PICARD GROUP OF THE FE(2)-LOCAL STABLE HOMOTOPY
CATEGORY AT THE PRIME THREE

KATSUMI SHIMOMURA

ABSTRACT. Let Lo denote the stable homotopy category of vngP-local spec-
tra at the prime three. In [2], it is shown that the Picard group of L2 consisting
of isomorphic classes of invertible spectra is isomorphic to either the direct sum
of Z and Z/3 or the direct sum of Z and two copies of Z/3. In this paper, we
conclude the Picard group is isomorphic to the latter group by showing the
existence of an exotic invertible spectrum.

1. INTRODUCTION

Let S§(,) be the stable homotopy category of spectra localized away from the
prime p. The Brown-Peterson spectrum BP € S, plays a principal role, when
we try to understand S,). The coefficient ring of BP is the polynomial algebra
Zpy[v1,v2,...] over generators v, (n > 1) with degree |v,| = 2(p" —1). For a
spectrum E, a spectrum A is E-local if [C, A}, = 0 for any C such that EAC =
0. Bousfield constructed the localization functor Lg: S,y — L to the category
of E-local spectra. For E = v, 'BP, we abbreviate Lg and Lg to L, and L,,
respectively ([5]). Let E(n) be the Johnson-Wilson spectrum whose coefficient
ring is Zyy[v1, v2, ... ,Un, v, 1], Then, it is well known that Ly = L. We also
have the E(n)-based Adams spectral sequence {E;(A)} for a spectrum A € S
converging to . (L, A) with Ep-term E5"(A) = Exty ) i) (E(n)s, B(n).(A)).

We call a spectrum @ € L, invertible in L, if there is a spectrum P such
that Q A P = L,S° for the sphere spectrum S° € S(p)- The spectrum L,S%is a
typical example of an invertible spectrum. Invertible spectra are characterized by
the F(n).-homology:

Theorem 1.1. ([2, Th. 1.1], ¢f. [1]) A spectrum Q € L,, is invertible if and only if
E(n)«(Q) = E(n). as an E(n).(E(n))-comodule.

This implies that the Es-term E3(Q) of an invertible spectrum @ is isomorphic
to E3(X*S%) for some k € Z under a degree preserving isomorphism. In this case,
the Ep-term of X ~*Q is isomorphic to E3(S°). We call an invertible spectrum @
core if there is a degree preserving isomorphism Ej(Q) = E3(S°). Every invertible
spectrum is a suspension of a core invertible spectrum. Hereafter, gg € Eg ’O(Q)
for a core invertible spectrum () denotes a generator corresponding to 1 € Z,) =
E5°(59). We notice that gq is represented by the unit map i: S° — E(n) = E(n)A
@ of the ring spectrum E(n). The differentials d,(gg) of the spectral sequences
discern core invertible spectra. For instance, d,(gq) =0 € EF"~1(Q) for all r > 2
if and only if Q = L, S°.

In [1], it is shown that a collection of isomorphism classes of invertible spectra
in £, forms a set, which is also a group with multiplication defined by [Q][Q'] =

1
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[Q A Q'] and the unit [L,S°]. Here, [X] denotes the isomorphism class of X,
and below, we will write the classes without square brackets. We call the group
the Picard group of L, and denote it by Pic(L,). The group Pic(L,) splits into
the direct sum of Z generated by L,S' and a subgroup Pic®(L,) consisting of
isomorphism classes of core invertible spectra ([1]). We define a decreasing filtration
of Pic’(L,,) by Fr = {Q € Pic®(L,,) : dr(9q) = 0 € EF""1(Q) for r < kq + 1},
where ¢ = 2p — 2. Hopkins and Ravenel (cf. [6]) showed that there is an integer r
such that the F,.-term has a horizontal vanishing line, and then we have the least
integer ko such that Fy, = {L,S°}. In [2], we define an abelian group Fj/Fyi1
as a set of equivalence classes of F}, under a suitable equivalence relation, and put
GPic*(L,,) = @y~ Fi/Frt1. Note that E5"~'(Q) = 0 unless ¢ | (r — 1), and put

(12)  GF=ERTT™(S%) (= BtL ! gy (EM)., E(n).) if k = 1).

We then have a homomorphism ¢y : Fy/Fjy1 — G* defined by ¢3(Q) = w for w in
dkg+1(99Q) = wyg € E,fgii’kq(Q) for k < kg, and ¢, = 0 for k > kg. Let ¢ denote

the direct sum @, . ¢r: GPic’(L,) = Pjno G*

Theorem 1.3. ([2, Th.1.2]) The homomorphism @y, for every k > 0 is a monomor-
phism, and so is . In other words, GPic®(L,) is isomorphic to a subgroup of

Diso G-

In some cases, the Fg4i-terms G are known, and this theorem implies im-
mediately the facts Pic(£,) = Z if n? + n < ¢ (since G¥ = 0 for k > 0) and
Pic(£1) C Z® Z/2 if p = 2 (since G' = Z/2 and G* = 0 for k > 1) (cf. [1], [2]).
We call an invertible spectrum Q exotic unless it is a suspension of L, S°. We say
that an exotic core invertible spectrum @ is detected by w # 0 € G" if ¢(Q) = w,
and write @, for it. The inclusion Pic(L£;) C Z @ Z/2 above is shown to be an iso-
morphism by Hovey and Sadofsky [1] by constructing an exotic invertible spectrum
detected by the generator wy of the summand Z/2. In fact, the spectrum Q,, is a
suspension of Lﬂ/(%), where V( %) is the Toda spectrum, which is also known as
the ‘question mark complex’.

Turn to the case n = 2 and p = 3. Note that ¢ = 4 in (3.2). From [10], we read
off that @,.,G* = G' = Z/3 & Z/3 generated by

w1 = n(vy "hibe/3v1) = vy thib3 mod (3,v1) and
wa = 1(v3 ' €¢/301) = hox = vy €boCz  mod (3,01).

For the generators, see section three. It follows that Pic(Ly) CZ®Z/3D7Z/3. We
constructed an exotic invertible spectrum detected by wy to show that Pic(Ls) D
Z & 7/3 in [2]. The spectrum @, is closely related to the Toda spectrum V/(13),
though we do not know whether or not it is an F(2)-localization of a finite spectrum.

In this paper, we show the existence of @,,, which does not seem to be related
to any Toda spectrum V' (a).

(1.4)

Theorem 1.5. There exists an invertible spectrum detected by ws.
Corollary 1.6. Pic(Ly) =Z D Z/3®Z/3.

We call a finite spectrum U an E(n)-bouquet if E(n) AU = E(n)V\/j_, % E(n)
for e, # 0 mod ¢. Let g and gi (1 < k < u) denote the generators of the E(n).-

LU

summands of E(n).(U). Here, the generator g is represented by S° 4 E(n) —
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E(n) AU for the inclusion (V. Let w € E7""1(S%) be a generator. We call an
E(n)-bouquet U an w-bouguet if it satisfies the condition:
(1.7) du(g) = wg # 0 € Epr=1(U).
Proposition 1.8. Suppose that there exists an w-bouquet. Then, the invertible
spectrum @, exists.

This is proved in the next section by constructing an co-tower as we did in [2].

Proposition 1.9. For wy in (1.4), there exists an wa-bouquet.

This is the main part of this paper and proved in section three. Theorem 1.5
now follows from Propositions 1.8 and 1.9.

2. AN INVERTIBLE SPECTRUM ASSOCIATED WITH AN w-BOUQUET

Let E denote the n-th Johnson-Wilson spectrum F(n) with multiplication p: EA
E — E and unit map i: S° — E. We then have the cofiber sequences S° 5 E L
Eﬁg St and spectra Dj sitting in the cofiber sequence Esiﬂ S5 ey YDy AZN
ZES, where E” and k* denote the s-fold smash product of E with itself and the

composite k(kAE) -+ (k /\Esjl)7 respectively. The spectra D, also fit into cofiber
sequences

(2.1) D, EAE® 25 Doy 25 5D,

Now these yield the exact couple (D5(A), E5(A)) = (m.(Ds A A), m.(EANE” A A))
for a spectrum A, that defines the E-based Adams spectral sequence for computing
7« (LnA). Consider the sequence

(2.2) ESMEANEY . S EAE S EAET Y

with di = 54191 EA E S EA ES . Let m denote a positive integer or co. We
call a sequence of spectra {A; }o<s<m an m-tower if the spectra fit into the cofiber
sequences

(2.3) AL BAT Ly Ay R 5,

for 0 < s < m. The sequence {D;s}s>¢ is a typical example of an co-tower in which

ZsD = g, ]sD = js and k? = k.

Lemma 2.4. Let {As}s>0 be an co-tower, and put Aso =limg 7 °A,. Then, Ax
is an nvertible spectrum.

Proof. By [2, Th. 1.1] (see Theorem 1.1), it suffices to show that F,(Aw) = E..
This follows immediately from a similar argument as [11, Prop. 5.5], since the
spectral sequence associated with the oo-tower has a horizontal vanishing line. [

The following lemma is well known (cf. [2, Lemma 4.5]).

Lemma 2.5. Let {A;}o<s<m be an m-tower and E an E-module spectrum. Then,
we have a split short exact sequence

©* st (Jm )"

0— 7Tt+m_1(E) [Am,E}t E—— (Im dl)t — 0.
L. . krézfl k::z 2 kA [
Here, ©* is induced from the composite A,, A1 A A =F &

—m—1

S9, and (Im dy); C [EAE™ ", El,.
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Let U be an E-bouquet. Then, we have the split cofiber sequence

LU

U
K —
(2.6) EZ=FEANU=ENU
oU FU
for a bouquet U, which induces split cofiber sequences in the commutative diagram

g _ kY s —
EANE ——= EANE'ANU —— EAE' AU

U U
(27) dll %s ldl/\U Ts ld1/\ﬁ
—s+1 Lirl —s+1 Hiﬁl —s+1 —
EANE —— ENE AU ZEANE AU
U.g+1 T.g+1

Proof of Proposition 1.8. Let a be the order of w € E7"~1(S%) and U denote the
w-bouquet. Put as = 1+ d5,(a — 1) for the Kronecker delta d5,. Then, we have
elements gj; € ms_1(Ds AU) for s > 0 such that k:gg‘f]"’l = asgy;, 95 = Vi and
Vgt = 0% € mp_((EANE AU). Here, IV for | = i,j,k denotes I, AU, and &
denotes an element representing w. We notice that 1V @ represents wg € EN"=1(U).
By the induction on m, we construct an m-tower {Q; }o<s<m along with elements

95 € ms—1(Qs) and maps fs: Qs — D* AU for s < m such that

1) k:?_lgé? =as19y ' 94 =i and i, =© € 71 (E AE"),

2) fs9¢ = giy for s <m, and

3) these fit into the commutative diagrams

iQ ., i k&
(2.8) Qs —— EAE — Qo1 — EQs

A R

7

D AU = EAE AU 2 Dyt AU — SD AU

of cofiber sequences for s < m.
We start from setting Qo = *, fo =0, Q1 = F, gé =iand f; =.§ =Y.
Suppose that there exist an m-tower {Qs}o<s<m with (2.8). Note that i% is not

defined at this stage. So we put i¥ = o¥i¥ f,,. Then, it suffices to show that
(2.9) i@ =iV f,. and fm90 = 90
Indeed, since the former is the left square of the diagram (2.8)3) for s = m,

we obtain Q11 and fn41 fitting into (2.8)3). The latter implies that zf?ngg
0, which yields ggﬂ. We will redefine f,, so that (2.9) holds. We see that

k:g%l(fmggI —g¢7) = 0, which yields an element y € Wm,l(E/\Em_l AU) such that

3%y = Fmgly — g Since i*: [E,EAE" AUy = mma(EAE™ ' AU)
is an epimorphism, we have an element y such that yi = y. Put f = f,, —
j%—1§k1Q k9 Then, f sits in the place of f,, in (2.8)3) for s = m — 1, and

m—1°
98 = fmady — G _,gi = g7. So we replace fn, by f, and show the first equality
of (2.9).

Consider the element o, = (Vi — iU f,, = UiV f — iU f. Then, we see that
omj%_, =0, since we see that i959_| = d; by diagram chasing. By Lemma 2.5,
we have an element z € 7m,_1(E A E" AU) such that ¢*(z) = 0, and then an
clement 7 € [E,EANE"™ AUl such that Zi = x and Tk% - k9_| = 0,,. Put
G5 = Qpin{s—1,r}, and we compute op,g¢) = ATl = Gpmax. It follows that

—-=m

(2.10) ¢ (0m9Q) = @mom € [Qm, EANE AU
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Since ami%fggl = ami%g? = i%k%g?“ =0, amomygy = amL%a%igLfgg -

ami%fgg = 0. Now, (2.10) implies o,, = 0, since a;,ay, # 0 and [Qm, E/\Fm/\U]O
is torsion free.

In particular, we have Q,, f, and gf, such that f,(g5,) = gi;. Then, 'Ji%gf, =

ingga = i¥g% = (UG, which completes the verification of (2.8), since (U is a

monomorphism. O

3. CONSTRUCTION OF AN wy-BOUQUET

From now on, we work in the E(2)-local category at the prime number three.
Let E*(A) for a spectrum A denote the E,.-term of E(2)-based Adams spectral
sequence converging to m,(LaA). Then the Eo-term ES’t(A) is a cohomology of
the cobar complex C*(A) = Q*'E(2).(A) = (E(2).(A) ®p). E(2).(E(2))%),.
We abbreviate C*t(S°%) to C*!. We have the cochains z € C?8, f, € C3° and
foz € C*Y so that

(3.1) d(z) =vifo mod (3) and d(fy) =3foz

by [10, (3.5) and Lemma 3.6]. Furthermore, these cochains z and f; yield the
generators £ € Ea®(V(1)) and —vy Lhg € ES°(V(0)), respectively (for generators,
see also [7, 6.3.24. Th.], [8, Th. 5.8] and [9, Th. 2.11]). Here, V(0) and V(1) denote
the Smith-Toda spectra. In particular, V(0) is the modulo three Moore spectrum.

In order to get information on the Fa-term FEj(S°) from [10], we consider the
generalized Greek letter map ([3, p.483])

(3.2) n: Byt (M?) — B3T3 (S0)
defined by a composite of connecting homomorphisms §: E3 ™5 (N1) — E5T2(S9)
and &': Ey'(M?) — E;H’t(Nl) associated to the cofiber sequences

Ly8° —L0yS° —N' and N'— L, N!'— M?

defining the chromatic spectra N' and M?2. The element wy is now defined by
wa = n(£C2/3v1).

We further consider the element y = 7(£/30?) € Ey°(S°) for £/3v2 € H>O0 M2
represented by z/3v? given in [10, Prop. 4.7]. The relations in (3.1) show that x is
represented by the cocycle fyz. We also have the element hy € E21 ’4(5 9) represented
by t1, which detects the element a; € 73(SY).

Lemma 3.3. hox = wy in E3*(S0).
Proof. Since d(vy) = 3t; in the cobar complex C**, we obtain wy = n(£¢2/3v1) =
6(v1x/3) = hox by (3.1). O

Let Y be the cofiber of the generator a; € m3(S°) and X the 8-skeleton of BP.
Then we have cofiber sequences (cf. [8])
” 325 60 Ly *, g4 SO&XA*&E‘*Y&S& and
(34) P LS )

Note that
E(2).(Y) = E(2).[x]/(z%) and E(2).(X) = E(2).[z]/(«”)

for a generator = with |z| = 4, with E(2).(F(2))-comodule structure given by
¥(x) = z+t1. The second and the third cofiber sequences in (3.4) induce short exact
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sequences of E(2).-homologies, in which (k1).(a+bxr+cx?) = b+2cx and (k2).(a+
br + cx?) = c. Tt follows that the connecting homomorphisms (A).: Ey*(Y) —

ESTH(80) and (M), : ESH(SY) — ESTHTR(Y) act as follows:
(3.5) (M)s(la+ b)) = [tr]a + 523[b] and  (A2).([c]) = [tF]e + 2zt1|c]

Since the generators a; € 73(S°) and () € 710(SY) are detected by hy = [t1] €
E21’4(SO) and by = [t1]t3 + t3]t1] € E22’12(SO). It follows that

(3.6) AMe=a; and M)A = f1.
We also see that
(3.7 11 = tat.

Lemma 3.8. E5*(X) = 0 for s > 5. Furthermore, E5*(X) = 0 = E5®(X) and
1,4
EM(X) =0.

Proof. Let My X" and M X? be the spectra defined by the cofiber sequences

(3 9) N1X0—>L1N1XO—)M1X1, LQX-)LQX%NXl and
’ NX! S5 LiNX! 5 MX?
for Ny X% = LyV(0) A X. Then, we have a cofiber sequence M; X! NSV CIEN

M X2, which induces the long exact sequence
(3.10) H M2 By (MX?) S ByN(MX?) % BV

Here, H*'M] denotes Ej*(M;X") and is determined in [4]. Since Ey* (L1 NX1) =
0= Ey*(LoX) for s > 1, a similar map to (3.2) yields an isomorphism

(3.11) E3YN(X) = B3 (MX?) for s> 1.

By [4, Th. 10.2], H¥*M} = 0 for s > 3, and so is E5" (M X?) by [3, Remark 3.11]
on (3.10), and the first statement of the lemma follows from (3.11).

For s = 3, the result H**M] = 0 by [4, Th. 10.2] with (3.10) implies that
E3*(MX?) = E3*(X) is a direct sum of Q/Z(3) obtained by the generators of the
image of ¢.. In particular, H3*M{ = 0 by [4, Th. 9.3] shows ESA(X) =0.

Suppose that E5®(X) has a summand Q/Zy. By [10], neither of ES8(S89)
nor Ey~*(S°) contains Q/Z3) as a summand. It follows that (1). assigns the
summand to the one in E>*(Y). Since E5*(X) = 0, the summand is pulled back
to Ey~*(S%) under (\s),, which is a contradiction, and ES®(X) = 0.

Since Ey™(LoX) = 0, we have an epimorphism §: EY*(NX') — E)*(X). It is
easy to see that Ey*(NX') = Q/Zs) generated by {(vi — 3x)/3'}, whose image of
the connecting homomorphism is zero. Therefore, E21’4(X )=0. g

Corollary 3.12. 73(L2X) = 0.
Lemma 3.13. 1,(x) € Ey°(Y) is a permanent cycle.

Proof. Consider the second cofiber sequence in (3.4). We compute (A1).t(x) =
(a1)«(x) by (3.6), which equals wy by Lemma 3.3. This is a permanent cycle since
£Co/3v1 € E3°(M?) is a permanent cycle by [10, Lemma 6.2]. Lemma 3.3 also
shows the relation (i1)«(w2) = 0 in the Es-term. It implies the same relation in
homotopy by Lemma 3.8, and the homotopy element w, is pulled back to an element
under the map ¢1, which is detected by ¢.(x). a
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Since 7_11(L2S%) = 0 by [10], the last cofiber sequence of (3.4) induces a

monomorphism 7_4(LsY) L), m_4(L2X). Lemma 3.13 together with (3.7) im-

plies the following
Lemma 3.14. (11).(x) € Ey°(X) survives to a essential element X € w_4(LyX).

Lemma 3.15. There is an element X € [X, Lo X]|_4 such that (11)*(X) = X and
B(2).(x) = 0.

Proof. Consider the commutative diagram

To(LaX) — [V, LoX] s ——— 7_4(LaX) —2 7_1(LsX)

E(2)0(X) 5 [V, B(2) A X]_s > E(2)_4(X)

of exact sequences, in which the lower sequence is a split short exact one. Since X is
detected by an element of Ey°(X), ai(y) is detected by an element of Ey*+H*%(X)
for s > 1, which is zero by Lemma 3.8. It follows that af(X) = 0, and X is pulled
back to an element X' € [V, LaX]_4. If i (X') # 0 € [Y, E(2) A X]_4, we have an
element 0 € E(2)o(X) such that 0k = i.(x’), since t*i.(x') = i.(X) = 0. Consider
the Adams spectral sequences obtained by applying 7. (—) and [Y, —]. to the cofiber
sequences (2.1). Since d; (i.(x')) = 0, d1(0) = 0, and so § € EJ(X). By Lemma
3.8, ds5(#) € E5*(X) = 0, and so j.(#) = 0 and we have an element 0’ € mo(LyX)
such that i.(0") = 6. Now replace x’' by x' — 6'k, and we see that i.(x') = 0.
We play the same game in the diagram

* *

Ko

P A
7T4(L2X) _— [X, LQX],4 *2> [Y, LQX],4 —2> 7T3(L2X)

B(2)s(X) — [X, EQ) A X]-4 > [V, BE@) A X

By Corollary 3.12, x/ is pulled back to X € [X,LoX]_4. Since EJ*(X) = 0, a
similar argument shows that 4, (%) = 0.

Now 11(X) = ¢*3(X) = 1*(X) = %, and B@) A% = (A X)(E) Ain(X)) = 0,
as desired. (]

The spectra Y and X are introduced by Ravenel to define the small descent
spectral sequence, and we here consider its first differential

(3.16) 01 = LoK1.

Let W denote the cofiber of 8 € m10(S°). Then, we have cofiber sequences
(3.17) §10 By g0 woyy mwy gt g w % x sty M s
so that

(3.18) kwte = twA1 € [Y, W]y.

Lemma 3.19. In E3(W), (kw)«((t1)+(x)) = (tw )« (w2).

Proof. We compute (kw )x((t1)«(X)) = (kwe2)«ts(X) = (w )« (A1)sx = (tw )« (1) =
(tw )« (w2) by (3.7), (3.18), (3.6) and Lemma 3.3. O
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Consider the fiber U of the map 91 +X € [X, X]_4 for the element Y of Lemma
3.15, which fits into the cofiber sequence

(3.20) N GERENS 15 QLIRS g8
Then, E(2) A (01 +X) = E(2) A 01 by Lemma 3.15, and we see the following
Lemma 3.21. E(2) AU = E(2) AW. In particular E(2) NU = E(2) vV 1 E(2).

Proof of Proposition 1.9. Lemma 3.21 shows that U is an F(2)-bouquet.

For the generator ¢1 of mo(X), (01)«(¢1) = 0 by (3.4) and (3.16), and X, (¢1) =
(¢1)*(X) = X by Lemma 3.15. It follows that (01 +X)«(¢1) = X € m_4(X), and then
(kv)«(X) =0 € m_1(U). On the other hand, X is detected by (¢1)«(x) by Lemma
3.14, and so is (kp)«(X) by (kv)«((11)«(x)) € E3(U), which equals (¢ )« (w2) = wag
by Lemma 3.19 and Lemma 3.21. Therefore, wog € E3(U) is killed, and the killer
belongs to Ex’(U) = Z3)- This shows the condition (1.7) for wy as desired. O
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