A BETA FAMILY IN THE HOMOTOPY OF SPHERES

KATSUMI SHIMOMURA

ABSTRACT. Let p be a prime number greater than three. In the p-component
of stable homotopy groups of spheres, Oka constructed a beta family from a
vo-periodic map on a four cell complex. In this paper, we construct another
beta family in the groups at a prime p greater than five from a wa-periodic
map on a eight cell complex.

1. INTRODUCTION

We fix a prime number p greater than three, and work in the stable homotopy
category S, of spectra localized at the prime p. Let S and BP in S, denote the
sphere and the Brown-Peterson spectra. It is an important problem to understand
the homotopy groups m,(S), whose structure is little known. On the other hand,
we know the structures of 7,(BP) = BP, and BP,(BP):

BP*:Z(p)[’Ul,’UQ,...] and BP*(BP):BP*[tl,tQ,]

and BP,(BP) is a Hopf algebroid over BP,. Here, the generators have degrees
|vg| = [tr] = 2(p* —1). Furthermore, we have the Adams-Novikov spectral sequence
converging to the homotopy groups 7, (X) of a spectrum X with Es-term

Ey'(X) = Ext3’

5p.(5p)(BPw BP.(X)),

and the spectral sequence for X = S acts as a go-between between BP and S.
Here we consider the homotopy groups . (5) through the spectral sequence. In the
FEs-term ES’*(S), Miller, Ravenel and Wilson [1] defined the beta elements as/m
for suitable triples (s,t¢,r) of positive integers. Consider the spectra and the maps
defined by the cofiber sequences:

an SPL 8 M@r) 2 2S and
: — A:f_ ’i,,, up”— _ .,,,.upw“f r—
s a0 (r) T M () T M () T s (),

where A, denotes an element such that BP,(4,) = vfr for r > 0 (¢f. [6, Th. 6.2],
see also (2.6)), and Ap is known as the Adams map and denoted by «. Here-
after, ¢ = 2p — 2. We note that BP,(M(r)) = BP,/(p") and BP.(M(r,up"~')) =
I

BP./(p",v{? ) are BP.(BP)-comodules. The cofiber sequences in (1.1) induce
the connecting homomorphisms 0,: Ey'(M(r)) — E5T""(S) and 9, pr1:

ESY(M(ryup™1)) — E;H’t_“prilq(M(r)). Then, the beta element for a triple
(s,t,r) is defined by

35/1&,7’ = arar,t(vg) c E;’(S(pﬂ)ft)q(S)
1
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for vj € Eg’s(p+1)q(M(r, t)). We abbreviate Bs/t,l and Es/l to Bs/t and BS, respec-
tively, as usual. It is an interesting problem which of them survives in the spectral
sequence. So far, the following elements are known to be permanent cycles:

a) B for s >1in [12],

b) Bsp/t fors>landt<p,andt<p—1if s=11in [2], [3],

c) Bs;ﬂ/t fors>1and t <2p,and t <2p—2if s =11in [2], [4],

d) Bspz/t for s > 1 and t < p® — 2 in [11],

€) Bapnpfors>1,n>31<t<2"2p andt <2" 3pifs=1,in [6],
f) Bspz/p,Q for s > 2 in [4], and

) Bepnjupz fors >1,n>3,1<u<2"2 andu < 2" %if s = 1, in [6],

We note that we have Bspn st for t < p™ in the Ep-term, and Ravenel showed
that Bpn/pn cannot be a permanent cycle for n > 1[9, 6.4.2. Th.]. Thus, Bspn/t for
2"=2p <t < p"if s > 1, and for 2" 3p < t < p" if s = 1 were left undetermined.

In [11], we modified the definition: Let (s,t,7) be a triple of positive integers
such that ¢ = up™~! — ¢ for integers u and ¢ and v§v§ € E22’(S(p+1)J”:)q(M(r7 up™b)).
Then, the beta element for (s,¢,r) is defined by

~ 2. 1 _ r—1

ﬁs/t,r _ 87‘87",71])7'*1(1)1:’0;) c E2,(s(;0+ Yc—up )q(S).
We notice that Bs /¢, 18 determined uniquely for any choice of integers u and c. In
this paper we modify it further.

Definition 1.2. Let s, u and r be positive integers and ¢ non-negative one such

that vfv; belongs to Eg’(s(pHHC)q(M(r, up™1)). We denote by b(s,c;u,r), a set
of elements x of Eg’(s(p+1)+c)q(M(r, up™~')) such that = = v§v§ mod (p,viTh). We

define the beta element by
Bs/uprflfc,r = arar,upT*1 (b('S? G U, T)) C Egv(s(P+1)+C_"LPT'71)‘I(S).

We notice that this beta element is not an element but a set, and BS Jupr—l—c,r =

ﬂs/t,r if s =up

=1 _ ¢. We further abuse a term.

Definition 1.3. We say that a beta element I/B\S/upr—l_c)r survives to the homotopy

groups 7 (S) if an element of Es/uprfl,w is a permanent cycle.

In this paper, we consider the beta elements Bs/m for » = 1,2, and so the
following spectra and maps of (1.1):

M= M(Q), 7M:M(2), K,=M(1l,u) and K, = M(2,up); and

1.4 ,
( ) k:kl, k:kg, a:Ao, A:Al, ku:kl’u and ku:]ﬂgﬁup

for k =4,j. Thus, from now on, %, and j, denote i; ,, and ji .

The above definitions make Oka’s method developed in [6] and [7] simple: Let
fsu € T (K,) be an element such that n.(fs ) = v§ € BP.(K,) for the unit map
n: S — BP of the ring spectrum BP, and put

%Oka(svu) = {Bsp"/t,a-‘rl in 2 €, €= Oa 15 pE | > 17 t < 2n7€u}.

Theorem 1.5. (Oka [6], [7]) If fsu € T (Ky) exists, then every element of Boga (s, u)
survives to m.(S).
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Since Oka also showed that fs, ., € m.(K,) for s > 1 and v < p, and u < p if
s =11in [2, Th. C] and [3, Th. CII], the theorem implies that Boga(sp,u) yields
generators of 7, (5) including the elements in b), ¢), e) and g) in the above table.

Let W be the cofiber of the generator 1 € mpe—2(S), and we have a cofiber
sequence

(1.6) gpa=2 P1, g0 W, gy W, gpq—1,
In [10], we introduce another method to give a beta family from fs ,, € m.(W A K,,)
such that n.(fs.) = v5 € BP.(W A K,,). In this paper, we merge these methods.
For an element f,i ,, € m.(W A K,), consider a family
B(p',u) = {Bapitnjresr:5>1, n>e, e=0,1, p° [t >1, t <2" Fu—p°(2—¢)}.
Theorem 1.7. If f,i , € m.(WAK,) exists, then every element of B(s,u) survives
to m.(9).

In [11, Th. 1.7], we showed the existence of fp2 2 € m.(W A K2) for p > 5,
though there does not exist f,2 ,2 € 7, (Kp2) shown by Ravenel.
Corollary 1.8. Let p > 5. Then, B(p?, p?) yields a beta family of 7.(9).

This improves Oka’s results if the prime number p is greater than five. Indeed,
Ule Uﬁ:1 Boka(sp*,u) C B(p?,p?).

2. RECOLLECTION ON FINITE RING SPECTRUM

In this section, we recall some results of Oka’s. We call a spectrum E a ring
spectrum if it admits a multiplication u: E A E — E and a unit ¢: S — E such
that p(¢e A1) =1 = (1 Ae) and p(p A1) = pu(l A p). A ring spectrum E is
commutative if uT = p for the switching map T: EA E — E AN E. The homotopy
groups E, = m,(F) of E have a multiplication given by ab = u(a Ab) for a,b € E,,
which makes F, a ring. Oka [7] (¢f. [8]) defined Mod(F) and Der(E) by

Mod(E) = {f€[F, Bl |u(fA1)=fu} and
Der(E) = {f€[E Bl | u(f A1) +u(1Af)= fu}.
We call an element of Der(F) a derivation of E.
Theorem 2.1. (Oka [8, Lemma 1.3]) For the unit ¢, the induced homomorphism
t*: Mod(E) — E is a ring isomorphism. Its inverse k: E, — Mod(FE) is given by
K(f) = p(f A1),
Consider a spectrum K, in (1.4). Then, Oka showed that

Theorem 2.2. (Oka [7, Th. 2.5]) K,, has a commutative and associative multipli-
cation my,.

Theorem 2.3. (Oka [7, Lemma 2.3]) Mod(K,,) is a commutative subring of [Ky, K]«
and a commutator [f, g] belongs to Mod(K,,) for f € Mod(K,) and g € Der(K,).
In particular,

fPg=gf? for f € Mod(K,) and g € Der(K,).
Let 6, = iyju € [Ku, Ku]—ug—1. Then, it fits into a cofiber sequence
(2.4) SUE, B Ky, 2 K, 2 S,
by (1.1) with 3 x 3 Lemma.
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Theorem 2.5. (Oka [7, Th. 2.5]) 4], € Der(K,).

It is well known that § = ij € Der(M) and o € Mod(M), and so aPd = daP €
[M, M]pq—1. It gives rise to not only the element A but also J, in a commutative
diagram

Zupq—lM i) MUPa N L EquM > SUPq N[

ol e e e

SN —— M —"— s ——— M
(26) iupl liup B liu liup

EilKup L) Kup R Fu Kup

| o [

_5 . - 1
SUPq N — Zupq+1M N Eupq+1M N EUPCH' M,

in which rows and columns are cofiber sequences. By [6, Lemma 4.5, Th. 4.2], we
have the following

Theorem 2.7. (Oka [7, p.425]) The map J,, in the above diagram is a derivation
of Kup.

Proof. The matrices for the map J,, A 1 and the switching map T are given by

01 0 O 1 0 0 O

oo s oo s -1 0 0

T(6y A1) = 00 0 -1 and 7(T)= 5§ 0 -1 0
00 0 O 6 & =6 1

by [6, Lemma 4.5] and [6, Th. 4.2], and so the first row of the matrix for (J, A
1) 4+ (64 A1)T is (6 0 0 0). Since the multiplication m,, is the projection to the
first summand, we see that m, (5, A1+ 1A d,) = my((6u A1) +T(0, A1)T) =
My ((0u A1) + (0, A1)T) = §m,, as desired. O

The following lemma is a folklore:

Lemma 2.8. There exist self-maps a: 1K, — K, and A: YK, — K, such

that BP,(a@) = v1 and BP.(A) = v!.
Lemma 2.9. Aif}; =0 € mopq—2(M).

Proof. Consider the cobar complex {(C?®,d)}s>0, whose cohomology is the Es-
term E3(M) of the Adams-Novikov spectral sequence converging to m,(M). Then,
C* =T/(p?) @4 I'*71, where (A,T') = (BP., BP.BP), and the differential d of
the complex is given by derivation with d(v) = ng(v) — nr(v) € C' = T'/(p?) for
veC?=A/(p?) and d(z) = 1@z —A(zx) +z®1 € C? for x € C'. We also use
the formulas on the structure maps of the Hopf algebroid given by the formulas of
Quillen and Hazewinkel:

nr(vi) =v1 +pt1, nNr(ve) =vs +v1t] + pta — (p+ 1)oft;y mod (p?)

Alt1)) =10t +t1®1 and A(te) =1Rta+t1 @) +t1 @1+ v1byo.
Here, b1¢ denotes the cocycle defined by d(]) = pbig. Let by denote the cohomology
class of bjg. Then, by definition, 31 = 99;(v2) = by. (b(1,1) consists of only one
element vy by degree reason.) Therefore, Aif; is detected by vPby € E3*PY(M).
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We compute that d(c) = vPbig € C? for ¢ = —vP 'ty + 0P > (v1ty — pt2)nr(ve) +
v2P3 (2 ot2 — Bt3). Tt follows that viby = 0 € E2?P(M). We further see that
ESTre2atra(Afy — 0 for r > 1 by the vanishing line (¢f. [1, Lemma 1.16, Remark
117]) Hence Agﬂl =0¢€ szq_Q(M). O

3. THE RING SPECTRUM W A K,

In this section, we fix an integer u and K denotes K, = M(1,u), which is
a commutative ring spectrum with multiplication m = m, by Theorem 2.2. The
spectrum W in (1.6) admits a multiplication my : WAW — W such that my (ip A
1w) = 1w = mw (1w Adiw) by [5, Example 2.9].

Consider the spectrum WM = W A M and the multiplication mya = (mw A
ma)(Iw AT Alp): WM AWM — WM. Then, we see that

(31) mWM(i/ AN ’i/) = ilmw,
for i = 1y Ai. We further see the following lemma by [6, Cor. 4.3]:
Lemma 3.2. WM is a commutative ring spectrum with multiplication myyps .

Proof. Since p =0 ¢€ WM AWM]p and 51 A1 =0¢€ [M AWM, MANWM|pq—2,
WM is a split ring spectrum. O

Put WMK = W A M A K, and consider a multiplication myam = (mwa A

m)(Lwar AT Alg): WME AWME 2 ATAUC g \WMAK AR 294 A WK
on WMK. Since the smash product of commutative ring spectra is a commutative
ring spectrum, we have the following

Corollary 3.3. WMK is a commutative ring spectrum with multiplication myp -

Consider the spectrum WK = W AK and a multiplication my x on WK defined
by mwg = (mw Am)(lw AT A 1k) for the switching map T: K AW — W A K.
We have the split cofiber sequence

(3.4) WK & WMK L SWK,
in which i = 1y Ai A lg: WK — WMK and o denotes a splitting.
Lemma 3.5. /i\mWK = mWMK(/’L\/\/Z\)

Proof. This follows from computation:

~

imwrk = (' Nlg)mw Am)(Iw AT A 1k)
= (mwa Am)(i’ N Agar)(lw AT Alg) by (3.1)
= (muwm Am)Iwp AT AL)(EATD) = mwar (B A D). O

Lemma 3.6. The spectrum WK is a commutative ring spectrum with multiplica-
tion my k.

Proof. Apply o in (3.4) to Lemma 3.5, and we have

(37) MWK = O'mWMK(i A 7,)

Then, noticing that myyk T’ = mware by Corollary 3.3,

’ITLWKT = OmWMK(/Z}/\g)T = O'mWMKT/(/’L.\/\/Z.\) = UmWMK(i/\i) = MwkK-
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Here, T: WK AWK — WK AWK and T': WMK AN WMK — WMK N WMK are
the switching maps.

The associativity of it is verified as follows:
mWK(mWK A 1WK) = O’mW]\/[K(i A Z) (mWK A 1WI£) Ab}i (37)
OMWMK (mWMK A\ 1WMK)<i AT N Z) (by Lemma 35)
O'mWMK(].WMK A mWMK)(/z\/\?/\/z\) (by Corollary 33)

omwumk (i A1) (lwx Amwk) (by Lemma 3.5)
mwk (lwg A mwi). .

Consider the homomorphism
ow: K, K]« — [WK,WK],
given by ow (f) = 1w A f. Then, an easy computation shows

Lemma 3.8. The homomorphism @w induces ones py : Mod(K) — Mod(WK)
and ow : Der(K) — Der(WK).

4. CONSTRUCTION OF HOMOTOPY ELEMENTS

We begin with a general result corresponding to Oka’s theorems [6, Th. 7.1,
Th. 7.2] and [7, Construction III]. The proof is almost identical.

Proposition 4.1. Let f € 7. (WK,) be an element such that n.(f) = v5 mod (v1)
for the unit map n of BP. Then,

1) for n > 0, there is an element f, € m,(WKqny) such that n,(f,) = v’
mod (v1), and
2) forn > 1, let v’ be a positive integer such that u'p < 2" tu. Then, there

gp”71

are an element f}_, € m.(WK ) such that n.(f),_,) = v3 mod (v1),
and an element [, € 7,(WEK,) such that n,(f,) = vi”" mod (p,v1). Here,
WK, =WAK,.

Proof. Put fo = f, and suppose that f,, € m.(WKan,,). Then, k(f,,) € Mod(WKan,,)
for k in Theorem 2.1. By Theorems 2.2 and 3.8, ¢’ = pw (64n,) € Der(WKan,,),
and so we have s(f,)?8 = §'k(f,)? by Theorem 2.3. Thus we obtain a map Frit,
which makes the diagram

WK i1y — WKany s WKagny
Fatrl (L =t
WK gni1y — WKony —— WKany,

commutes. Now put fny1 = (iw A iznui)*(fni1) to complete the induction.
Turn to the second. By 1), we have f,—1 € m.(WKgn-1,), which gives rise to
[l € m (WK sp) as in [7, Construction I]. Theorems 2.7, 3.8 and 2.3 imply that

K(fr1)P8" = 0"k(fr1)P
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for 6" = @w (6y), where ,/ is the map in (2.6). We then have a map f,, fitting
into the commutative diagram

WE, — WKup 5 WKy,
7o | L A

ny

WK, — WKup & WK,

and F,, = (iw A fwi)*(F)- 0
In [10], we show the following lemma:

Lemma 4.2. ([10, Lemma 2.11]) For uw > 2, there exists an element w, €
T(pt+2)q—1 (WK ) such that (jw )«(wu) = iua?i € moq(Ky). Moreover, vig € ES(WK,)
= EY(K,) ® gEY(K,) detects it.

A similar lemma follows from Lemma 2.9.

Lemma 4.3. For u > 1, there exists an element W, € ﬂgpq,l(WFu) such that
(iw)«(@u) = inAi € mpy(Ky). Moreover, v7g € ES(WK,) = ES(K,) ® gE(K.,)
detects it.

Proof of Theorem 1.7. By Proposition 4.1, we have elements (fpi ,,)n € T(W Kany,)
i+n

and (fyi ), € T(WK,) for u/p < 2" 1w such that n.((fpiu)n) =vh  mod (v1)

and 7. ((fpiw),,) = vglﬂ mod (p,v1). Consider the composites

Bopitnjony—r = (ET_Q(.]'W A 1K)K]((fpi’u)n)swgnu (r>2), and
Bspi‘*'"/u’p—rp,Q = AT?l(jW A 1?)H((fpi7u)n)swu’ (7“ > 1)»

where a, g, w, and w, are the elements of Lemmas 2.8, 4.2 and 4.3. Then,
Ne(Bgpitn jonu—r) € b(spit™, r;2"u, 1) and 1, (Bspitn juip—rp,2) € b(sp™™, rp;u'p, 2).
Since j, jan, and j,, correspond to 01, 01,2n, and 0o ,p, respectively, the elements
Ji2nuBgpitn jony—p and jju,BspHn/u/p_mz are detected by elements of B\Spi+n/2nu_r

~

and Bgpitn jyrp—rp2, as desired. o
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