = 0 yields a map igﬂ f Qg1 — EAE™" such that igﬂjﬁ% =dm,
and we obtain a tower (2.14),,+1 by taking @Q,,+2 as a cofiber of ig+1~

By Lemma 2.18, we have the commutative diagram
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—m m . @R
T a (EAE™) 25 [Q EAE ™o == (Tm (d™1)")

(@m). J J(d"‘)* J(dm)*

g1, Ym 1, Umn)” s
Tt (EAE™) = Q. EAE™ ]y ™= (Im (d™ 1))
@ | [ @,

_ G
1 (EAE™?) :

Pm
—

[Qm,E/\E"H_Z}O moy (Im (dmfl)*)o7

in which the horizontal sequences are exact by Lemma 2.17. Let i/, € [Qm, EAE"]o
denote the given map i€. Then, d™! = 4 Jf}%qa and so (jﬁfl)*(dmi;n) =

m

dmdm=t = 0 for d™i!, € [Qm,E A FmH]O. Therefore, we have an element
0 € Tm_1(E A Fmﬂ) such that 1,,(0) = d™i!,. Moreover, 1,,(d™1),(0) =
(d™ ) (0) = d™Fd™i! = 0. Since ¥, is a monomorphism, we have (d™*1), (o) =
0. The assumption £~ 1(§%) = 0 indicates that the left column of the diagram
is exact, and so we have an element 6 € 7, _1(E A E ) such that (d'™).(d) = o.
Now set i@ = if, = (0). Then, i | =i, i = (2 _1)*¢m(3) = d™ ' and

i = A = (@) (0) S5 A, — m(d7)4(0)
= ™, —Pm(0) = 0
as desired. H

Proof of Theorem 1.8. Consider the (roq + 2)-tower of Lemma 3.1. For each m >
roq + 2, the condition of Lemma 3.3 is fulfilled by the assumption E577>"(S9) =0
for r > ro and the fact that F;*(S°) = 0 unless t = 0 mod ¢. It follows that the
tower extends to an infinite tower. Now the theorem follows from Proposition 2.13.
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