PICARD GROUP OF THE E(2)-LOCAL STABLE HOMOTOPY CATEGORY AT THE PRIME THREE

KATSUMI SHIMOMURA

ABSTRACT. Let \mathcal{L}_2 denote the stable homotopy category of $v_2^{-1}BP$ -local spectra at the prime three. In [2], it is shown that the Picard group of \mathcal{L}_2 consisting of isomorphic classes of invertible spectra is isomorphic to either the direct sum of \mathbb{Z} and $\mathbb{Z}/3$ or the direct sum of \mathbb{Z} and two copies of $\mathbb{Z}/3$. In this paper, we conclude the Picard group is isomorphic to the latter group by showing the existence of an exotic invertible spectrum.

1. INTRODUCTION

Let $S_{(p)}$ be the stable homotopy category of spectra localized away from the prime p. The Brown-Peterson spectrum $BP \in S_{(p)}$ plays a principal role, when we try to understand $S_{(p)}$. The coefficient ring of BP is the polynomial algebra $\mathbb{Z}_{(p)}[v_1, v_2, ...]$ over generators v_n $(n \geq 1)$ with degree $|v_n| = 2(p^n - 1)$. For a spectrum E, a spectrum A is E-local if $[C, A]_* = 0$ for any C such that $E \wedge C =$ 0. Bousfield constructed the localization functor $L_E \colon S_{(p)} \to \mathcal{L}_E$ to the category of E-local spectra. For $E = v_n^{-1}BP$, we abbreviate L_E and \mathcal{L}_E to L_n and \mathcal{L}_n , respectively ([5]). Let E(n) be the Johnson-Wilson spectrum whose coefficient ring is $\mathbb{Z}_{(p)}[v_1, v_2, \ldots, v_n, v_n^{-1}]$. Then, it is well known that $L_{E(n)} = L_n$. We also have the E(n)-based Adams spectral sequence $\{E_r^*(A)\}$ for a spectrum $A \in \mathcal{S}_{(p)}$ converging to $\pi_*(L_nA)$ with E_2 -term $E_2^{s,t}(A) = \operatorname{Ext}_{E(n)_*(E(n))}^{s,t}(E(n)_*, E(n)_*(A))$. We call a spectrum $Q \in \mathcal{L}_n$ invertible in \mathcal{L}_n if there is a spectrum P such

We call a spectrum $Q \in \mathcal{L}_n$ invertible in \mathcal{L}_n if there is a spectrum P such that $Q \wedge P = L_n S^0$ for the sphere spectrum $S^0 \in \mathcal{S}_{(p)}$. The spectrum $L_n S^0$ is a typical example of an invertible spectrum. Invertible spectra are characterized by the $E(n)_*$ -homology:

Theorem 1.1. ([2, Th. 1.1], cf. [1]) A spectrum $Q \in \mathcal{L}_n$ is invertible if and only if $E(n)_*(Q) = E(n)_*$ as an $E(n)_*(E(n))$ -comodule.

This implies that the E_2 -term $E_2^*(Q)$ of an invertible spectrum Q is isomorphic to $E_2^*(\Sigma^k S^0)$ for some $k \in \mathbb{Z}$ under a degree preserving isomorphism. In this case, the E_2 -term of $\Sigma^{-k}Q$ is isomorphic to $E_2^*(S^0)$. We call an invertible spectrum Qcore if there is a degree preserving isomorphism $E_2^*(Q) \cong E_2^*(S^0)$. Every invertible spectrum is a suspension of a core invertible spectrum. Hereafter, $g_Q \in E_2^{0,0}(Q)$ for a core invertible spectrum Q denotes a generator corresponding to $1 \in \mathbb{Z}_{(p)} =$ $E_2^{0,0}(S^0)$. We notice that g_Q is represented by the unit map $i: S^0 \to E(n) = E(n) \land Q$ of the ring spectrum E(n). The differentials $d_r(g_Q)$ of the spectral sequences discern core invertible spectra. For instance, $d_r(g_Q) = 0 \in E_r^{r,r-1}(Q)$ for all $r \ge 2$ if and only if $Q = L_n S^0$.

In [1], it is shown that a collection of isomorphism classes of invertible spectra in \mathcal{L}_n forms a set, which is also a group with multiplication defined by [Q][Q'] = $[Q \wedge Q']$ and the unit $[L_n S^0]$. Here, [X] denotes the isomorphism class of X, and below, we will write the classes without square brackets. We call the group the *Picard group* of \mathcal{L}_n and denote it by $\operatorname{Pic}(\mathcal{L}_n)$. The group $\operatorname{Pic}(\mathcal{L}_n)$ splits into the direct sum of \mathbb{Z} generated by $L_n S^1$ and a subgroup $\operatorname{Pic}^0(\mathcal{L}_n)$ consisting of isomorphism classes of core invertible spectra ([1]). We define a decreasing filtration of $\operatorname{Pic}^0(\mathcal{L}_n)$ by $F_k = \{Q \in \operatorname{Pic}^0(\mathcal{L}_n) : d_r(g_Q) = 0 \in E_r^{r,r-1}(Q) \text{ for } r < kq + 1\}$, where q = 2p - 2. Hopkins and Ravenel (cf. [6]) showed that there is an integer rsuch that the E_r -term has a horizontal vanishing line, and then we have the least integer k_0 such that $F_{k_0} = \{L_n S^0\}$. In [2], we define an abelian group F_k/F_{k+1} as a set of equivalence classes of F_k under a suitable equivalence relation, and put $G\operatorname{Pic}^0(\mathcal{L}_n) = \bigoplus_{k>0} F_k/F_{k+1}$. Note that $E_2^{r,r-1}(Q) = 0$ unless $q \mid (r-1)$, and put

(1.2)
$$G^k = E_{qk+1}^{qk+1,qk}(S^0) \quad (= \operatorname{Ext}_{E(n)_*(E(n))}^{q+1,q}(E(n)_*,E(n)_*) \text{ if } k = 1).$$

We then have a homomorphism $\varphi_k \colon F_k/F_{k+1} \to G^k$ defined by $\varphi_k(Q) = \omega$ for ω in $d_{kq+1}(g_Q) = \omega g_Q \in E_{kq+1}^{kq+1,kq}(Q)$ for $k < k_0$, and $\varphi_k = 0$ for $k \ge k_0$. Let φ denote the direct sum $\bigoplus_{k>0} \varphi_k \colon GPic^0(\mathcal{L}_n) \to \bigoplus_{k>0} G^k$.

Theorem 1.3. ([2, Th.1.2]) The homomorphism φ_k for every k > 0 is a monomorphism, and so is φ . In other words, $GPic^0(\mathcal{L}_n)$ is isomorphic to a subgroup of $\bigoplus_{k>0} G^k$.

In some cases, the E_{qk+1} -terms G^k are known, and this theorem implies immediately the facts $\operatorname{Pic}(\mathcal{L}_n) = \mathbb{Z}$ if $n^2 + n < q$ (since $G^k = 0$ for k > 0) and $\operatorname{Pic}(\mathcal{L}_1) \subset \mathbb{Z} \oplus \mathbb{Z}/2$ if p = 2 (since $G^1 = \mathbb{Z}/2$ and $G^k = 0$ for k > 1) (cf. [1], [2]). We call an invertible spectrum Q exotic unless it is a suspension of $L_n S^0$. We say that an exotic core invertible spectrum Q is detected by $\omega \neq 0 \in G^r$ if $\varphi(Q) = \omega$, and write Q_{ω} for it. The inclusion $\operatorname{Pic}(\mathcal{L}_1) \subset \mathbb{Z} \oplus \mathbb{Z}/2$ above is shown to be an isomorphism by Hovey and Sadofsky [1] by constructing an exotic invertible spectrum detected by the generator ω_0 of the summand $\mathbb{Z}/2$. In fact, the spectrum Q_{ω_0} is a suspension of $L_1V(\frac{1}{2})$, where $V(\frac{1}{2})$ is the Toda spectrum, which is also known as the 'question mark complex'.

Turn to the case n = 2 and p = 3. Note that q = 4 in (3.2). From [10], we read off that $\bigoplus_{k>0} G^k = G^1 = \mathbb{Z}/3 \oplus \mathbb{Z}/3$ generated by

(1.4)
$$\begin{aligned} \omega_1 &= \eta(v_2^{-1}h_1b_0/3v_1) \equiv v_2^{-1}h_1b_0^2 \mod (3,v_1) \text{ and} \\ \omega_2 &= \eta(v_2^{-1}\xi\zeta/3v_1) = h_0\chi \equiv v_2^{-1}\xi b_0\zeta_2 \mod (3,v_1). \end{aligned}$$

For the generators, see section three. It follows that $\operatorname{Pic}(\mathcal{L}_2) \subset \mathbb{Z} \oplus \mathbb{Z}/3 \oplus \mathbb{Z}/3$. We constructed an exotic invertible spectrum detected by ω_1 to show that $\operatorname{Pic}(\mathcal{L}_2) \supset \mathbb{Z} \oplus \mathbb{Z}/3$ in [2]. The spectrum Q_{ω_1} is closely related to the Toda spectrum $V(1\frac{1}{2})$, though we do not know whether or not it is an E(2)-localization of a finite spectrum.

In this paper, we show the existence of Q_{ω_2} , which does not seem to be related to any Toda spectrum V(a).

Theorem 1.5. There exists an invertible spectrum detected by ω_2 .

Corollary 1.6. $\operatorname{Pic}(\mathcal{L}_2) = \mathbb{Z} \oplus \mathbb{Z}/3 \oplus \mathbb{Z}/3$.

We call a finite spectrum U an E(n)-bouquet if $E(n) \wedge U = E(n) \vee \bigvee_{k=1}^{u} \Sigma^{e_k} E(n)$ for $e_k \neq 0 \mod q$. Let g and g_k $(1 \leq k \leq u)$ denote the generators of the $E(n)_*$ summands of $E(n)_*(U)$. Here, the generator g is represented by $S^0 \xrightarrow{i} E(n) \xrightarrow{\iota^U}$ $E(n) \wedge U$ for the inclusion ι^U . Let $\omega \in E_r^{r,r-1}(S^0)$ be a generator. We call an E(n)-bouquet U an ω -bouquet if it satisfies the condition:

(1.7)
$$d_r(g) = \omega g \neq 0 \in E_r^{r,r-1}(U).$$

Proposition 1.8. Suppose that there exists an ω -bouquet. Then, the invertible spectrum Q_{ω} exists.

This is proved in the next section by constructing an ∞ -tower as we did in [2].

Proposition 1.9. For ω_2 in (1.4), there exists an ω_2 -bouquet.

This is the main part of this paper and proved in section three. Theorem 1.5 now follows from Propositions 1.8 and 1.9.

2. An invertible spectrum associated with an ω -bouquet

Let E denote the *n*-th Johnson-Wilson spectrum E(n) with multiplication $\mu: E \wedge E \to E$ and unit map $i: S^0 \to E$. We then have the cofiber sequences $S^0 \xrightarrow{i} E \xrightarrow{j} \overline{E} \xrightarrow{k} S^1$, and spectra D_s sitting in the cofiber sequence $\overline{E}^s \xrightarrow{k^s} S^s \xrightarrow{\overline{k}} \Sigma D_s \xrightarrow{\overline{i}} \Sigma \overline{\Sigma}^s$, where \overline{E}^s and k^s denote the *s*-fold smash product of \overline{E} with itself and the composite $k(k \wedge \overline{E}) \cdots (k \wedge \overline{E}^{s-1})$, respectively. The spectra D_s also fit into cofiber sequences

$$(2.1) D_s \xrightarrow{i_s} E \wedge \overline{E}^s \xrightarrow{j_s} D_{s+1} \xrightarrow{k_s} \Sigma D_s$$

Now these yield the exact couple $(D_1^s(A), E_1^s(A)) = (\pi_*(D_s \wedge A), \pi_*(E \wedge \overline{E}^s \wedge A))$ for a spectrum A, that defines the E-based Adams spectral sequence for computing $\pi_*(L_nA)$. Consider the sequence

(2.2)
$$E \xrightarrow{d_1} E \wedge \overline{E} \xrightarrow{d_1} \cdots \xrightarrow{d_1} E \wedge \overline{E}^s \xrightarrow{d_1} E \wedge \overline{E}^{s+1} \xrightarrow{d_1} \cdots$$

with $d_1 = i_{s+1}j_s \colon E \wedge \overline{E}^s \to E \wedge \overline{E}^{s+1}$. Let *m* denote a positive integer or ∞ . We call a sequence of spectra $\{A_s\}_{0 \le s \le m}$ an *m*-tower if the spectra fit into the cofiber sequences

(2.3)
$$A_s \xrightarrow{i_s^A} E \wedge \overline{E}^s \xrightarrow{j_s^A} A_{s+1} \xrightarrow{k_s^A} \Sigma A_s$$

for $0 \le s < m$. The sequence $\{D_s\}_{s \ge 0}$ is a typical example of an ∞ -tower in which $i_s^D = i_s, j_s^D = j_s$ and $k_s^D = k_s$.

Lemma 2.4. Let $\{A_s\}_{s\geq 0}$ be an ∞ -tower, and put $A_{\infty} = \lim_{s} \Sigma^{-s} A_s$. Then, A_{∞} is an invertible spectrum.

Proof. By [2, Th. 1.1] (see Theorem 1.1), it suffices to show that $E_*(A_{\infty}) = E_*$. This follows immediately from a similar argument as [11, Prop. 5.5], since the spectral sequence associated with the ∞ -tower has a horizontal vanishing line.

The following lemma is well known (cf. [2, Lemma 4.5]).

Lemma 2.5. Let $\{A_s\}_{0 \le s \le m}$ be an *m*-tower and \widetilde{E} an *E*-module spectrum. Then, we have a split short exact sequence

$$0 \to \pi_{t+m-1}(\widetilde{E}) \xrightarrow{\varphi^*} [A_m, \widetilde{E}]_t \xrightarrow{(j_{m-1}^A)^*} (\operatorname{Im} d_1)_t \to 0.$$

Here, φ^* is induced from the composite $A_m \xrightarrow{k_{m-1}^A} A_{m-1} \xrightarrow{k_{m-2}^A} \cdots \xrightarrow{k_1^A} A_1 = E \xleftarrow{i} S^0$, and $(\operatorname{Im} d_1)_t \subset [E \wedge \overline{E}^{m-1}, \widetilde{E}]_t$.

KATSUMI SHIMOMURA

Let U be an E-bouquet. Then, we have the split cofiber sequence

(2.6)
$$E \stackrel{\iota^U}{\underset{\sigma^U}{\longleftrightarrow}} E \wedge U \stackrel{\kappa^U}{\underset{\tau^U}{\longleftrightarrow}} E \wedge \overline{U}$$

for a bouquet \overline{U} , which induces split cofiber sequences in the commutative diagram

$$(2.7) \qquad \begin{array}{c} E \wedge \overline{E}^{s} \xrightarrow{\iota_{s}^{U}} E \wedge \overline{E}^{s} \wedge U \xrightarrow{\kappa_{s}^{U}} E \wedge \overline{E}^{s} \wedge \overline{U} \\ d_{1} \downarrow & \stackrel{\sigma_{s}^{U}}{\longleftrightarrow} & \downarrow d_{1} \wedge U \xrightarrow{\tau_{s}^{U}} & \downarrow d_{1} \wedge \overline{U} \\ E \wedge \overline{E}^{s+1} \xrightarrow{\iota_{s+1}^{U}} E \wedge \overline{E}^{s+1} \wedge U \xrightarrow{\kappa_{s+1}^{U}} E \wedge \overline{E}^{s+1} \wedge \overline{U}. \end{array}$$

Proof of Proposition 1.8. Let a be the order of $\omega \in E_r^{r,r-1}(S^0)$ and U denote the ω -bouquet. Put $a_s = 1 + \delta_{s,r}(a-1)$ for the Kronecker delta $\delta_{s,r}$. Then, we have elements $g_U^s \in \pi_{s-1}(D_s \wedge U)$ for s > 0 such that $k_s^U g_U^{s+1} = a_s g_U^s$, $g_U^1 = \iota^U i$ and $i_r^U g_U^r = \iota_r^U \widetilde{\omega} \in \pi_{r-1}(E \wedge \overline{E}^r \wedge U)$. Here, l_s^U for l = i, j, k denotes $l_s \wedge U$, and $\widetilde{\omega}$ denotes an element representing ω . We notice that $\iota_r^U \widetilde{\omega}$ represents $\omega g \in E_r^{r,r-1}(U)$.

By the induction on m, we construct an m-tower $\{Q_s\}_{0 \le s \le m}$ along with elements $g_Q^s \in \pi_{s-1}(Q_s)$ and maps $f_s \colon Q_s \to D^s \wedge U$ for $s \le m$ such that

- 1) $k_{s-1}^Q g_Q^s = a_{s-1} g_Q^{s-1}, g_Q^1 = i \text{ and } i_r^Q g_Q^r = \widetilde{\omega} \in \pi_{r-1}(E \wedge \overline{E}^r),$
- 2) $f_s g_Q^s = g_U^s$ for s < m, and
- 3) these fit into the commutative diagrams

$$(2.8) \qquad \begin{array}{ccc} Q_s & \xrightarrow{i_s^{e}} & E \wedge \overline{E}^s & \xrightarrow{j_s^{e}} & Q_{s+1} & \xrightarrow{k_s^{e}} & \Sigma Q_s \\ & & & & \\ f_s \downarrow & & \downarrow \iota_s^{U} & & \downarrow f_{s+1} & \downarrow f_s \\ & D_s \wedge U & \xrightarrow{i_s^{U}} & E \wedge \overline{E}^s \wedge U & \xrightarrow{j_s^{U}} & D_{s+1} \wedge U & \xrightarrow{k_s^{U}} & \Sigma D_s \wedge U \end{array}$$

of cofiber sequences for s < m.

We start from setting $Q_0 = *, f_0 = 0, Q_1 = E, g_Q^1 = i$ and $f_1 = \iota_0^U = \iota^U$.

Suppose that there exist an *m*-tower $\{Q_s\}_{0 \le s \le m}$ with (2.8). Note that i_m^Q is not defined at this stage. So we put $i_m^Q = \sigma_m^U i_m^U f_m$. Then, it suffices to show that

(2.9)
$$\iota_m^U i_m^Q = i_m^U f_m \quad \text{and} \quad f_m g_Q^m = g_U^m.$$

Indeed, since the former is the left square of the diagram (2.8)3) for s = m, we obtain Q_{m+1} and f_{m+1} fitting into (2.8)3). The latter implies that $i_m^Q g_Q^m = 0$, which yields g_Q^{m+1} . We will redefine f_m so that (2.9) holds. We see that $k_{m-1}^U(f_m g_Q^m - g_U^m) = 0$, which yields an element $y \in \pi_{m-1}(E \wedge \overline{E}^{m-1} \wedge U)$ such that $j_{m-1}^U y = f_m g_Q^m - g_U^m$. Since $i^* : [E, E \wedge \overline{E}^{m-1} \wedge U]_{m-1} \to \pi_{m-1}(E \wedge \overline{E}^{m-1} \wedge U)$ is an epimorphism, we have an element \tilde{y} such that $\tilde{y}i = y$. Put $f = f_m - j_{m-1}^U \tilde{y} k_1^Q \cdots k_{m-1}^Q$. Then, f sits in the place of f_m in (2.8)3) for s = m - 1, and $fg_Q^m = f_m g_Q^m - j_{m-1}^U \tilde{y} i = g_U^m$. So we replace f_m by f, and show the first equality of (2.9).

Consider the element $o_m = \iota_m^U i_m^Q - i_m^U f_m = \iota_m^U \sigma_m^U i_m^U f - i_m^U f$. Then, we see that $o_m j_{m-1}^Q = 0$, since we see that $i_m^Q j_{m-1}^Q = d_1$ by diagram chasing. By Lemma 2.5, we have an element $x \in \pi_{m-1}(E \wedge \overline{E}^m \wedge U)$ such that $\varphi^*(x) = o_m$, and then an element $\widetilde{x} \in [E, E \wedge \overline{E}^m \wedge U]_{m-1}$ such that $\widetilde{x}i = x$ and $\widetilde{x}k_1^Q \cdots k_{m-1}^Q = o_m$. Put $\overline{a}_s = a_{\min\{s-1,r\}}$, and we compute $o_m g_Q^m = \overline{a}_m \widetilde{x}i = \overline{a}_m x$. It follows that

(2.10)
$$\varphi^*(o_m g_Q^m) = \overline{a}_m o_m \in [Q_m, E \wedge \overline{E}^m \wedge U]_0$$

Since $a_m i_m^U f g_Q^m = a_m i_m^U g_U^m = i_m^U k_m^U g_U^{m+1} = 0$, $a_m o_m g_Q^m = a_m \iota_m^U \sigma_m^U i_m^U f g_Q^m - a_m i_m^U f g_Q^m = 0$. Now, (2.10) implies $o_m = 0$, since $a_m \overline{a}_m \neq 0$ and $[Q_m, E \wedge \overline{E}^m \wedge U]_0$ is torsion free.

In particular, we have Q_r , f_r and g_Q^r such that $f_r(g_Q^r) = g_U^r$. Then, $\iota_r^U i_r^Q g_Q^r = i_r^U f_r g_Q^r = i_r^U g_U^r = \iota_r^U \widetilde{\omega}$, which completes the verification of (2.8), since ι_r^U is a monomorphism.

3. Construction of an ω_2 -bouquet

From now on, we work in the E(2)-local category at the prime number three. Let $E_r^*(A)$ for a spectrum A denote the E_r -term of E(2)-based Adams spectral sequence converging to $\pi_*(L_2A)$. Then the E_2 -term $E_2^{s,t}(A)$ is a cohomology of the cobar complex $C^{s,t}(A) = \Omega^{s,t}E(2)_*(A) = (E(2)_*(A) \otimes_{E(2)_*} E(2)_*(E(2))^{\otimes s})_t$. We abbreviate $C^{s,t}(S^0)$ to $C^{s,t}$. We have the cochains $x \in C^{2,8}$, $f_0 \in C^{3,0}$ and $f_0z \in C^{4,0}$ so that

(3.1)
$$d(x) \equiv v_1^2 f_0 \mod (3)$$
 and $d(f_0) = 3f_0 z$

by [10, (3.5) and Lemma 3.6]. Furthermore, these cochains x and f_0 yield the generators $\xi \in E_2^{2,8}(V(1))$ and $-v_2^{-1}\psi_0 \in E_2^{3,0}(V(0))$, respectively (for generators, see also [7, 6.3.24. Th.], [8, Th. 5.8] and [9, Th. 2.11]). Here, V(0) and V(1) denote the Smith-Toda spectra. In particular, V(0) is the modulo three Moore spectrum. In order to get information on the E_2 -term $E_2^*(S^0)$ from [10], we consider the generalized Greek letter map ([3, p.483])

(3.2)
$$\eta \colon E_2^{s,t}(M^2) \longrightarrow E_2^{s+2,t}(S^0)$$

defined by a composite of connecting homomorphisms $\delta \colon E_2^{s+1,t}(N^1) \to E_2^{s+2,t}(S^0)$ and $\delta' \colon E_2^{s,t}(M^2) \to E_2^{s+1,t}(N^1)$ associated to the cofiber sequences

$$L_2 S^0 \longrightarrow L_0 S^0 \longrightarrow N^1$$
 and $N^1 \longrightarrow L_1 N^1 \longrightarrow M^2$

defining the chromatic spectra N^1 and M^2 . The element ω_2 is now defined by $\omega_2 = \eta(\xi \zeta_2/3v_1)$.

We further consider the element $\chi = \eta(\xi/3v_1^2) \in E_2^{4,0}(S^0)$ for $\xi/3v_1^2 \in H^{2,0}M_0^2$ represented by $x/3v_1^2$ given in [10, Prop. 4.7]. The relations in (3.1) show that χ is represented by the cocycle f_0z . We also have the element $h_0 \in E_2^{1,4}(S^0)$ represented by t_1 , which detects the element $\alpha_1 \in \pi_3(S^0)$.

Lemma 3.3. $h_0\chi = \omega_2$ in $E_2^{5,4}(S^0)$.

Proof. Since $d(v_1) = 3t_1$ in the cobar complex $C^{1,4}$, we obtain $\omega_2 = \eta(\xi \zeta_2/3v_1) = \delta(v_1\chi/3) = h_0\chi$ by (3.1).

Let Y be the cofiber of the generator $\alpha_1 \in \pi_3(S^0)$ and X the 8-skeleton of BP. Then we have cofiber sequences (cf. [8])

(3.4)
$$S^{3} \xrightarrow{\alpha_{1}} S^{0} \xrightarrow{\iota} Y \xrightarrow{\kappa} S^{4}, \quad S^{0} \xrightarrow{\iota_{1}} X \xrightarrow{\kappa_{1}} \Sigma^{4} Y \xrightarrow{\lambda_{1}} S^{1}, \text{ and} \\ Y \xrightarrow{\iota_{2}} X \xrightarrow{\kappa_{2}} S^{8} \xrightarrow{\lambda_{2}} \Sigma Y.$$

Note that

$$E(2)_*(Y) = E(2)_*[x]/(x^2)$$
 and $E(2)_*(X) = E(2)_*[x]/(x^3)$

for a generator x with |x| = 4, with $E(2)_*(E(2))$ -comodule structure given by $\psi(x) = x + t_1$. The second and the third cofiber sequences in (3.4) induce short exact

sequences of $E(2)_*$ -homologies, in which $(\kappa_1)_*(a+bx+cx^2) = b+2cx$ and $(\kappa_2)_*(a+bx+cx^2) = b+2cx$ $bx + cx^2) = c.$ It follows that the connecting homomorphisms $(\lambda_1)_*: E_2^{s,t}(Y) \to E_2^{s+1,t+4}(S^0)$ and $(\lambda_2)_*: E_2^{s,t}(S^0) \to E_2^{s+1,t+8}(Y)$ act as follows:

(3.5)
$$(\lambda_1)_*([a+xb]) = [t_1|a + \frac{1}{2}t_1^2|b] \text{ and } (\lambda_2)_*([c]) = [t_1^2|c + 2xt_1|c]$$

Since the generators $\alpha_1 \in \pi_3(S^0)$ and $\beta_1 \in \pi_{10}(S^0)$ are detected by $h_0 = [t_1] \in E_2^{1,4}(S^0)$ and $b_0 = [t_1|t_1^2 + t_1^2|t_1] \in E_2^{2,12}(S^0)$. It follows that

 $\lambda_1 \iota = \alpha_1$ and $\lambda_1 \lambda_2 = \beta_1$. (3.6)

We also see that

(3.7)

$$\iota_1 = \iota_2 \iota.$$

Lemma 3.8. $E_2^{s,*}(X) = 0$ for s > 5. Furthermore, $E_2^{5,4}(X) = 0 = E_2^{5,8}(X)$ and $E_2^{1,4}(X) = 0.$

Proof. Let M_1X^1 and MX^2 be the spectra defined by the cofiber sequences

(3.9)
$$N_1 X^0 \to L_1 N_1 X^0 \to M_1 X^1, \quad L_2 X \to L_0 X \to N X^1 \quad \text{and} \\ N X^1 \to L_1 N X^1 \to M X^2$$

for $N_1 X^0 = L_2 V(0) \wedge X$. Then, we have a cofiber sequence $M_1 X^1 \xrightarrow{\phi} M X^2 \xrightarrow{3}$ MX^2 , which induces the long exact sequence

Here, $H^{s,t}M_1^1$ denotes $E_2^{s,t}(M_1X^1)$ and is determined in [4]. Since $E_2^{s,t}(L_1NX^1) =$ $0 = E_2^{s,t}(L_0 \bar{X})$ for s > 1, a similar map to (3.2) yields an isomorphism

(3.11)
$$E_2^{s+2,t}(X) = E_2^{s,t}(MX^2) \text{ for } s > 1.$$

By [4, Th. 10.2], $H^{s,*}M_1^1 = 0$ for s > 3, and so is $E_2^{s,*}(MX^2)$ by [3, Remark 3.11] on (3.10), and the first statement of the lemma follows from (3.11).

For s = 3, the result $H^{4,*}M_1^1 = 0$ by [4, Th. 10.2] with (3.10) implies that $E_2^{3,*}(MX^2) = E_2^{5,*}(X)$ is a direct sum of $\mathbb{Q}/Z_{(3)}$ obtained by the generators of the image of ϕ_* . In particular, $H^{3,4}M_1^1 = 0$ by [4, Th. 9.3] shows $E_2^{5,4}(X) = 0$. Suppose that $E_2^{5,8}(X)$ has a summand $\mathbb{Q}/Z_{(3)}$. By [10], neither of $E_2^{5,8}(S^0)$

nor $E_2^{4,-4}(S^0)$ contains $\mathbb{Q}/Z_{(3)}$ as a summand. It follows that $(\kappa_1)_*$ assigns the

summand to the one in $E_2^{5,4}(Y)$. Since $E_2^{5,4}(X) = 0$, the summand is pulled back to $E_2^{4,-4}(S^0)$ under $(\lambda_2)_*$, which is a contradiction, and $E_2^{5,8}(X) = 0$. Since $E_2^{1,*}(L_0X) = 0$, we have an epimorphism $\delta \colon E_2^{0,4}(NX^1) \to E_2^{1,4}(X)$. It is easy to see that $E_2^{0,4}(NX^1) = \mathbb{Q}/\mathbb{Z}_{(3)}$ generated by $\{(v_1 - 3x)/3^i\}$, whose image of the connecting homomorphism is zero. Therefore, $E_2^{1,4}(X) = 0$.

Corollary 3.12. $\pi_3(L_2X) = 0.$

Lemma 3.13. $\iota_*(\chi) \in E_2^{4,0}(Y)$ is a permanent cycle.

Proof. Consider the second cofiber sequence in (3.4). We compute $(\lambda_1)_* \iota_*(\chi) =$ $(\alpha_1)_*(\chi)$ by (3.6), which equals ω_2 by Lemma 3.3. This is a permanent cycle since $\xi \zeta_2/3v_1 \in E_2^{3,0}(M^2)$ is a permanent cycle by [10, Lemma 6.2]. Lemma 3.3 also shows the relation $(\iota_1)_*(\omega_2) = 0$ in the E_2 -term. It implies the same relation in homotopy by Lemma 3.8, and the homotopy element ω_2 is pulled back to an element under the map ι_1 , which is detected by $\iota_*(\chi)$.

Since $\pi_{-11}(L_2S^0) = 0$ by [10], the last cofiber sequence of (3.4) induces a monomorphism $\pi_{-4}(L_2Y) \xrightarrow{(\iota_2)_*} \pi_{-4}(L_2X)$. Lemma 3.13 together with (3.7) implies the following

Lemma 3.14. $(\iota_1)_*(\chi) \in E_2^{4,0}(X)$ survives to a essential element $\widehat{\chi} \in \pi_{-4}(L_2X)$. **Lemma 3.15.** There is an element $\overline{\chi} \in [X, L_2X]_{-4}$ such that $(\iota_1)^*(\overline{\chi}) = \widehat{\chi}$ and $E(2)_*(\overline{\chi}) = 0$.

Proof. Consider the commutative diagram

$$\begin{array}{cccc} \pi_0(L_2X) & \stackrel{\kappa^*}{\longrightarrow} & [Y, L_2X]_{-4} & \stackrel{\iota^*}{\longrightarrow} & \pi_{-4}(L_2X) & \stackrel{\alpha_1^*}{\longrightarrow} & \pi_{-1}(L_2X) \\ i_* \downarrow & & i_* \downarrow & & \downarrow i_* \\ E(2)_0(X) & \stackrel{\kappa^*}{\longrightarrow} & [Y, E(2) \land X]_{-4} & \stackrel{\iota^*}{\longrightarrow} & E(2)_{-4}(X) \end{array}$$

of exact sequences, in which the lower sequence is a split short exact one. Since $\hat{\chi}$ is detected by an element of $E_2^{4,0}(X)$, $\alpha_1^*(\hat{\chi})$ is detected by an element of $E_2^{4s+1,4s}(X)$ for $s \geq 1$, which is zero by Lemma 3.8. It follows that $\alpha_1^*(\hat{\chi}) = 0$, and $\hat{\chi}$ is pulled back to an element $\chi' \in [Y, L_2X]_{-4}$. If $i_*(\chi') \neq 0 \in [Y, E(2) \land X]_{-4}$, we have an element $\theta \in E(2)_0(X)$ such that $\theta \kappa = i_*(\chi')$, since $\iota^*i_*(\chi') = i_*(\hat{\chi}) = 0$. Consider the Adams spectral sequences obtained by applying $\pi_*(-)$ and $[Y, -]_*$ to the cofiber sequences (2.1). Since $d_1(i_*(\chi')) = 0$, $d_1(\theta) = 0$, and so $\theta \in E_2^{0,0}(X)$. By Lemma 3.8, $d_5(\theta) \in E_2^{5,4}(X) = 0$, and so $j_*(\theta) = 0$ and we have an element $\theta' \in \pi_0(L_2X)$ such that $i_*(\theta') = \theta$. Now replace χ' by $\chi' - \theta'\kappa$, and we see that $i_*(\chi') = 0$.

We play the same game in the diagram

By Corollary 3.12, χ' is pulled back to $\overline{\chi} \in [X, L_2X]_{-4}$. Since $E_2^{5,8}(X) = 0$, a similar argument shows that $i_*(\overline{\chi}) = 0$.

Now $\iota_1^*(\overline{\chi}) = \iota^*\iota_2^*(\overline{\chi}) = \iota^*(\chi') = \widehat{\chi}$, and $E(2) \wedge \overline{\chi} = (\mu \wedge X)(E(2) \wedge i_*(\overline{\chi})) = 0$, as desired.

The spectra Y and X are introduced by Ravenel to define the small descent spectral sequence, and we here consider its first differential

$$(3.16) \partial_1 = \iota_2 \kappa_1.$$

Let W denote the cofiber of $\beta_1 \in \pi_{10}(S^0)$. Then, we have cofiber sequences

$$(3.17) S^{10} \xrightarrow{\beta_1} S^0 \xrightarrow{\iota_W} W \xrightarrow{\kappa_W} S^{11} \text{ and } W \xrightarrow{i_W} X \xrightarrow{\partial_1} \Sigma^4 X \xrightarrow{\kappa_W} \Sigma W$$

so that

$$k_W \iota_2 = \iota_W \lambda_1 \in [Y, W]_4.$$

Lemma 3.19. In $E_2^5(W)$, $(k_W)_*((\iota_1)_*(\chi)) = (\iota_W)_*(\omega_2)$.

Proof. We compute $(k_W)_*((\iota_1)_*(\chi)) = (k_W\iota_2)_*\iota_*(\chi) = (\iota_W)_*(\lambda_1\iota)_*\chi = (\iota_W)_*(\alpha_1\chi) = (\iota_W)_*(\omega_2)$ by (3.7), (3.18), (3.6) and Lemma 3.3.

KATSUMI SHIMOMURA

Consider the fiber U of the map $\partial_1 + \overline{\chi} \in [X, X]_{-4}$ for the element $\overline{\chi}$ of Lemma 3.15, which fits into the cofiber sequence

$$(3.20) U \xrightarrow{i_U} X \xrightarrow{\partial_1 + \overline{\chi}} \Sigma^4 X \xrightarrow{k_U} \Sigma U$$

Then, $E(2) \wedge (\partial_1 + \overline{\chi}) = E(2) \wedge \partial_1$ by Lemma 3.15, and we see the following

Lemma 3.21. $E(2) \wedge U = E(2) \wedge W$. In particular $E(2) \wedge U = E(2) \vee \Sigma^{11} E(2)$.

Proof of Proposition 1.9. Lemma 3.21 shows that U is an E(2)-bouquet.

For the generator ι_1 of $\pi_0(X)$, $(\partial_1)_*(\iota_1) = 0$ by (3.4) and (3.16), and $\overline{\chi}_*(\iota_1) = (\iota_1)^*(\overline{\chi}) = \widehat{\chi}$ by Lemma 3.15. It follows that $(\partial_1 + \overline{\chi})_*(\iota_1) = \widehat{\chi} \in \pi_{-4}(X)$, and then $(k_U)_*(\widehat{\chi}) = 0 \in \pi_{-1}(U)$. On the other hand, $\widehat{\chi}$ is detected by $(\iota_1)_*(\chi)$ by Lemma 3.14, and so is $(k_U)_*(\widehat{\chi})$ by $(k_U)_*((\iota_1)_*(\chi)) \in E_2^5(U)$, which equals $(\iota_W)_*(\omega_2) = \omega_2 g$ by Lemma 3.19 and Lemma 3.21. Therefore, $\omega_2 g \in E_2^5(U)$ is killed, and the killer belongs to $E_5^{0,0}(U) = \mathbb{Z}_{(3)}$. This shows the condition (1.7) for ω_2 as desired. \Box

References

- 1. M. Hovey and H. Sadofsky, Invertible spectra in the E(n)-local stable homotopy category, J. London Math. Soc. **60** (1999), 284–302.
- 2. Y. Kamiya and K. Shimomura, A relation between the Picard groups of the E(n)-local homotopy category and E(n)-based Adams spectral sequence, Contemp. Math. **346** (2004), 321–333.
- 3. H. R. Miller, D. C. Ravenel, and W. S. Wilson, Periodic phenomena in Adams-Novikov spectral sequence, Ann. of Math. **106** (1977), 469–516.
- 4. Y. Nakazawa and K. Shimomura, The homotopy groups of the L_2 -localization of a certain type one finite complex at the prime 3, Fund. Math. **152** (1997), 1–20.
- D. C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984), 351-414.
- D. C. Ravenel, Nilpotence and Periodicity in Stable Homotopy Theory, Ann. of Math. Studies, Number 128, Princeton, 1992.
- D. C. Ravenel, Complex Cobordism and Stable Homotopy Groups of Spheres, Second edition, AMS Chelsea Publishing, Providence, 2004.
- K. Shimomura, The homotopy groups of the L₂-localized Toda-Smith spectrum V(1) at the prime 3, Trans. Amer. Math. Soc. **349** (1997), 1821–1850.
- 9. K. Shimomura, The homotopy groups of the L_2 -localized mod 3 Moore spectrum, J. Math. Soc. Japan **52** (2000), 65–90.
- 10. K. Shimomura, On the action of β_1 in the stable homotopy of spheres at the prime 3, Hiroshima Math. J. **30** (2000), 345–362.
- K. Shimomura and Z. Yosimura, *BP*-Hopf module spectrum and *BP*_{*}-Adams spectral sequence, Publ. RIMS, Kyoto Univ. **21** (1986), 925–947.

Department of Mathematics, Faculty of Science, Kochi University, Kochi, 780-8520, Japan

E-mail address: katsumi@kochi-u.ac.jp

8