THE BETA ELEMENTS f,,2,, IN THE HOMOTOPY OF
SPHERES

KATSUMI SHIMOMURA

ABSTRACT. In [1], Miller, Ravenel and Wilson defined generalized beta ele-
ments in the Fa-term of the Adams-Novikov spectral sequence converging to
the stable homotopy groups of spheres, and in [5], Oka showed that the beta
elements of the form 3,2 /. for positive integers t and r survives to the stable
homotopy groups at a prime p > 3, when r < 2p—2and r < 2pif¢t > 1. In
this paper, we expand the condition so that :Btp2/r for r < p? — 3 survives to
the stable homotopy groups.

1. INTRODUCTION

Let BP be the Brown-Peterson spectrum at a prime p, and consider the Adams-
Novikov spectral sequence converging to homotopy groups . (X) of a spectrum X
with Ey-term By (X) = Extyp, g p) (BP., BP.(X)). Here,

B]D,,< = Z(p)[’l)hvg, .. ] and BP*(BP) = BP*[tl,tQ, .. ]
for v; € BPspi_y and t; € BP,,i_o(BP). In [1], Miller, Ravenel and Wilson defined
generalized Greek letter elements in the Fa-term of the Adams-Novikov spectral
sequence converging to the homotopy groups 7. (S°) of the sphere spectrum S° at
each prime p. For the beta elements, we consider the mod p Moore spectrum M
and finite spectra V, for a > 0 defined by the cofiber sequences
(1.1) SO 80 Lar 28t and X9 &5 Ml v, 2 ety
where p € my(SY) = Zpy, @ € [M, M], is the Adams map, and

q=2p—2.

Since j and j, induces trivial maps on the B P,-homologies, these cofiber sequences
yield short exact sequences

0— BP, % BP, % BP,/(p) —0 and

(1:2) 0— BP./(p) 5 B /(p) ™S BP, /(p, %) — 0,
where
(1.3) BP,(M)= BP./(p) and BP.(V,)= BP./(p,v}).

The beta elements are now defined by
(1.4) Bja—s = 08a(vfu3) € By (TTTEI(S0)

for s > 0 and a > b > 0, if vbo§ € ESCPTTY ) where § and 6, are the

connecting homomorphisms associated to the short exact sequences (1.2). We ab-

breviate 3,/; to Bs as usual. Now assume that the prime p is greater than three.
1
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Then, L. Smith [8] showed that every 3, for s > 0 survives to a homotopy element
Bs € 7T(sp+s—1)q—2(50)7 and S. Oka showed the following beta elements survivors:

Bipyr  fort >0 and r < p with (¢,7) # (1,p) in [3], [4],
Bip2sr fort>0and r <2p—2in [3], and
Bip2/r for t >1and r < 2pin [5].

Let W denote the cofiber of the beta element 31 € mp,—2(SY), and we have a
cofiber sequence

(1.5) gpa=2 1, g0 I,y I gpg—1,
Then, E3*(W AV,) = E3*(V,). In [7], we show that

Theorem 1.6. ([7]) Suppose that v € Eg’s(erl)q(W A Vg). If the element vs
survives to m.(W AV,), then B/ fort >0 and 0 <17 < a— 1 survives to 7.(S9).

A proof of the theorem is outlined as follows: There is an element & € 7(,42)q—1
(W A Vig2) such that (jw )« (@) = ir4202i € maq(V,42), since a?ify = 0. Consider
a map prio: Vo, — Vi that induces the projection BP,/(p,v$) — BP./(p,v]"?)
on the BP,-homology, and write v§ = (py+2)«(v5) € (W AV,12). Since WAV, 49
is a ring spectrum by [2], we have an element (v§)'a@ € m.(W A V,42) so that
(iw)«((v3)t@) € mi(V,i2) is detected by vivst € ES(V,.2). Now the theorem
follows from the definition (1.4) and the Geometric Boundary Theorem (cf. [6]).

In this paper, we show the following theorem:

Theorem 1.7. Let p be a prime greater than three. Then, the element vgz €
E3(W AVy2_1) is a permanent cycle.

Corollary 1.8. Let p be a prime greater than three. Then, the beta elements
2
Bip2r € E;’(tp (pH)_r)q(SO) fort >0 and 0 < r < p*> — 2 are permanent cycles.

2. ADAMS-NOVIKOV FE53-TERMS

Ravenel constructed a ring spectrum 7'(m) for each integer m > 0 characterized
by BP.(T(m)) = BP.[t1,...,tm] (cf. [6]). He then showed the change of rings

theorem E5*(T(m)AX) = Ext;’(tmﬂ)(BRk7 BP.(X)) for the Hopf algebroid I'(m+
1) = BP,(BP)/(t1,...,tm), and determine E5*(T(m)) in [6, Th. 7.2.6, Cor. 7.2.7]

below dimension 2(p™*? — p?). In particular, below dimension (p* + p?)q,

Ey™ (T(1))

= Z)[v]
(2.1) By (T(1) = k(). {vhao  p1 s > 0} & hooZ/p?[0r, v}]
D ETD) = k). (w5 : s > 0} @ E(han) © P(ba).

Here, E and P denote an exterior and a polynomial algebras over Z/p and
(2.2) k(m)s = Z/plvm]

denotes the BP,-algebra with trivial v;-action for ¢ # m. Consider the connecting
homomorphism §: ES*(T(1) A M) — E5TVY(T(1)) associated to the first cofiber
sequence in (1.1). We then see that there are elements v§ and vihoy in E5(T(1)AM)
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such that §(v§) = svy 'hoo and §(viha1) = vibay. Since p = 0: ESY(T(1)) —
E3'(T(1)) for s > 0, we obtain

By (T()AM) = k(1).[vs]
(2.3) Ey* (TA)AM) = hook(1).[va] ® ho1k(2).[vs]
@ E;’*(T(l) A\ M) = bgol{?(Q)*[’ljg] ® E(hgo, hgl) X P(bgo)

below (p® + p?)q. Here, the generators have the bidegrees as follows:
[v2] = (0, (p+1)q),  [vs] = (0, (p* +p+1)q), |haol = (1, (p+ 1)q),
|ha1| = (1, (p* +p)g) and  |bao| = (2, (p* + p)q).
Consider a spectrum X}, constructed by Ravenel [6], in which X}, is denoted by

T(0)(xy, with BP,-homology BP,(Xy) = BP*[tl]/(t’fk) as a BP,(BP)-comodule.
We abbreviate X; to X. Then, we have a diagram

’

Ak k=1 — Pk
kal <--- 3P qu <-=- Xk,1

24) l / l

Xy X

in which each triangle is a cofiber sequence with inclusion ¢y, or ¢},. Since A and A},
induce the zero maps on BP,-homologies, applying the Adams-Novikov Fs-terms
E3(— A M) to the diagram gives rise to an exact couple that defines the small
descent spectral sequence:

SPET = E3(Xi A M) ® E(hj—1) @ P(bj_1)

(2.5) e B3 (Xp1 A M),

sp1,0.,05 " g sD2.0.p"q
where hy_; € °“E] and by_; € ”“E] are represented by the cocycles

— — k—1
t’l’k " and gy = St =) t]fpk '® tP7FP"" of the cobar complex
o = Q*BP*(BP)BP*/(p)
1

£ . % ., . . st v s+1,t+pk7 q

or computing Ej (M), respectively. Let 6kk—1 ES" (X ANM) — Ej (Xp_1 A
M) and 8,: E3'(Xg_q A M) — E3THFPT =D A M) denote the connecting
homomorphisms corresponding A, and Aj,. Then,

(2.6) 80, () = bp_1z € EST2TN (X, A M)

for x € E5"(Xy_1 A M). We state here a relation in the Ey-term Ej(M):
Lemma 2.7. In the Adams-Novikov Eo-term E3(M), v}b3 = 0.

Proof. We define the element yo0 € Q2 by d(t)) = —t] ® t11>2 + Uiyl + pyso in
j+

the cobar complex QQBP*(BP)BP*/(pQ). Since 1 is primitive, d(tfj ) = —py; €

QZBP*(BP)BP*/(pQ), and so we obtain

(28) dly;) =0 and d(yeo) = —yo Ot +1] @y € .

We also see that d(A(t)y) = y @t —t ®y for cocycles t € Q! and y € Q2. Then,
the cocycle v}y; ® y; € Q* cobounds the cochain th ® y; — t] ® A(t’fz)yl + Y20 ®
4+ 1y 1% € Q3. O
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Lemma 2.9. The Adams-Novikov Eq-term Ey*(Xo A M) fort < (p* + p?)q is a
subquotient of the direct sum of the modules K; for 0 <i <3 given by

Ko = hok(2).[v1]/(v]) @ E(hao)

Ki = k(1)«[v2]/(vh) ® E(hzo, hs, b2)

Ky = ho (E(2)s @ hok(3).)

Kz = by (k(2)« ® hak(3).) @ E(hao, ha1) @ P(bag)

Proof. We begin with E3 (X4 A M) = E5(T(1) A M). The spectral sequence (2.5)
collapses for k = 4, and Ej (X3 A M) = E3(T(1) A M) ® E(hs) = @°_, K; for

Ky = k(1).[v2] ® E(hao, hs)
Ky = hak(2).[vs]
Kg = bgok(z)* [U3] X E(hzo, h21) ® P(bZO)

by (2.3). In the spectral sequence (2.5) for k = 3, we see that dy(vh) = vlho,
dqy(viha1) = sv2v§_1h21h2 and dy (v5bg) = sv2v§_1b20h2 up to sign. Under these
relations, the di-homology is computed to be:
H (h(1).[v2] © B(hz) s dy) = k(1) [oa]/(08) @ hak(2),[en)/(0])  and
H*(k(2)«[v3] @ E(hg) : d1) = k(2)s ® hok(3)..
The module EB?:O K; is the homology of the complex E3 (X3 A M) ® E(hg, by) with
the differential given by the above d;, whose subquotient is the Fy-term 5P E; of
the spectral sequence (2.5) for k = 3. O

By the small descent spectral sequence (2.5) for k = 2, the module E3*(X A M)
is a subquotient of @ _, L for

These modules have the vanishing lines:
Lgs+e7tq = 0 ift<sp>+p+ e(p+1) and s > 0.
LTt — 0 ift < sp® 4 pte(p+1).
Lgﬁe,tq = 0 ift<sp?+2p+e(lp+1)ands>0.
L§s+1+e,tq = 0 ift<sp?+2p+ e(p+1) and s > 0.

Therefore, we have the following

Lemma 2.11. EXTMY X A M) =0 if t < sp>+p+e(p+1).

Lemma 2.12. Every element of LT s o multiple of vPb% if s > 2 and

t>(s+Dp?>+2p+e(p?—p—1).

. . 2s+1+et
Proof. By the assumption s > 2 and ¢ < p® + p?, there is no element of L*" ™"

originating from k(1).[va]/(vh) ® E(haeo) @ Z/p{hs,ba}. So every element of it has
the form v{vhhs,hib5 or vivshy, “b5T¢. The condition on s and ¢ shows a > p, since
b<p. (I

Corollary 2.13. For an element x € E§S+1+e’tq(X AM) for s > 2 and t >
(s+1)p*+2p—1+e(®> —p—1), viz is detected by an element of v1 L. In
particular, v{z = 0.

Proof. By Lemma 2.9, we see that v;z belongs to the submodule of Ej*(X A M)
originating from vy L @ v; L. Every element originating from v; L] satisfying the
condition is zero by Lemmas 2.7 and 2.12. We see v}z = 0, since v} L§ = 0. 0
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Lemma 2.14. Put u = p® + p?> — 2p + 2 and ¢ = max{l,p — 8}. Then, for
z e IR0 X A, vea = 0.

Proof. By Corollary 2.13, viz is detected by a linear combination of elements
V)03 O hohgohiBP ™% and v]v8 2hyb? ™! by degree reason. This is zero in Lj if
p < 7. Otherwise, v? %z = ¥ "(v1z) is a multiple of v?b?. Thus ¥z dies in
Eg+17(u+P_7)Q(X A M) 0

3. THE VANISHING LINE OF THE ADAMS-NOVIKOV E3-TERM OF W A M

Consider the cofiber sequence (1.5). Then, it induces a short exact sequence 0 —
EyY (M) — ESY(W AM) — ES*17P9(M) — 0 of Ey-terms, and the cohomologies
E3 of the complexes (F3, ds) yield the long exact sequence

0 — By EP g A Mgt () 2

3.1 i)
( ) E§+2,(t+P)Q(M)(KZE§+2,(1‘/+P)Q(W A M) 0

Lemma 3.2. The map by: EX TSNy — B2 WD Ny s epimorphic if
t<sp’+p+1+el@®—p-1).

Proof. We apply E3(—) to the diagram (2.4) for k = 1. By (2.6), the map by is a
composite of the connecting homomorphisms §; and 8} corresponding to A; and A].
The condition on the integers imply inequalities t+p < sp? +2p+1+e(p?—p—1) <
sp?+2p+1 e=0
(s+1p°+p e=1
It follows that E2* TP x A Ay = 0 and E25P2H00P7D9(x A M) = 0 by
Lemma 2.11, and so the connecting homomorphisms are epimorphisms. O

(s+1)p?>+p+e(p+1) and t+p—1 < sp?+2p+e(p?—p—1) < {

Apply this to the exact sequence (3.1), and we obtain the following

Corollary 3.3. Ex*T'" MW AM)=0ift < (s—1)p>+2p+1+e(p*—p—1).
Remark. In the same way as the proof of Lemma 3.2, we show that the map
bo: E2sHIreta(yry — g2et3Te )9 Ay i monomorphic if £ < sp® + 1+ e(p + 1).
It follows that the map by: EZT4M(M) — EZ*T2T0F)9 01y is an isomorphism if
t<sp®+1+e(p+1).

Lemma 3.4. Put u = p® + p? — 2p + 2 and suppose that & € muq—1(W A M) is
detected by an element of Engl’(uH)q(W A M). Then, a*~2¢ = 0.

Proof. We here also work on the diagram (2.4) for k = 1 applied E3(—). Consider
an element x € E§+1’(u+1)q(M)7 which is isomorphic to Eg+1’(u+1)q(W/\M). Then,
v$(t1)«(z) =0 € Eg+1’(u+c+1)q(X A M) by Lemma 2.14, and there is an element
x1 € Eg’(u+c)q(Y/\ M) such that (61).(z1) = v§x. We also see that v} (¢])«(z1) =0
by Corollary 2.13, and obtain an element x5 such that (87).(z2) = v]'z1. Tt follows
that o? ™z = vP(61).(21) = (61)4(8})s(x2) = bozo by (2.6), and v ™z = 0 €
EITHErTetDa g A M by (3.1).

If s > 0, then the Es-term Eésﬂ)qﬂ’(uﬂﬂ)q(W A M) is zero by Corollary 3.3,

since u+s+1=p?+p>—2p+3+s < (s+1)(p—1)p? +p. Therefore, the relation

vf“m = 0 in the Fs-term holds in the homotopy. Since p 4 ¢ < 2p — 2, the lemma

follows. O
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4. ﬂil)z/pQ—l S 7T(p3+1)q_1(W AN M)
Apply the Adams-Novikov FEs-term E3(—) to the diagram (2.4) for k = 2, and
we have a spectral sequence P E; = E}(X2) ® E(hy) ® P(by) = E3(X). Since
B2t (X,) = 0 if t < s(p® +p) + e(p + 1), we obtain the vanishing line:

Lemma 4.1. E3*T'TM(X) =0 ift < sp> +p+e(p+1).
In the same manner as the proof of Corollary 3.3, we obtain
Corollary 4.2. EX*™"W) =0 ift < (s — 1)p> + (1 +e)(p+1).

The Ep-terms Ey'(X) for t < (p® + p)q are determined by Ravenel [6, ABC Th.
7.5.1]. In particular, we read off the following:

1) E;q+1,(p3+1+7'>Q(X) =0 for r > 0.

(4.3)
9) EIF2PTHDIxy

Lemma 4.4. 6;/)2/;72—1 € Tps41)q—1(W A M) exists.

Proof. By (4.3) 1), the element (,2/,2_1 of E22’(p3+1)q(X) survives to an element
of the homotopy group ms41)q—2(X). Apply the 3 x 3 Lemma on the cofiber
sequences in (1.5) and (2.4), and we obtain the cofiber sequence

wLx Dyax Lyw,

-\ _ = Qg 2,(p°+1)q _
where k11 = ANjw, di = i1 and k) = jw7. Since B2 p2_1 € E, (W) =
E22,(p3+1)q(50)7 the induced map (di).: m(X) — 7.(X) assigns Bp2/p2_1 to an
element detected by Eg+2,(p3+1)q(X)7 which is zero by (4.3) 2). Thus B,2/,2_1 €
7, (X) is pulled back to £,z /21 € T (W),

Since E3'(W) = E'(S9), PBp2jp2—1 = 0 in the Ep-term Eg’(psfl)q(W).

It follows that pfy2/p2_1 is detected by an element of E;q+2’(p3_1+r)q(W) for

r > 0. By Corollary 4.2, the module E;q+2’(p3+l+r)q(W) is zero, and the rela-
tion pBy2 /21 = 0 holds in homotopy. Hence, 3,2 ,,2_1 € (W) is pulled back to
51’72/1)2_1 € m (W A M) under the induced map j,: m.(W A M) — 7. (W) from j in
(L.1). O

Lemma 4.5. a? "180, . | =0 € m(ip2)0-1(W A M).

Proof. Oka [3] constructed the beta element f;/,, » € Tug—1(M) such that

2_ .
a®P 2302 15,5 = 0 in homotopy and 31z 5, = vf 2p+1ﬂ;2/p2_1 in the E-term.

Here, u = p® + p? — 2p + 2 as above. Consider an element & = a”2*2p+1,3;,2/p2_1 -
(iw)«(By2 j2p—) € Tug—1(W A M). Then, it satisfies the condition of Lemma 3.4,

and we have ap2_151’)2/p271 =a? (¢ + (iw )« (B2 jop—2)) = 0 as desired. O

Proof of Theorem 1.7. Consider the second cofiber sequence (1.1) for a = p* — 1.
Then, by Lemma 4.5, we have an element v € 7, (W AV,2_;) such that (jy2_1).(v) =
Bz jp2 - Since v is detected by an element of EQ(W AVp2_1), we see that v = vSQ
by degree reason. ([
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