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Abstract. In [1], Miller, Ravenel and Wilson defined generalized beta ele-
ments in the E2-term of the Adams-Novikov spectral sequence converging to
the stable homotopy groups of spheres, and in [5], Oka showed that the beta
elements of the form βtp2/r for positive integers t and r survives to the stable

homotopy groups at a prime p > 3, when r ≤ 2p − 2 and r ≤ 2p if t > 1. In
this paper, we expand the condition so that βtp2/r for r ≤ p2 − 3 survives to

the stable homotopy groups.

1. Introduction

Let BP be the Brown-Peterson spectrum at a prime p, and consider the Adams-
Novikov spectral sequence converging to homotopy groups π∗(X) of a spectrum X

with E2-term Es,t
2 (X) = Exts,t

BP∗(BP )(BP∗, BP∗(X)). Here,

BP∗ = Z(p)[v1, v2, . . . ] and BP∗(BP ) = BP∗[t1, t2, . . . ]

for vi ∈ BP2pi−2 and ti ∈ BP2pi−2(BP ). In [1], Miller, Ravenel and Wilson defined
generalized Greek letter elements in the E2-term of the Adams-Novikov spectral
sequence converging to the homotopy groups π∗(S0) of the sphere spectrum S0 at
each prime p. For the beta elements, we consider the mod p Moore spectrum M
and finite spectra Va for a > 0 defined by the cofiber sequences

(1.1) S0 wp
S0 wi

M wj
S1 and ΣaqM wαa

M wia
Va wja Σaq+1M,

where p ∈ π0(S0) = Z(p), α ∈ [M,M ]q is the Adams map, and

q = 2p− 2.

Since j and ja induces trivial maps on the BP∗-homologies, these cofiber sequences
yield short exact sequences

(1.2)
0 w BP∗ wp

BP∗ wi∗
BP∗/(p) w 0 and

0 w BP∗/(p) wva
1

BP∗/(p) wia∗
BP∗/(p, va

1 ) w 0,

where

(1.3) BP∗(M) = BP∗/(p) and BP∗(Va) = BP∗/(p, va
1 ).

The beta elements are now defined by

(1.4) βs/a−b = δδa(vb
1v

s
2) ∈ E

2,(sp+s−a+b)q
2 (S0)

for s > 0 and a > b ≥ 0, if vb
1v

s
2 ∈ E

0,(sp+s+b)q
2 (Va), where δ and δa are the

connecting homomorphisms associated to the short exact sequences (1.2). We ab-
breviate βs/1 to βs as usual. Now assume that the prime p is greater than three.
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Then, L. Smith [8] showed that every βs for s > 0 survives to a homotopy element
βs ∈ π(sp+s−1)q−2(S0), and S. Oka showed the following beta elements survivors:

βtp/r for t > 0 and r ≤ p with (t, r) 6= (1, p) in [3], [4],
βtp2/r for t > 0 and r ≤ 2p− 2 in [3], and
βtp2/r for t > 1 and r ≤ 2p in [5].

Let W denote the cofiber of the beta element β1 ∈ πpq−2(S0), and we have a
cofiber sequence

(1.5) Spq−2 wβ1
S0 wiW

W wjW
Spq−1.

Then, Es,tq
2 (W ∧ Va) = Es,tq

2 (Va). In [7], we show that

Theorem 1.6. ([7]) Suppose that vs
2 ∈ E

0,s(p+1)q
2 (W ∧ Va). If the element vs

2

survives to π∗(W ∧ Va), then βst/r for t > 0 and 0 < r < a− 1 survives to π∗(S0).

A proof of the theorem is outlined as follows: There is an element α̃ ∈ π(p+2)q−1

(W ∧ Vr+2) such that (jW )∗(α̃) = ir+2α
2i ∈ π2q(Vr+2), since α2iβ1 = 0. Consider

a map pr+2 : Va → Vr+2 that induces the projection BP∗/(p, va
1 ) → BP∗/(p, vr+2

1 )
on the BP∗-homology, and write vs

2 = (pr+2)∗(vs
2) ∈ π∗(W ∧Vr+2). Since W ∧Vr+2

is a ring spectrum by [2], we have an element (vs
2)

tα̃ ∈ π∗(W ∧ Vr+2) so that
(jW )∗((vs

2)
tα̃) ∈ π∗(Vr+2) is detected by v2

1vst
2 ∈ E0

2(Vr+2). Now the theorem
follows from the definition (1.4) and the Geometric Boundary Theorem (cf. [6]).

In this paper, we show the following theorem:

Theorem 1.7. Let p be a prime greater than three. Then, the element vp2

2 ∈
E0

2(W ∧ Vp2−1) is a permanent cycle.

Corollary 1.8. Let p be a prime greater than three. Then, the beta elements
βtp2/r ∈ E

2,(tp2(p+1)−r)q
2 (S0) for t > 0 and 0 < r < p2 − 2 are permanent cycles.

2. Adams-Novikov E2-terms

Ravenel constructed a ring spectrum T (m) for each integer m ≥ 0 characterized
by BP∗(T (m)) = BP∗[t1, . . . , tm] (cf. [6]). He then showed the change of rings
theorem Es,t

2 (T (m)∧X) = Exts,t
Γ(m+1)(BP∗, BP∗(X)) for the Hopf algebroid Γ(m+

1) = BP∗(BP )/(t1, . . . , tm), and determine Es,t
2 (T (m)) in [6, Th. 7.2.6, Cor. 7.2.7]

below dimension 2(pm+3 − p2). In particular, below dimension (p3 + p2)q,

(2.1)

E0,∗
2 (T (1)) = Z(p)[v1]

E1,∗
2 (T (1)) = k(1)∗ {vs

2h20 : p - s ≥ 0} ⊕ h20Z/p2[v1, v
p
2 ]⊕

s≥2

Es,t
2 (T (1)) = k(2)∗ {vs

3b20 : s ≥ 0} ⊗ E(h20)⊗ P (b20).

Here, E and P denote an exterior and a polynomial algebras over Z/p and

(2.2) k(m)∗ = Z/p[vm]

denotes the BP∗-algebra with trivial vi-action for i 6= m. Consider the connecting
homomorphism δ : Es,t

2 (T (1) ∧ M) → Es+1,t
2 (T (1)) associated to the first cofiber

sequence in (1.1). We then see that there are elements vs
2 and vs

3h21 in E∗
2 (T (1)∧M)
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such that δ(vs
2) = svs−1

2 h20 and δ(vs
3h21) = vs

3b20. Since p = 0: Es,t
2 (T (1)) →

Es,t
2 (T (1)) for s > 0, we obtain

(2.3)

E0,∗
2 (T (1) ∧M) = k(1)∗[v2]

E1,∗
2 (T (1) ∧M) = h20k(1)∗[v2]⊕ h21k(2)∗[v3]⊕

s≥2

Es,∗
2 (T (1) ∧M) = b20k(2)∗[v3]⊗ E(h20, h21)⊗ P (b20)

below (p3 + p2)q. Here, the generators have the bidegrees as follows:

|v2| = (0, (p + 1)q), |v3| = (0, (p2 + p + 1)q), |h20| = (1, (p + 1)q),
|h21| = (1, (p2 + p)q) and |b20| = (2, (p2 + p)q).

Consider a spectrum Xk constructed by Ravenel [6], in which Xk is denoted by
T (0)(k), with BP∗-homology BP∗(Xk) = BP∗[t1]/(tp

k

1 ) as a BP∗(BP )-comodule.
We abbreviate X1 to X. Then, we have a diagram

(2.4)

Xk−1 Σpk−1qXk
Xk−1

Xk Xk

u
ιk

u
λk

u
ι′k

u
λ′k

[[
[[]

κk [[
[[]
κ′k

in which each triangle is a cofiber sequence with inclusion ιk or ι′k. Since λk and λ′k
induce the zero maps on BP∗-homologies, applying the Adams-Novikov E2-terms
E∗

2 (− ∧ M) to the diagram gives rise to an exact couple that defines the small
descent spectral sequence:

(2.5)
SDE

∗
1 = E∗

2 (Xk ∧M)⊗ E(hk−1)⊗ P (bk−1)
=⇒ E∗

2 (Xk−1 ∧M),

where hk−1 ∈ SDE
1,0,pk−1q
1 and bk−1 ∈ SDE

2,0,pkq
1 are represented by the cocycles

tp
k−1

1 and yk−1 =
∑p−1

k=1
1
p

(
p
k

)
tkpk−1

1 ⊗ t
(p−k)pk−1

1 of the cobar complex

Ω∗ = Ω∗BP∗(BP )BP∗/(p)

for computing E∗
2 (M), respectively. Let δk : Es,t

2 (Xk ∧M) → Es+1,t+pk−1q
2 (Xk−1 ∧

M) and δ′k : Es,t
2 (Xk−1 ∧M) → E

s+1,t+pk−1(p−1)q
2 (Xk ∧M) denote the connecting

homomorphisms corresponding λk and λ′k. Then,

(2.6) δkδ′k(x) = bk−1x ∈ Es+2,t+pkq
2 (Xk−1 ∧M)

for x ∈ Es,t
2 (Xk−1 ∧M). We state here a relation in the E2-term E∗

2 (M):

Lemma 2.7. In the Adams-Novikov E2-term E2
2(M), vp

1b2
1 = 0.

Proof. We define the element y20 ∈ Ω2 by d(tp2) = −tp1 ⊗ tp
2

1 + vp
1y1 + py20 in

the cobar complex Ω2
BP∗(BP )BP∗/(p2). Since t1 is primitive, d(tp

j+1

1 ) = −pyj ∈
Ω2

BP∗(BP )BP∗/(p2), and so we obtain

(2.8) d(yj) = 0 and d(y20) = −y0 ⊗ tp
2

1 + tp1 ⊗ y1 ∈ Ω3.

We also see that d(∆(t)y) = y ⊗ t − t ⊗ y for cocycles t ∈ Ω1 and y ∈ Ω2. Then,
the cocycle vp

1y1 ⊗ y1 ∈ Ω4 cobounds the cochain tp2 ⊗ y1 − tp1 ⊗ ∆(tp
2

1 )y1 + y20 ⊗
tp

2

1 + 1
2y0 ⊗ t2p2

1 ∈ Ω3. ¤
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Lemma 2.9. The Adams-Novikov E2-term Es,t
2 (X2 ∧M) for t < (p3 + p2)q is a

subquotient of the direct sum of the modules Ki for 0 ≤ i ≤ 3 given by

K0 = h2k(2)∗[v1]/(vp
1)⊗ E(h20)

K1 = k(1)∗[v2]/(vp
2)⊗ E(h20, h3, b2)

K2 = h21 (k(2)∗ ⊕ h2k(3)∗)
K3 = b20 (k(2)∗ ⊕ h2k(3)∗)⊗ E(h20, h21)⊗ P (b20)

Proof. We begin with E∗
2 (X4 ∧M) = E∗

2 (T (1) ∧M). The spectral sequence (2.5)
collapses for k = 4, and E∗

2 (X3 ∧M) = E∗
2 (T (1) ∧M)⊗ E(h3) =

⊕3
i=1 K̃i for

K̃1 = k(1)∗[v2]⊗ E(h20, h3)
K̃2 = h21k(2)∗[v3]
K̃3 = b20k(2)∗[v3]⊗ E(h20, h21)⊗ P (b20)

by (2.3). In the spectral sequence (2.5) for k = 3, we see that d1(v
p
2) = vp

1h2,
d1(vs

3h21) = sv2v
s−1
3 h21h2 and d1(vs

3b20) = sv2v
s−1
3 b20h2 up to sign. Under these

relations, the d1-homology is computed to be:

H∗(k(1)∗[v2]⊗ E(h2) : d1) = k(1)∗[v2]/(vp
2)⊕ h2k(2)∗[v1]/(vp

1) and
H∗(k(2)∗[v3]⊗ E(h2) : d1) = k(2)∗ ⊕ h2k(3)∗.

The module
⊕3

i=0 Ki is the homology of the complex E∗
2 (X3∧M)⊗E(h2, b2) with

the differential given by the above d1, whose subquotient is the E2-term SDE
∗
2 of

the spectral sequence (2.5) for k = 3. ¤

By the small descent spectral sequence (2.5) for k = 2, the module Es,tq
2 (X ∧M)

is a subquotient of
⊕3

i=0 L∗i for

(2.10) L∗i = K∗
i ⊗ E(h1)⊗ P (b1).

These modules have the vanishing lines:

L2s+e,tq
0 = 0 if t < sp2 + p + e(p + 1) and s > 0.

L2s+1+e,tq
1 = 0 if t < sp2 + p + e(p + 1).
L2s+e,tq

2 = 0 if t < sp2 + 2p + e(p + 1) and s > 0.
L2s+1+e,tq

3 = 0 if t < sp2 + 2p + e(p + 1) and s > 0.

Therefore, we have the following

Lemma 2.11. E2s+1+e,tq
2 (X ∧M) = 0 if t < sp2 + p + e(p + 1).

Lemma 2.12. Every element of L2s+1+e,tq
1 is a multiple of vp

1b2
1 if s ≥ 2 and

t ≥ (s + 1)p2 + 2p + e(p2 − p− 1).

Proof. By the assumption s ≥ 2 and t < p3 + p2, there is no element of L2s+1+e,tq
1

originating from k(1)∗[v2]/(vp
2)⊗ E(h20)⊗ Z/p{h3, b2}. So every element of it has

the form va
1vb

2h
e
20h1b

s
1 or va

1vb
2h

1−e
20 bs+e

1 . The condition on s and t shows a ≥ p, since
b < p. ¤
Corollary 2.13. For an element x ∈ E2s+1+e,tq

2 (X ∧ M) for s ≥ 2 and t ≥
(s + 1)p2 + 2p − 1 + e(p2 − p − 1), v1x is detected by an element of v1L

∗
0. In

particular, vp
1x = 0.

Proof. By Lemma 2.9, we see that v1x belongs to the submodule of Es,tq
2 (X ∧M)

originating from v1L
∗
0 ⊕ v1L

∗
1. Every element originating from v1L

∗
1 satisfying the

condition is zero by Lemmas 2.7 and 2.12. We see vp
1x = 0, since vp

1L∗0 = 0. ¤
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Lemma 2.14. Put u = p3 + p2 − 2p + 2 and c = max{1, p − 8}. Then, for
x ∈ E

q+1,(u+1)q
2 (X ∧M), vc

1x = 0.

Proof. By Corollary 2.13, v1x is detected by a linear combination of elements
v9
1v2p−6

2 h2h20h1b
p−2
1 and v7

1vp−3
2 h2b

p−1
1 by degree reason. This is zero in L∗0 if

p ≤ 7. Otherwise, vp−8
1 x = vp−7

1 (v1x) is a multiple of vp
1b2

1. Thus vp−8
1 x dies in

E
q+1,(u+p−7)q
2 (X ∧M). ¤

3. The vanishing line of the Adams-Novikov E3-term of W ∧M

Consider the cofiber sequence (1.5). Then, it induces a short exact sequence 0 →
Es,t

2 (M) → Es,t
2 (W ∧M) → Es,t+1−pq

2 (M) → 0 of E2-terms, and the cohomologies
E∗

3 of the complexes (E∗
2 , d2) yield the long exact sequence

(3.1)
0 w Es,(t+p)q−1

3 (W ∧M) w(jW )∗
Es,tq

2 (M) wb0

E
s+2,(t+p)q
2 (M) w(iW )∗

E
s+2,(t+p)q
3 (W ∧M) w 0

Lemma 3.2. The map b0 : E2s+1+e,tq
2 (M) → E

2s+3+e,(t+p)q
2 (M) is epimorphic if

t ≤ sp2 + p + 1 + e(p2 − p− 1).

Proof. We apply E∗
2 (−) to the diagram (2.4) for k = 1. By (2.6), the map b0 is a

composite of the connecting homomorphisms δ1 and δ′1 corresponding to λ1 and λ′1.
The condition on the integers imply inequalities t+p ≤ sp2+2p+1+e(p2−p−1) <

(s+1)p2+p+e(p+1) and t+p−1 ≤ sp2+2p+e(p2−p−1) <

{
sp2 + 2p + 1 e = 0
(s + 1)p2 + p e = 1

.

It follows that E
2s+3+e,(t+p)q
2 (X ∧ M) = 0 and E

2s+2+e,(t+p−1)q
2 (X ∧ M) = 0 by

Lemma 2.11, and so the connecting homomorphisms are epimorphisms. ¤
Apply this to the exact sequence (3.1), and we obtain the following

Corollary 3.3. E2s+1+e,tq
3 (W ∧M) = 0 if t ≤ (s− 1)p2 + 2p + 1 + e(p2 − p− 1).

Remark. In the same way as the proof of Lemma 3.2, we show that the map
b0 : E2s+1+e,tq

2 (M) → E
2s+3+e,(t+p)q
2 (M) is monomorphic if t < sp2 + 1 + e(p + 1).

It follows that the map b0 : E2s+e,tq
2 (M) → E

2s+2+e,(t+p)q
2 (M) is an isomorphism if

t < sp2 + 1 + e(p + 1).

Lemma 3.4. Put u = p3 + p2 − 2p + 2 and suppose that ξ ∈ πuq−1(W ∧ M) is
detected by an element of E

q+1,(u+1)q
2 (W ∧M). Then, α2p−2ξ = 0.

Proof. We here also work on the diagram (2.4) for k = 1 applied E∗
2 (−). Consider

an element x ∈ E
q+1,(u+1)q
2 (M), which is isomorphic to E

q+1,(u+1)q
2 (W ∧M). Then,

vc
1(ι1)∗(x) = 0 ∈ E

q+1,(u+c+1)q
2 (X ∧M) by Lemma 2.14, and there is an element

x1 ∈ E
q,(u+c)q
2 (X ∧M) such that (δ1)∗(x1) = vc

1x. We also see that vp
1(ι′1)∗(x1) = 0

by Corollary 2.13, and obtain an element x2 such that (δ′1)∗(x2) = vp
1x1. It follows

that vp+c
1 x = vp

1(δ1)∗(x1) = (δ1)∗(δ′1)∗(x2) = b0x2 by (2.6), and vp+c
1 x = 0 ∈

E
q+1,(u+p+c+1)q
3 (W ∧M) by (3.1).
If s > 0, then the E3-term E

(s+1)q+1,(u+s+1)q
3 (W ∧M) is zero by Corollary 3.3,

since u+ s+1 = p3 + p2− 2p+3+ s < (s+1)(p− 1)p2 + p. Therefore, the relation
vp+c
1 x = 0 in the E3-term holds in the homotopy. Since p + c ≤ 2p− 2, the lemma

follows. ¤
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4. β′p2/p2−1 ∈ π(p3+1)q−1(W ∧M)

Apply the Adams-Novikov E2-term E∗
2 (−) to the diagram (2.4) for k = 2, and

we have a spectral sequence SDE1 = E∗
2 (X2) ⊗ E(h1) ⊗ P (b1) ⇒ E∗

2 (X). Since
E2s+e,tq

2 (X2) = 0 if t < s(p2 + p) + e(p + 1), we obtain the vanishing line:

Lemma 4.1. E2s+1+e,tq
2 (X) = 0 if t < sp2 + p + e(p + 1).

In the same manner as the proof of Corollary 3.3, we obtain

Corollary 4.2. E2s+e,tq
3 (W ) = 0 if t < (s− 1)p2 + (1 + e)(p + 1).

The E2-terms Es,t
2 (X) for t < (p3 + p)q are determined by Ravenel [6, ABC Th.

7.5.1]. In particular, we read off the following:

(4.3) 1) E
rq+1,(p3+1+r)q
2 (X) = 0 for r > 0.

2) E
q+2,(p3+1)q
2 (X) = 0.

Lemma 4.4. β′p2/p2−1 ∈ π(p3+1)q−1(W ∧M) exists.

Proof. By (4.3) 1), the element βp2/p2−1 of E
2,(p3+1)q
2 (X) survives to an element

of the homotopy group π(p3+1)q−2(X). Apply the 3 × 3 Lemma on the cofiber
sequences in (1.5) and (2.4), and we obtain the cofiber sequence

W wη
X wd1 ΣqX wη

ΣW,

where κ1η = λ′1jW , d1 = ι′1κ1 and κ′1 = jW η. Since βp2/p2−1 ∈ E
2,(p3+1)q
2 (W ) =

E
2,(p3+1)q
2 (S0), the induced map (d1)∗ : π∗(X) → π∗(X) assigns βp2/p2−1 to an

element detected by E
q+2,(p3+1)q
2 (X), which is zero by (4.3) 2). Thus βp2/p2−1 ∈

π∗(X) is pulled back to βp2/p2−1 ∈ π∗(W ).

Since Es,tq
2 (W ) = Es,tq

2 (S0), pβp2/p2−1 = 0 in the E2-term E
2,(p3−1)q
2 (W ).

It follows that pβp2/p2−1 is detected by an element of E
rq+2,(p3−1+r)q
2 (W ) for

r > 0. By Corollary 4.2, the module E
rq+2,(p3+1+r)q
2 (W ) is zero, and the rela-

tion pβp2/p2−1 = 0 holds in homotopy. Hence, βp2/p2−1 ∈ π∗(W ) is pulled back to
β′p2/p2−1 ∈ π∗(W ∧M) under the induced map j∗ : π∗(W ∧M) → π∗(W ) from j in
(1.1). ¤

Lemma 4.5. αp2−1β′p2/p2−1 = 0 ∈ π(p3+p2)q−1(W ∧M).

Proof. Oka [3] constructed the beta element β′p2/2p−2 ∈ πuq−1(M) such that

α2p−2β′p2/2p−2 = 0 in homotopy and β′p2/2p−2 = vp2−2p+1
1 β′p2/p2−1 in the E2-term.

Here, u = p3 + p2 − 2p + 2 as above. Consider an element ξ = αp2−2p+1β′p2/p2−1 −
(iW )∗(β′p2/2p−2) ∈ πuq−1(W ∧M). Then, it satisfies the condition of Lemma 3.4,

and we have αp2−1β′p2/p2−1 = α2p−2(ξ + (iW )∗(β′p2/2p−2)) = 0 as desired. ¤

Proof of Theorem 1.7. Consider the second cofiber sequence (1.1) for a = p2 − 1.
Then, by Lemma 4.5, we have an element v ∈ π∗(W∧Vp2−1) such that (jp2−1)∗(v) =
β′p2/p2−1. Since v is detected by an element of E0

2(W ∧ Vp2−1), we see that v = vp2

2

by degree reason. ¤
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