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Abstract. Let p be a prime number greater than three. In the p-component
of stable homotopy groups of spheres, Oka constructed a beta family from a
v2-periodic map on a four cell complex. In this paper, we construct another
beta family in the groups at a prime p greater than five from a v2-periodic
map on a eight cell complex.

1. Introduction

We fix a prime number p greater than three, and work in the stable homotopy
category S(p) of spectra localized at the prime p. Let S and BP in S(p) denote the
sphere and the Brown-Peterson spectra. It is an important problem to understand
the homotopy groups π∗(S), whose structure is little known. On the other hand,
we know the structures of π∗(BP ) = BP∗ and BP∗(BP ):

BP∗ = Z(p)[v1, v2, . . . ] and BP∗(BP ) = BP∗[t1, t2, . . . ]

and BP∗(BP ) is a Hopf algebroid over BP∗. Here, the generators have degrees
|vk| = |tk| = 2(pk−1). Furthermore, we have the Adams-Novikov spectral sequence
converging to the homotopy groups π∗(X) of a spectrum X with E2-term

Es,t
2 (X) = Exts,t

BP∗(BP )(BP∗, BP∗(X)),

and the spectral sequence for X = S acts as a go-between between BP and S.
Here we consider the homotopy groups π∗(S) through the spectral sequence. In the
E2-term E2,∗

2 (S), Miller, Ravenel and Wilson [1] defined the beta elements β̂s/t,r

for suitable triples (s, t, r) of positive integers. Consider the spectra and the maps
defined by the cofiber sequences:

(1.1)
S

pr

−→ S
ir−→ M(r)

jr−→ ΣS and

Σupr−1qM(r)
Au

r−1−−−→ M(r)
ir,upr−1−−−−−→ M(r, upr−1)

jr,upr−1−−−−−→ Σupr−1qM(r),

where Ar denotes an element such that BP∗(Ar) = vpr

1 for r ≥ 0 (cf. [6, Th. 6.2],
see also (2.6)), and A0 is known as the Adams map and denoted by α. Here-
after, q = 2p− 2. We note that BP∗(M(r)) = BP∗/(pr) and BP∗(M(r, upr−1)) =
BP∗/(pr, vupr−1

1 ) are BP∗(BP )-comodules. The cofiber sequences in (1.1) induce
the connecting homomorphisms ∂r : Es,t

2 (M(r)) → Es+1,t
2 (S) and ∂r,upr−1 :

Es,t
2 (M(r, upr−1)) → Es+1,t−upr−1q

2 (M(r)). Then, the beta element for a triple
(s, t, r) is defined by

β̂s/t,r = ∂r∂r,t(vs
2) ∈ E

2,(s(p+1)−t)q
2 (S)

1
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for vs
2 ∈ E

0,s(p+1)q
2 (M(r, t)). We abbreviate β̂s/t,1 and β̂s/1 to β̂s/t and β̂s, respec-

tively, as usual. It is an interesting problem which of them survives in the spectral
sequence. So far, the following elements are known to be permanent cycles:

a) bβs for s ≥ 1 in [12],

b) bβsp/t for s ≥ 1 and t ≤ p, and t ≤ p− 1 if s = 1 in [2], [3],

c) bβsp2/t for s ≥ 1 and t ≤ 2p, and t ≤ 2p− 2 if s = 1 in [2], [4],

d) bβsp2/t for s ≥ 1 and t ≤ p2 − 2 in [11],

e) bβspn/t for s ≥ 1, n ≥ 3, 1 ≤ t ≤ 2n−2p, and t ≤ 2n−3p if s = 1, in [6],

f) bβsp2/p,2 for s ≥ 2 in [4], and

g) bβspn/up,2 for s ≥ 1, n ≥ 3, 1 ≤ u ≤ 2n−2, and u ≤ 2n−3 if s = 1, in [6],

We note that we have β̂spn/t for t ≤ pn in the E2-term, and Ravenel showed
that β̂pn/pn cannot be a permanent cycle for n ≥ 1 [9, 6.4.2. Th.]. Thus, β̂spn/t for
2n−2p < t ≤ pn if s > 1, and for 2n−3p < t < pn if s = 1 were left undetermined.

In [11], we modified the definition: Let (s, t, r) be a triple of positive integers
such that t = upr−1−c for integers u and c and vc

1v
s
2 ∈ E

2,(s(p+1)+c)q
2 (M(r, upr−1)).

Then, the beta element for (s, t, r) is defined by

β̂s/t,r = ∂r∂r,upr−1(vc
1v

s
2) ∈ E

2,(s(p+1)+c−upr−1)q
2 (S).

We notice that β̂s/t,r is determined uniquely for any choice of integers u and c. In
this paper we modify it further.

Definition 1.2. Let s, u and r be positive integers and c non-negative one such
that vc

1v
s
2 belongs to E

0,(s(p+1)+c)q
2 (M(r, upr−1)). We denote by b(s, c; u, r), a set

of elements x of E
0,(s(p+1)+c)q
2 (M(r, upr−1)) such that x ≡ vc

1v
s
2 mod (p, vc+1

1 ). We
define the beta element by

β̂s/upr−1−c,r = ∂r∂r,upr−1(b(s, c;u, r)) ⊂ E
2,(s(p+1)+c−upr−1)q
2 (S).

We notice that this beta element is not an element but a set, and β̂s/upr−1−c,r =
β̂s/t,r if s = upr−1 − c. We further abuse a term.

Definition 1.3. We say that a beta element β̂s/upr−1−c,r survives to the homotopy
groups π∗(S) if an element of β̂s/upr−1−c,r is a permanent cycle.

In this paper, we consider the beta elements β̂s/t,r for r = 1, 2, and so the
following spectra and maps of (1.1):

(1.4)
M = M(1), M = M(2), Ku = M(1, u) and Ku = M(2, up); and

k = k1, k = k2, α = A0, A = A1, ku = k1,u and ku = k2,up

for k = i, j. Thus, from now on, iu and ju denote i1,u and j1,u.
The above definitions make Oka’s method developed in [6] and [7] simple: Let

fs,u ∈ π∗(Ku) be an element such that η∗(fs,u) = vs
2 ∈ BP∗(Ku) for the unit map

η : S → BP of the ring spectrum BP , and put

BOka(s, u) = {β̂spn/t,ε+1 : n ≥ ε, ε = 0, 1, pε | t ≥ 1, t ≤ 2n−εu}.
Theorem 1.5. (Oka [6], [7]) If fs,u ∈ π∗(Ku) exists, then every element of BOka(s, u)
survives to π∗(S).
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Since Oka also showed that fsp,u ∈ π∗(Ku) for s ≥ 1 and u ≤ p, and u < p if
s = 1 in [2, Th. C] and [3, Th. CII], the theorem implies that BOka(sp, u) yields
generators of π∗(S) including the elements in b), c), e) and g) in the above table.

Let W be the cofiber of the generator β1 ∈ πpq−2(S), and we have a cofiber
sequence

(1.6) Spq−2 β1−→ S0 iW−−→ W
jW−−→ Spq−1.

In [10], we introduce another method to give a beta family from fs,u ∈ π∗(W ∧Ku)
such that η∗(fs,u) = vs

2 ∈ BP∗(W ∧Ku). In this paper, we merge these methods.
For an element fpi,u ∈ π∗(W ∧Ku), consider a family

B(pi, u) = {β̂spi+n/t,ε+1 : s ≥ 1, n ≥ ε, ε = 0, 1, pε | t ≥ 1, t ≤ 2n−εu− pε(2− ε)}.
Theorem 1.7. If fpi,u ∈ π∗(W ∧Ku) exists, then every element of B(s, u) survives
to π∗(S).

In [11, Th. 1.7], we showed the existence of fp2,p2 ∈ π∗(W ∧ Kp2) for p > 5,
though there does not exist fp2,p2 ∈ π∗(Kp2) shown by Ravenel.

Corollary 1.8. Let p > 5. Then, B(p2, p2) yields a beta family of π∗(S).

This improves Oka’s results if the prime number p is greater than five. Indeed,⋃
s≥1

⋃p
u=1 BOka(sp2, u) ⊂ B(p2, p2).

2. Recollection on finite ring spectrum

In this section, we recall some results of Oka’s. We call a spectrum E a ring
spectrum if it admits a multiplication µ : E ∧ E → E and a unit ι : S → E such
that µ(ι ∧ 1) = 1 = µ(1 ∧ ι) and µ(µ ∧ 1) = µ(1 ∧ µ). A ring spectrum E is
commutative if µT = µ for the switching map T : E ∧ E → E ∧ E. The homotopy
groups E∗ = π∗(E) of E have a multiplication given by ab = µ(a∧ b) for a, b ∈ E∗,
which makes E∗ a ring. Oka [7] (cf. [8]) defined Mod(E) and Der(E) by

Mod(E) = {f ∈ [E, E]∗ | µ(f ∧ 1) = fµ} and
Der(E) = {f ∈ [E, E]∗ | µ(f ∧ 1) + µ(1 ∧ f) = fµ}.

We call an element of Der(E) a derivation of E.

Theorem 2.1. (Oka [8, Lemma 1.3]) For the unit ι, the induced homomorphism
ι∗ : Mod(E) → E∗ is a ring isomorphism. Its inverse κ : E∗ → Mod(E) is given by
κ(f) = µ(f ∧ 1).

Consider a spectrum Ku in (1.4). Then, Oka showed that

Theorem 2.2. (Oka [7, Th. 2.5]) Ku has a commutative and associative multipli-
cation mu.

Theorem 2.3. (Oka [7, Lemma 2.3]) Mod(Ku) is a commutative subring of [Ku,Ku]∗
and a commutator [f, g] belongs to Mod(Ku) for f ∈ Mod(Ku) and g ∈ Der(Ku).
In particular,

fpg = gfp for f ∈ Mod(Ku) and g ∈ Der(Ku).

Let δ′u = iuju ∈ [Ku,Ku]−uq−1. Then, it fits into a cofiber sequence

(2.4) ΣuqKu

eiu−→ K2u

eju−→ Ku
δ′u−→ Σuq+1Ku

by (1.1) with 3× 3 Lemma.
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Theorem 2.5. (Oka [7, Th. 2.5]) δ′u ∈ Der(Ku).

It is well known that δ = ij ∈ Der(M) and α ∈ Mod(M), and so αpδ = δαp ∈
[M, M ]pq−1. It gives rise to not only the element A but also δu in a commutative
diagram

(2.6)

Σupq−1M ΣupqM ΣupqM ΣupqM

Σ−1M M ΣpqM M

Σ−1Kup Kup Ku Kup

ΣupqM Σupq+1M Σupq+1M Σupq+1M,

wδ

uαup

wπ

u α
up

w
u A

u

u α
up

wδ

uiup

wπ

u iup

w
u iu u iup

wδu

ujup

wπ

u jup

w
u ju u jup

w−δ wπ w
in which rows and columns are cofiber sequences. By [6, Lemma 4.5, Th. 4.2], we
have the following

Theorem 2.7. (Oka [7, p.425]) The map δu in the above diagram is a derivation
of Kup.

Proof. The matrices for the map δu ∧ 1 and the switching map T are given by

τ(δu ∧ 1) =




0 1 0 0
0 0 β 0
0 0 0 −1
0 0 0 0


 and τ(T ) =




1 0 0 0
δ −1 0 0
δ′ 0 −1 0
δδ′ δ′ −δ 1




by [6, Lemma 4.5] and [6, Th. 4.2], and so the first row of the matrix for (δu ∧
1) + (δu ∧ 1)T is (δ 0 0 0). Since the multiplication mu is the projection to the
first summand, we see that mu(δu ∧ 1 + 1 ∧ δu) = mu((δu ∧ 1) + T (δu ∧ 1)T ) =
mu((δu ∧ 1) + (δu ∧ 1)T ) = δumu as desired. ¤

The following lemma is a folklore:

Lemma 2.8. There exist self-maps α̃ : ΣqKu → Ku and Ã : ΣpqKu → Ku such
that BP∗(α̃) = v1 and BP∗(Ã) = vp

1 .

Lemma 2.9. Aiβ1 = 0 ∈ π2pq−2(M).

Proof. Consider the cobar complex {(Cs, d)}s≥0, whose cohomology is the E2-
term E∗

2 (M) of the Adams-Novikov spectral sequence converging to π∗(M). Then,
Cs = Γ/(p2) ⊗A Γs−1, where (A,Γ) = (BP∗, BP∗BP ), and the differential d of
the complex is given by derivation with d(v) = ηR(v) − ηL(v) ∈ C1 = Γ/(p2) for
v ∈ C0 = A/(p2) and d(x) = 1 ⊗ x −∆(x) + x ⊗ 1 ∈ C2 for x ∈ C1. We also use
the formulas on the structure maps of the Hopf algebroid given by the formulas of
Quillen and Hazewinkel:

ηR(v1) = v1 + pt1, ηR(v2) ≡ v2 + v1t
p
1 + pt2 − (p + 1)vp

1t1 mod (p2)
∆(t1) = 1⊗ t1 + t1 ⊗ 1 and ∆(t2) = 1⊗ t2 + t1 ⊗ tp1 + t1 ⊗ 1 + v1b10.

Here, b10 denotes the cocycle defined by d(tp1) = pb10. Let b0 denote the cohomology
class of b10. Then, by definition, β̂1 = ∂∂1(v2) = b0. (b(1, 1) consists of only one
element v2 by degree reason.) Therefore, Aiβ1 is detected by vp

1b0 ∈ E2,2pq
2 (M).
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We compute that d(c) = vp
1b10 ∈ C2 for c = −vp−1

1 t2 + vp−3
1 (v1t1 − pt21)ηR(v2) +

v2p−3
1

(
p+1
2 v1t

2
1 − p

3 t31
)
. It follows that vp

1b0 = 0 ∈ E2,2pq
2 (M). We further see that

E2+rq,2pq+rq
2 (M) = 0 for r ≥ 1 by the vanishing line (cf. [1, Lemma 1.16, Remark

1.17]). Hence Aiβ1 = 0 ∈ π2pq−2(M). ¤

3. The ring spectrum W ∧Ku

In this section, we fix an integer u and K denotes Ku = M(1, u), which is
a commutative ring spectrum with multiplication m = mu by Theorem 2.2. The
spectrum W in (1.6) admits a multiplication mW : W∧W → W such that mW (iW ∧
1W ) = 1W = mW (1W ∧ iW ) by [5, Example 2.9].

Consider the spectrum WM = W ∧M and the multiplication mWM = (mW ∧
mM )(1W ∧ T ∧ 1M ) : WM ∧WM → WM . Then, we see that

(3.1) mWM (i′ ∧ i′) = i′mW ,

for i′ = 1W ∧ i. We further see the following lemma by [6, Cor. 4.3]:

Lemma 3.2. WM is a commutative ring spectrum with multiplication mWM .

Proof. Since p = 0 ∈ [WM ∧WM ]0 and β1 ∧ 1 = 0 ∈ [M ∧WM, M ∧WM ]pq−2,
WM is a split ring spectrum. ¤

Put WMK = W ∧ M ∧ K, and consider a multiplication mWMK = (mWM ∧
m)(1WM∧T ∧1K) : WMK∧WMK

1WM∧T∧1K−−−−−−−−→ WM∧WM∧K∧K
mWM∧m−−−−−−→ WMK

on WMK. Since the smash product of commutative ring spectra is a commutative
ring spectrum, we have the following

Corollary 3.3. WMK is a commutative ring spectrum with multiplication mWMK .

Consider the spectrum WK = W ∧K and a multiplication mWK on WK defined
by mWK = (mW ∧m)(1W ∧ T ∧ 1K) for the switching map T : K ∧W → W ∧K.
We have the split cofiber sequence

(3.4) WK
bi−→ WMK

bj−→ ΣWK,←−
σ

in which î = 1W ∧ i ∧ 1K : WK → WMK and σ denotes a splitting.

Lemma 3.5. îmWK = mWMK (̂i ∧ î).

Proof. This follows from computation:

îmWK = (i′ ∧ 1K)(mW ∧m)(1W ∧ T ∧ 1K)
= (mWM ∧m)(i′ ∧ i′ ∧ 1K∧K)(1W ∧ T ∧ 1K) by (3.1)
= (mWM ∧m)(1WM ∧ T ∧ 1K)(̂i ∧ î) = mWMK (̂i ∧ î). ¤

Lemma 3.6. The spectrum WK is a commutative ring spectrum with multiplica-
tion mWK .

Proof. Apply σ in (3.4) to Lemma 3.5, and we have

(3.7) mWK = σmWMK (̂i ∧ î).

Then, noticing that mWMKT ′ = mWMK by Corollary 3.3,

mWKT = σmWMK (̂i ∧ î)T = σmWMKT ′(̂i ∧ î) = σmWMK (̂i ∧ î) = mWK .
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Here, T : WK ∧WK → WK ∧WK and T ′ : WMK ∧WMK → WMK ∧WMK are
the switching maps.

The associativity of it is verified as follows:

mWK(mWK ∧ 1WK) = σmWMK (̂i ∧ î) (mWK ∧ 1WK) by (3.7)
= σmWMK(mWMK ∧ 1WMK)(̂i ∧ î ∧ î) (by Lemma 3.5)
= σmWMK(1WMK ∧mWMK)(̂i ∧ î ∧ î) (by Corollary 3.3)
= σmWMK (̂i ∧ î) (1WK ∧mWK) (by Lemma 3.5)
= mWK(1WK ∧mWK). ¤

Consider the homomorphism

ϕW : [K, K]∗ → [WK, WK]∗

given by ϕW (f) = 1W ∧ f . Then, an easy computation shows

Lemma 3.8. The homomorphism ϕW induces ones ϕW : Mod(K) → Mod(WK)
and ϕW : Der(K) → Der(WK).

4. Construction of homotopy elements

We begin with a general result corresponding to Oka’s theorems [6, Th. 7.1,
Th. 7.2] and [7, Construction III]. The proof is almost identical.

Proposition 4.1. Let f ∈ π∗(WKu) be an element such that η∗(f) ≡ vs
2 mod (v1)

for the unit map η of BP . Then,

1) for n ≥ 0, there is an element fn ∈ π∗(WK2nu) such that η∗(fn) ≡ vspn

2

mod (v1), and
2) for n ≥ 1, let u′ be a positive integer such that u′p ≤ 2n−1u. Then, there

are an element f ′n−1 ∈ π∗(WKu′p) such that η∗(f ′n−1) ≡ vspn−1

2 mod (v1),
and an element fn ∈ π∗(WKu′) such that η∗(fn) ≡ vspn

2 mod (p, v1). Here,
WKu = W ∧Ku.

Proof. Put f0 = f , and suppose that fn ∈ π∗(WK2nu). Then, κ(fn) ∈ Mod(WK2nu)
for κ in Theorem 2.1. By Theorems 2.2 and 3.8, δ′ = ϕW (δ′2nu) ∈ Der(WK2nu),
and so we have κ(fn)pδ′ = δ′κ(fn)p by Theorem 2.3. Thus we obtain a map f̃n+1,
which makes the diagram

WK2n+1u WK2nu WK2nu

WK2n+1u WK2nu WK2nu

w
uefn+1

wδ′

u κ(fn)p

u κ(fn)p

w wδ′

commutes. Now put fn+1 = (iW ∧ i2nui)∗(f̃n+1) to complete the induction.
Turn to the second. By 1), we have fn−1 ∈ π∗(WK2n−1u), which gives rise to

f ′n−1 ∈ π∗(WKu′p) as in [7, Construction I]. Theorems 2.7, 3.8 and 2.3 imply that

κ(f ′n−1)
pδ′′ = δ′′κ(f ′n−1)

p.
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for δ′′ = ϕW (δu′), where δu′ is the map in (2.6). We then have a map f̃n fitting
into the commutative diagram

WKu′ WKu′p WKu′p

WKu′ WKu′p WKu′p

w
u

e
fn

wδ′′

u κ(f ′n−1)
p

u κ(f ′n−1)
p

w wδ′′

and fn = (iW ∧ iu′i)∗(f̃n). ¤

In [10], we show the following lemma:

Lemma 4.2. ([10, Lemma 2.11]) For u > 2, there exists an element ωu ∈
π(p+2)q−1(WKu) such that (jW )∗(ωu) = iuα2i ∈ π2q(Ku). Moreover, v2

1g ∈ E0
2(WKu)

= E0
2(Ku)⊕ gE0

2(Ku) detects it.

A similar lemma follows from Lemma 2.9.

Lemma 4.3. For u > 1, there exists an element ωu ∈ π2pq−1(WKu) such that
(jW )∗(ωu) = iuAi ∈ πpq(Ku). Moreover, vp

1g ∈ E0
2(WKu) = E0

2(Ku) ⊕ gE0
2(Ku)

detects it.

Proof of Theorem 1.7. By Proposition 4.1, we have elements (fpi,u)n ∈ π∗(WK2nu)

and (fpi,u)
n
∈ π∗(WKu′) for u′p ≤ 2n−1u such that η∗((fpi,u)n) ≡ vpi+n

2 mod (v1)

and η∗((fpi,u)
n
) ≡ vpi+n

2 mod (p, v1). Consider the composites

Bspi+n/2nu−r = α̃r−2(jW ∧ 1K)κ((fpi,u)n)sω2nu (r ≥ 2), and
Bspi+n/u′p−rp,2 = Ãr−1(jW ∧ 1K)κ((fpi,u)n)sωu′ (r ≥ 1),

where α̃, Ã, ωu and ωu are the elements of Lemmas 2.8, 4.2 and 4.3. Then,
η∗(Bspi+n/2nu−r) ∈ b(spi+n, r; 2nu, 1) and η∗(Bspi+n/u′p−rp,2) ∈ b(spi+n, rp; u′p, 2).
Since j, j2nu and ju′ correspond to ∂1, ∂1,2nu and ∂2,u′p, respectively, the elements
jj2nuBspi+n/2nu−r and jju′Bspi+n/u′p−rp,2 are detected by elements of β̂spi+n/2nu−r

and β̂spi+n/u′p−rp,2, as desired. ¤
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