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Abstract. Let L2 denote the stable homotopy category of v−1
2 BP -local spec-

tra at the prime three. In [2], it is shown that the Picard group of L2 consisting
of isomorphic classes of invertible spectra is isomorphic to either the direct sum
of Z and Z/3 or the direct sum of Z and two copies of Z/3. In this paper, we

conclude the Picard group is isomorphic to the latter group by showing the
existence of an exotic invertible spectrum.

1. Introduction

Let S(p) be the stable homotopy category of spectra localized away from the
prime p. The Brown-Peterson spectrum BP ∈ S(p) plays a principal role, when
we try to understand S(p). The coefficient ring of BP is the polynomial algebra
Z(p)[v1, v2, . . . ] over generators vn (n ≥ 1) with degree |vn| = 2(pn − 1). For a
spectrum E, a spectrum A is E-local if [C,A]∗ = 0 for any C such that E ∧ C =
0. Bousfield constructed the localization functor LE : S(p) → LE to the category

of E-local spectra. For E = v−1
n BP , we abbreviate LE and LE to Ln and Ln,

respectively ([5]). Let E(n) be the Johnson-Wilson spectrum whose coefficient
ring is Z(p)[v1, v2, . . . , vn, v

−1
n ]. Then, it is well known that LE(n) = Ln. We also

have the E(n)-based Adams spectral sequence {E∗
r (A)} for a spectrum A ∈ S(p)

converging to π∗(LnA) with E2-term Es,t
2 (A) = Exts,tE(n)∗(E(n))(E(n)∗, E(n)∗(A)).

We call a spectrum Q ∈ Ln invertible in Ln if there is a spectrum P such
that Q ∧ P = LnS

0 for the sphere spectrum S0 ∈ S(p). The spectrum LnS
0 is a

typical example of an invertible spectrum. Invertible spectra are characterized by
the E(n)∗-homology:

Theorem 1.1. ([2, Th. 1.1], cf. [1]) A spectrum Q ∈ Ln is invertible if and only if
E(n)∗(Q) = E(n)∗ as an E(n)∗(E(n))-comodule.

This implies that the E2-term E∗
2 (Q) of an invertible spectrum Q is isomorphic

to E∗
2 (Σ

kS0) for some k ∈ Z under a degree preserving isomorphism. In this case,
the E2-term of Σ−kQ is isomorphic to E∗

2 (S
0). We call an invertible spectrum Q

core if there is a degree preserving isomorphism E∗
2 (Q) ∼= E∗

2 (S
0). Every invertible

spectrum is a suspension of a core invertible spectrum. Hereafter, gQ ∈ E0,0
2 (Q)

for a core invertible spectrum Q denotes a generator corresponding to 1 ∈ Z(p) =

E0,0
2 (S0). We notice that gQ is represented by the unit map i : S0 → E(n) = E(n)∧

Q of the ring spectrum E(n). The differentials dr(gQ) of the spectral sequences
discern core invertible spectra. For instance, dr(gQ) = 0 ∈ Er,r−1

r (Q) for all r ≥ 2
if and only if Q = LnS

0.
In [1], it is shown that a collection of isomorphism classes of invertible spectra

in Ln forms a set, which is also a group with multiplication defined by [Q][Q′] =
1
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[Q ∧ Q′] and the unit [LnS
0]. Here, [X] denotes the isomorphism class of X,

and below, we will write the classes without square brackets. We call the group
the Picard group of Ln and denote it by Pic(Ln). The group Pic(Ln) splits into
the direct sum of Z generated by LnS

1 and a subgroup Pic0(Ln) consisting of
isomorphism classes of core invertible spectra ([1]). We define a decreasing filtration
of Pic0(Ln) by Fk = {Q ∈ Pic0(Ln) : dr(gQ) = 0 ∈ Er,r−1

r (Q) for r < kq + 1},
where q = 2p− 2. Hopkins and Ravenel (cf. [6]) showed that there is an integer r
such that the Er-term has a horizontal vanishing line, and then we have the least
integer k0 such that Fk0 = {LnS

0}. In [2], we define an abelian group Fk/Fk+1

as a set of equivalence classes of Fk under a suitable equivalence relation, and put
GPic0(Ln) =

⊕
k>0 Fk/Fk+1. Note that Er,r−1

2 (Q) = 0 unless q | (r − 1), and put

(1.2) Gk = Eqk+1,qk
qk+1 (S0) (= Extq+1,q

E(n)∗(E(n))(E(n)∗, E(n)∗) if k = 1).

We then have a homomorphism φk : Fk/Fk+1 → Gk defined by φk(Q) = ω for ω in

dkq+1(gQ) = ωgQ ∈ Ekq+1,kq
kq+1 (Q) for k < k0, and φk = 0 for k ≥ k0. Let φ denote

the direct sum
⊕

k>0 φk : GPic
0(Ln) →

⊕
k>0G

k.

Theorem 1.3. ([2, Th.1.2]) The homomorphism φk for every k > 0 is a monomor-
phism, and so is φ. In other words, GPic0(Ln) is isomorphic to a subgroup of⊕

k>0G
k.

In some cases, the Eqk+1-terms Gk are known, and this theorem implies im-
mediately the facts Pic(Ln) = Z if n2 + n < q (since Gk = 0 for k > 0) and
Pic(L1) ⊂ Z ⊕ Z/2 if p = 2 (since G1 = Z/2 and Gk = 0 for k > 1) (cf. [1], [2]).
We call an invertible spectrum Q exotic unless it is a suspension of LnS

0. We say
that an exotic core invertible spectrum Q is detected by ω ̸= 0 ∈ Gr if φ(Q) = ω,
and write Qω for it. The inclusion Pic(L1) ⊂ Z⊕Z/2 above is shown to be an iso-
morphism by Hovey and Sadofsky [1] by constructing an exotic invertible spectrum
detected by the generator ω0 of the summand Z/2. In fact, the spectrum Qω0 is a
suspension of L1V ( 12 ), where V ( 12 ) is the Toda spectrum, which is also known as
the ‘question mark complex’.

Turn to the case n = 2 and p = 3. Note that q = 4 in (3.2). From [10], we read
off that

⊕
k>0G

k = G1 = Z/3⊕ Z/3 generated by

(1.4)
ω1 = η(v−1

2 h1b0/3v1) ≡ v−1
2 h1b

2
0 mod (3, v1) and

ω2 = η(v−1
2 ξζ/3v1) = h0χ ≡ v−1

2 ξb0ζ2 mod (3, v1).

For the generators, see section three. It follows that Pic(L2) ⊂ Z⊕Z/3⊕Z/3. We
constructed an exotic invertible spectrum detected by ω1 to show that Pic(L2) ⊃
Z⊕ Z/3 in [2]. The spectrum Qω1 is closely related to the Toda spectrum V (1 1

2 ),
though we do not know whether or not it is an E(2)-localization of a finite spectrum.

In this paper, we show the existence of Qω2 , which does not seem to be related
to any Toda spectrum V (a).

Theorem 1.5. There exists an invertible spectrum detected by ω2.

Corollary 1.6. Pic(L2) = Z⊕ Z/3⊕ Z/3.

We call a finite spectrum U an E(n)-bouquet if E(n)∧U = E(n)∨
∨u

k=1 Σ
ekE(n)

for ek ̸≡ 0 mod q. Let g and gk (1 ≤ k ≤ u) denote the generators of the E(n)∗-

summands of E(n)∗(U). Here, the generator g is represented by S0 i−→ E(n)
ιU−→
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E(n) ∧ U for the inclusion ιU . Let ω ∈ Er,r−1
r (S0) be a generator. We call an

E(n)-bouquet U an ω-bouquet if it satisfies the condition:

(1.7) dr(g) = ωg ̸= 0 ∈ Er,r−1
r (U).

Proposition 1.8. Suppose that there exists an ω-bouquet. Then, the invertible
spectrum Qω exists.

This is proved in the next section by constructing an ∞-tower as we did in [2].

Proposition 1.9. For ω2 in (1.4), there exists an ω2-bouquet.

This is the main part of this paper and proved in section three. Theorem 1.5
now follows from Propositions 1.8 and 1.9.

2. An invertible spectrum associated with an ω-bouquet

Let E denote the n-th Johnson-Wilson spectrum E(n) with multiplication µ : E∧
E → E and unit map i : S0 → E. We then have the cofiber sequences S0 i−→ E

j−→
E

k−→ S1, and spectra Ds sitting in the cofiber sequence E
s ks

−→ Ss ks−→ ΣDs
is−→

ΣE
s
, where E

s
and ks denote the s-fold smash product of E with itself and the

composite k(k ∧E) · · · (k ∧Es−1
), respectively. The spectra Ds also fit into cofiber

sequences

(2.1) Ds
is−→ E ∧ Es js−→ Ds+1

ks−→ ΣDs.

Now these yield the exact couple (Ds
1(A), E

s
1(A)) = (π∗(Ds ∧ A), π∗(E ∧ E

s ∧ A))
for a spectrum A, that defines the E-based Adams spectral sequence for computing
π∗(LnA). Consider the sequence

(2.2) E
d1−→ E ∧ E d1−→ · · · d1−→ E ∧ Es d1−→ E ∧ Es+1 d1−→ · · ·

with d1 = is+1js : E ∧ E
s → E ∧ Es+1

. Let m denote a positive integer or ∞. We
call a sequence of spectra {As}0≤s≤m an m-tower if the spectra fit into the cofiber
sequences

(2.3) As
iAs−→ E ∧ Es jAs−−→ As+1

kA
s−−→ ΣAs

for 0 ≤ s < m. The sequence {Ds}s≥0 is a typical example of an ∞-tower in which
iDs = is, j

D
s = js and kDs = ks.

Lemma 2.4. Let {As}s≥0 be an ∞-tower, and put A∞ = lims Σ
−sAs. Then, A∞

is an invertible spectrum.

Proof. By [2, Th. 1.1] (see Theorem 1.1), it suffices to show that E∗(A∞) = E∗.
This follows immediately from a similar argument as [11, Prop. 5.5], since the
spectral sequence associated with the∞-tower has a horizontal vanishing line. □

The following lemma is well known (cf. [2, Lemma 4.5]).

Lemma 2.5. Let {As}0≤s≤m be an m-tower and Ẽ an E-module spectrum. Then,
we have a split short exact sequence

0→ πt+m−1(Ẽ)
φ∗

−−→ [Am, Ẽ]t
(jAm−1)

∗

−−−−−→ (Im d1)t → 0.

Here, φ∗ is induced from the composite Am

kA
m−1−−−→ Am−1

kA
m−2−−−→ · · · kA

1−−→ A1 = E
i←−

S0, and (Im d1)t ⊂ [E ∧ Em−1
, Ẽ]t.
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Let U be an E-bouquet. Then, we have the split cofiber sequence

(2.6) E E ∧ U E ∧ U
ιU−→ κU

−−→←−−
σU

←−−
τU

for a bouquet U , which induces split cofiber sequences in the commutative diagram

(2.7)

E ∧ Es
E ∧ Es ∧ U E ∧ Es ∧ U

E ∧ Es+1
E ∧ Es+1 ∧ U E ∧ Es+1 ∧ U.

w

ιUs

u

d1

w

κU
s

u

d1∧U
u

d1∧U

w

ιUs+1

w

κU
s+1

u

σU
s

u

τU
s

u

σU
s+1

u

τU
s+1

Proof of Proposition 1.8. Let a be the order of ω ∈ Er,r−1
r (S0) and U denote the

ω-bouquet. Put as = 1 + δs,r(a − 1) for the Kronecker delta δs,r. Then, we have

elements gsU ∈ πs−1(Ds ∧ U) for s > 0 such that kUs g
s+1
U = asg

s
U , g

1
U = ιU i and

iUr g
r
U = ιUr ω̃ ∈ πr−1(E ∧ E

r ∧ U). Here, lUs for l = i, j, k denotes ls ∧ U , and ω̃
denotes an element representing ω. We notice that ιUr ω̃ represents ωg ∈ Er,r−1

r (U).
By the induction onm, we construct anm-tower {Qs}0≤s≤m along with elements

gsQ ∈ πs−1(Qs) and maps fs : Qs → Ds ∧ U for s ≤ m such that

(2.8)

1) kQs−1g
s
Q = as−1g

s−1
Q , g1Q = i and iQr g

r
Q = ω̃ ∈ πr−1(E ∧ E

r
),

2) fsg
s
Q = gsU for s < m, and

3) these fit into the commutative diagrams

Qs E ∧ Es Qs+1 ΣQs

Ds ∧ U E ∧ Es ∧ U Ds+1 ∧ U ΣDs ∧ U

w

iQs

u

fs

w

jQs

u

ιUs

w

kQ
s

u

fs+1
u

fs

w

iUs
w

jUs
w

kU
s

of cofiber sequences for s < m.

We start from setting Q0 = ∗, f0 = 0, Q1 = E, g1Q = i and f1 = ιU0 = ιU .

Suppose that there exist an m-tower {Qs}0≤s≤m with (2.8). Note that iQm is not
defined at this stage. So we put iQm = σU

mi
U
mfm. Then, it suffices to show that

(2.9) ιUmi
Q
m = iUmfm and fmg

m
Q = gmU .

Indeed, since the former is the left square of the diagram (2.8)3) for s = m,
we obtain Qm+1 and fm+1 fitting into (2.8)3). The latter implies that iQmg

m
Q =

0, which yields gm+1
Q . We will redefine fm so that (2.9) holds. We see that

kUm−1(fmg
m
Q −gmU ) = 0, which yields an element y ∈ πm−1(E∧E

m−1∧U) such that

jUm−1y = fmg
m
Q − gmU . Since i∗ : [E,E ∧ Em−1 ∧ U ]m−1 → πm−1(E ∧ E

m−1 ∧ U)
is an epimorphism, we have an element ỹ such that ỹi = y. Put f = fm −
jUm−1ỹk

Q
1 · · · k

Q
m−1. Then, f sits in the place of fm in (2.8)3) for s = m − 1, and

fgmQ = fmg
m
Q − jUm−1ỹi = gmU . So we replace fm by f , and show the first equality

of (2.9).
Consider the element om = ιUmi

Q
m − iUmfm = ιUmσ

U
mi

U
mf − iUmf . Then, we see that

omj
Q
m−1 = 0, since we see that iQmj

Q
m−1 = d1 by diagram chasing. By Lemma 2.5,

we have an element x ∈ πm−1(E ∧ E
m ∧ U) such that φ∗(x) = om, and then an

element x̃ ∈ [E,E ∧ Em ∧ U ]m−1 such that x̃i = x and x̃kQ1 · · · k
Q
m−1 = om. Put

as = amin{s−1,r}, and we compute omg
m
Q = amx̃i = amx. It follows that

(2.10) φ∗(omg
m
Q ) = amom ∈ [Qm, E ∧ E

m ∧ U ]0
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Since ami
U
mfg

m
Q = ami

U
mg

m
U = iUmk

U
mg

m+1
U = 0, amomg

m
Q = amι

U
mσ

U
mi

U
mfg

m
Q −

ami
U
mfg

m
Q = 0. Now, (2.10) implies om = 0, since amam ̸= 0 and [Qm, E∧E

m∧U ]0
is torsion free.

In particular, we have Qr, fr and grQ such that fr(g
r
Q) = grU . Then, ιUr i

Q
r g

r
Q =

iUr frg
r
Q = iUr g

r
U = ιUr ω̃, which completes the verification of (2.8), since ιUr is a

monomorphism. □

3. Construction of an ω2-bouquet

From now on, we work in the E(2)-local category at the prime number three.
Let E∗

r (A) for a spectrum A denote the Er-term of E(2)-based Adams spectral

sequence converging to π∗(L2A). Then the E2-term Es,t
2 (A) is a cohomology of

the cobar complex Cs,t(A) = Ωs,tE(2)∗(A) =
(
E(2)∗(A)⊗E(2)∗ E(2)∗(E(2))⊗s

)
t
.

We abbreviate Cs,t(S0) to Cs,t. We have the cochains x ∈ C2,8, f0 ∈ C3,0 and
f0z ∈ C4,0 so that

(3.1) d(x) ≡ v21f0 mod (3) and d(f0) = 3f0z

by [10, (3.5) and Lemma 3.6]. Furthermore, these cochains x and f0 yield the

generators ξ ∈ E2,8
2 (V (1)) and −v−1

2 ψ0 ∈ E3,0
2 (V (0)), respectively (for generators,

see also [7, 6.3.24. Th.], [8, Th. 5.8] and [9, Th. 2.11]). Here, V (0) and V (1) denote
the Smith-Toda spectra. In particular, V (0) is the modulo three Moore spectrum.
In order to get information on the E2-term E∗

2 (S
0) from [10], we consider the

generalized Greek letter map ([3, p.483])

(3.2) η : Es,t
2 (M2) w Es+2,t

2 (S0)

defined by a composite of connecting homomorphisms δ : Es+1,t
2 (N1)→ Es+2,t

2 (S0)

and δ′ : Es,t
2 (M2)→ Es+1,t

2 (N1) associated to the cofiber sequences

L2S
0
w L0S

0
w N1 and N1

w L1N
1
wM2

defining the chromatic spectra N1 and M2. The element ω2 is now defined by
ω2 = η(ξζ2/3v1).

We further consider the element χ = η(ξ/3v21) ∈ E
4,0
2 (S0) for ξ/3v21 ∈ H2,0M2

0

represented by x/3v21 given in [10, Prop. 4.7]. The relations in (3.1) show that χ is

represented by the cocycle f0z. We also have the element h0 ∈ E1,4
2 (S0) represented

by t1, which detects the element α1 ∈ π3(S0).

Lemma 3.3. h0χ = ω2 in E5,4
2 (S0).

Proof. Since d(v1) = 3t1 in the cobar complex C1,4, we obtain ω2 = η(ξζ2/3v1) =
δ(v1χ/3) = h0χ by (3.1). □

Let Y be the cofiber of the generator α1 ∈ π3(S0) and X the 8-skeleton of BP .
Then we have cofiber sequences (cf. [8])

(3.4)
S3

w

α1
S0

w

ι
Y w

κ
S4, S0

w

ι1
X w

κ1
Σ4Y w

λ1
S1, and

Y w

ι2
X w

κ2
S8

w

λ2
ΣY.

Note that

E(2)∗(Y ) = E(2)∗[x]/(x
2) and E(2)∗(X) = E(2)∗[x]/(x

3)

for a generator x with |x| = 4, with E(2)∗(E(2))-comodule structure given by
ψ(x) = x+t1. The second and the third cofiber sequences in (3.4) induce short exact
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sequences of E(2)∗-homologies, in which (κ1)∗(a+bx+cx
2) = b+2cx and (κ2)∗(a+

bx + cx2) = c. It follows that the connecting homomorphisms (λ1)∗ : E
s,t
2 (Y ) →

Es+1,t+4
2 (S0) and (λ2)∗ : E

s,t
2 (S0)→ Es+1,t+8

2 (Y ) act as follows:

(3.5) (λ1)∗([a+ xb]) = [t1|a+ 1
2 t

2
1|b] and (λ2)∗([c]) = [t21|c+ 2xt1|c]

Since the generators α1 ∈ π3(S
0) and β1 ∈ π10(S

0) are detected by h0 = [t1] ∈
E1,4

2 (S0) and b0 = [t1|t21 + t21|t1] ∈ E
2,12
2 (S0). It follows that

(3.6) λ1ι = α1 and λ1λ2 = β1.

We also see that

(3.7) ι1 = ι2ι.

Lemma 3.8. Es,∗
2 (X) = 0 for s > 5. Furthermore, E5,4

2 (X) = 0 = E5,8
2 (X) and

E1,4
2 (X) = 0.

Proof. Let M1X
1 and MX2 be the spectra defined by the cofiber sequences

(3.9)
N1X

0 → L1N1X
0 →M1X

1, L2X → L0X → NX1 and
NX1 → L1NX

1 →MX2

for N1X
0 = L2V (0) ∧ X. Then, we have a cofiber sequence M1X

1 ϕ−→ MX2 3−→
MX2, which induces the long exact sequence

(3.10) Hs,tM1
1

ϕ∗−→ Es,t
2 (MX2)

3−→ Es,t
2 (MX2)

δ−→ Hs+1,tM1
1 .

Here, Hs,tM1
1 denotes Es,t

2 (M1X
1) and is determined in [4]. Since Es,t

2 (L1NX
1) =

0 = Es,t
2 (L0X) for s > 1, a similar map to (3.2) yields an isomorphism

(3.11) Es+2,t
2 (X) = Es,t

2 (MX2) for s > 1.

By [4, Th. 10.2], Hs,∗M1
1 = 0 for s > 3, and so is Es,∗

2 (MX2) by [3, Remark 3.11]
on (3.10), and the first statement of the lemma follows from (3.11).

For s = 3, the result H4,∗M1
1 = 0 by [4, Th. 10.2] with (3.10) implies that

E3,∗
2 (MX2) = E5,∗

2 (X) is a direct sum of Q/Z(3) obtained by the generators of the

image of ϕ∗. In particular, H3,4M1
1 = 0 by [4, Th. 9.3] shows E5,4

2 (X) = 0.

Suppose that E5,8
2 (X) has a summand Q/Z(3). By [10], neither of E5,8

2 (S0)

nor E4,−4
2 (S0) contains Q/Z(3) as a summand. It follows that (κ1)∗ assigns the

summand to the one in E5,4
2 (Y ). Since E5,4

2 (X) = 0, the summand is pulled back

to E4,−4
2 (S0) under (λ2)∗, which is a contradiction, and E5,8

2 (X) = 0.

Since E1,∗
2 (L0X) = 0, we have an epimorphism δ : E0,4

2 (NX1)→ E1,4
2 (X). It is

easy to see that E0,4
2 (NX1) = Q/Z(3) generated by {(v1− 3x)/3i}, whose image of

the connecting homomorphism is zero. Therefore, E1,4
2 (X) = 0. □

Corollary 3.12. π3(L2X) = 0.

Lemma 3.13. ι∗(χ) ∈ E4,0
2 (Y ) is a permanent cycle.

Proof. Consider the second cofiber sequence in (3.4). We compute (λ1)∗ι∗(χ) =
(α1)∗(χ) by (3.6), which equals ω2 by Lemma 3.3. This is a permanent cycle since

ξζ2/3v1 ∈ E3,0
2 (M2) is a permanent cycle by [10, Lemma 6.2]. Lemma 3.3 also

shows the relation (ι1)∗(ω2) = 0 in the E2-term. It implies the same relation in
homotopy by Lemma 3.8, and the homotopy element ω2 is pulled back to an element
under the map ι1, which is detected by ι∗(χ). □
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Since π−11(L2S
0) = 0 by [10], the last cofiber sequence of (3.4) induces a

monomorphism π−4(L2Y )
(ι2)∗−−−→ π−4(L2X). Lemma 3.13 together with (3.7) im-

plies the following

Lemma 3.14. (ι1)∗(χ) ∈ E4,0
2 (X) survives to a essential element χ̂ ∈ π−4(L2X).

Lemma 3.15. There is an element χ ∈ [X,L2X]−4 such that (ι1)
∗(χ) = χ̂ and

E(2)∗(χ) = 0.

Proof. Consider the commutative diagram

π0(L2X) [Y,L2X]−4 π−4(L2X) π−1(L2X)

E(2)0(X) [Y,E(2) ∧X]−4 E(2)−4(X)

w

κ∗

u

i∗

w

ι∗

u

i∗
u

i∗

w

α∗
1

w

κ∗
w

ι∗

of exact sequences, in which the lower sequence is a split short exact one. Since χ̂ is
detected by an element of E4,0

2 (X), α∗
1(χ̂) is detected by an element of E4s+1,4s

2 (X)
for s ≥ 1, which is zero by Lemma 3.8. It follows that α∗

1(χ̂) = 0, and χ̂ is pulled
back to an element χ′ ∈ [Y,L2X]−4. If i∗(χ

′) ̸= 0 ∈ [Y,E(2) ∧ X]−4, we have an
element θ ∈ E(2)0(X) such that θκ = i∗(χ

′), since ι∗i∗(χ
′) = i∗(χ̂) = 0. Consider

the Adams spectral sequences obtained by applying π∗(−) and [Y,−]∗ to the cofiber

sequences (2.1). Since d1(i∗(χ
′)) = 0, d1(θ) = 0, and so θ ∈ E0,0

2 (X). By Lemma

3.8, d5(θ) ∈ E5,4
2 (X) = 0, and so j∗(θ) = 0 and we have an element θ′ ∈ π0(L2X)

such that i∗(θ
′) = θ. Now replace χ′ by χ′ − θ′κ, and we see that i∗(χ

′) = 0.
We play the same game in the diagram

π4(L2X) [X,L2X]−4 [Y, L2X]−4 π3(L2X)

E(2)4(X) [X,E(2) ∧X]−4 [Y,E(2) ∧X]−4

w

κ∗
2

u

i∗

w

ι∗2

u

i∗
u

i∗

w

λ∗
2

w

κ∗
2

w

ι∗2

By Corollary 3.12, χ′ is pulled back to χ ∈ [X,L2X]−4. Since E5,8
2 (X) = 0, a

similar argument shows that i∗(χ) = 0.
Now ι∗1(χ) = ι∗ι∗2(χ) = ι∗(χ′) = χ̂, and E(2) ∧ χ = (µ ∧X)(E(2) ∧ i∗(χ)) = 0,

as desired. □

The spectra Y and X are introduced by Ravenel to define the small descent
spectral sequence, and we here consider its first differential

(3.16) ∂1 = ι2κ1.

Let W denote the cofiber of β1 ∈ π10(S0). Then, we have cofiber sequences

(3.17) S10 β1−→ S0 ιW−−→W
κW−−→ S11 and W w

iW
X w

∂1
Σ4X w

kW
ΣW

so that

(3.18) kW ι2 = ιWλ1 ∈ [Y,W ]4.

Lemma 3.19. In E5
2(W ), (kW )∗((ι1)∗(χ)) = (ιW )∗(ω2).

Proof. We compute (kW )∗((ι1)∗(χ)) = (kW ι2)∗ι∗(χ) = (ιW )∗(λ1ι)∗χ = (ιW )∗(α1χ) =
(ιW )∗(ω2) by (3.7), (3.18), (3.6) and Lemma 3.3. □
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Consider the fiber U of the map ∂1 + χ ∈ [X,X]−4 for the element χ of Lemma
3.15, which fits into the cofiber sequence

(3.20) U
iU−→ X

∂1+χ−−−→ Σ4X
kU−−→ ΣU.

Then, E(2) ∧ (∂1 + χ) = E(2) ∧ ∂1 by Lemma 3.15, and we see the following

Lemma 3.21. E(2) ∧ U = E(2) ∧W . In particular E(2) ∧ U = E(2) ∨ Σ11E(2).

Proof of Proposition 1.9. Lemma 3.21 shows that U is an E(2)-bouquet.
For the generator ι1 of π0(X), (∂1)∗(ι1) = 0 by (3.4) and (3.16), and χ∗(ι1) =

(ι1)
∗(χ) = χ̂ by Lemma 3.15. It follows that (∂1+χ)∗(ι1) = χ̂ ∈ π−4(X), and then

(kU )∗(χ̂) = 0 ∈ π−1(U). On the other hand, χ̂ is detected by (ι1)∗(χ) by Lemma
3.14, and so is (kU )∗(χ̂) by (kU )∗((ι1)∗(χ)) ∈ E5

2(U), which equals (ιW )∗(ω2) = ω2g
by Lemma 3.19 and Lemma 3.21. Therefore, ω2g ∈ E5

2(U) is killed, and the killer

belongs to E0,0
5 (U) = Z(3). This shows the condition (1.7) for ω2 as desired. □
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