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Abstract. Let S0
(p)

denote the sphere spectrum localized at an odd prime p.

Then we have the first beta element β1 ∈ π2p2−2p−2(S0
(p)

), whose cofiber we

denote by W . We also consider a generalized Smith-Toda spectrum Vr char-
acterized by BP∗(Vr) = BP∗/(p, vr

1). In this note, we show that an element
of π∗(Vr ∧W ) gives rise to a beta element of homotopy groups of spheres. As
an application, we show the existence of β9t+3 at the prime three to complete
a conjecture of Ravenel’s: βs ∈ π16s−6(S0

(3)
) exists if and only if s is not

congruent to 4, 7 or 8 mod 9.

1. Introduction and statements of results

Let BP denote the Brown-Peterson spectrum at an odd prime number p. Then,
we have the Hopf algebroid BP∗BP over BP∗, where

BP∗ = π∗(BP ) = Z(p)[v1, v2, . . . ] and BP∗BP = BP∗(BP ) = BP∗[t1, t2, . . . ]

for vi ∈ BP2pi−2 and ti ∈ BP2pi−2BP . It gives rise to the Adams-Novikov spectral
sequence converging to homotopy groups π∗(X) of a connective spectrum X with
E2-term

Es,t
2 (X) = Exts,t

BP∗BP (BP∗, BP∗(X)).

We consider the sphere spectrum S0, the modulo p Moore spectrum M and a
cofiber Vr of the map αr : ΣrqM → M for a positive integer r and the Adams map
α : ΣqM → M , so that

(1.1) S0 wp
S0 wi

M wj
S1 and ΣrqM wαr

M wir
Vr wjr Σrq+1M

are cofiber sequences. Here q = 2p−2 as usual. Suppose that vt
1v

s
2 ∈ E

0,(sp+s+t)q
2 (Vr)

for integers r > 0, s > 0 and t ≥ 0. Then, we define the beta element βs/r−t in the
E2-term by

(1.2) βs/r−t = δδr(vt
1v

s
2) ∈ E

2,(sp+s+t−r)q
2 (S0)

for the connecting homomorphisms δr : Es,t
2 (Vr) → Es+1,t−rq

2 (M) and δ : Es,t
2 (M) →

Es+1,t
2 (S0) associated to the cofiber sequences (1.1). We note that if r− t = r′− t′,

then βs/r−t = βs/r′−t′ , and abbreviate βs/1 to βs. In this paper, we study which
of these elements survives to the homotopy groups π∗(S0) of spheres. For a prime
greater than three, the following beta elements survive:

βs for s > 0 by L. Smith [9],
βtp/r for t > 0 and r ≤ p with (t, r) 6= (1, p) by S. Oka [4],[5], and
βtp2/r for t > 0 and r ≤ 2p by S. Oka [6].
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At the prime three, βs survives if s < 4 by Toda [10], and does not if s = 4, and
does if s = 5 by Oka [2]. Ravenel then conjectured that βs survives in the spectral
sequence if and only if s ≡ 0, 1, 2, 3, 5, 6 mod 9. In [8], we proved the ‘only if’ part.
For the survivors, we have

βs for s > 0 with s ≡ 0, 1, 2, 5, 6 mod 9 by M. Behrens and S. Pemmaraju [1].

We note that the element β1 ∈ πpq−2(S0) is given by

β1 = jj1[βi1]i

for the maps i, j, i1 and j1 are the maps given in (1.1). Here, [βi1] denotes βi1
for the self-map β ∈ [V (1), V (1)](p+1)q (V (1) = V1) constructed by Smith [9] at
a prime greater than three, and the generator of the homotopy group [M,V (1)]16
given in [11] at the prime three. We define W by the cofiber sequence

(1.3) Spq−2 wβ1
S0 wι

W wκ
Spq−1.

Then we have our main theorem:

Theorem 1.4. Suppose that there is an element Bs ∈ πs(p+1)q(Vr ∧W ) detected
by vs

2 ∈ E
0,s(p+1)q
2 (Vr ∧W ). Then, the beta element βs/l for 0 < l ≤ r − 2 survives

to π(sp+s−l)q−2(S0).

As an example, we have

Lemma 1.5. At an odd prime, there exists Btp ∈ πtp(p+1)q(Vp ∧ W ) for t > 0
detected by vtp

2 ∈ E
0,tp(p+1)q
2 (Vp ∧W ).

Corollary 1.6. The beta elements βtp/l for t > 0 and 0 < l ≤ p− 2 survives.

This corollary shows that β3t survives at the prime three, and completes a proof
of the conjecture.

2. Proofs of results

Applying the BP∗-homology to the first cofiber sequence of (1.1), we obtain

BP∗(M) = BP∗/(p).

We observe the E2-term E∗
2 (X) of the Adams-Novikov spectral sequence as the

cohomology of the reduced cobar complex Ω̃∗BP∗BP BP∗(X). Then, we have a van-
ishing line for a (−1)-connected spectrum X:

(2.1) Es,t
2 (X) = 0 if t < sq.

The structure maps of the Hopf algebroid BP∗BP act on generators by

(2.2)
ηR(v1) = v1 + pt1
ηR(v2) ≡ v2 + v1t

p
1 − vp

1t1 mod (p), and
∆(t1) = t1 ⊗ 1 + 1⊗ t1

(cf. [7]). By this, we see that v1 ∈ E0,q
2 (M). Since E

sq+1,(s+1)q
2 (M) = 0 for

s > 0 by (2.1), v1 is a permanent cycle. The Adams map α in (1.1) is given by
α = m(M ∧ v1) for the multiplication m of M , and so it induces v1-multiplication
on the BP∗-homology. It follows that

BP∗(Vr) = BP∗/(p, vr
1)
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for r > 0, and we see that

(2.3) v1 ∈ E0,q
2 (Vr) and vp

2 ∈ E
0,(p2+p)q
2 (Vp)

by (2.2). For the later use, we notice that

(2.4) αi = m(i ∧ v1) = v1.

From [12], we read off

Lemma 2.5. Suppose that t− s < (p2 + p+1)q. In this range, the Adams-Novikov
E2-term E∗,∗

2 (M) is a subquotient of Z/p[v1, v2] ⊗ {h0, h1, h2, g0, k0, k0h0, h0h2} ⊗
P (b0, b1, b20). Here the bi-degrees of the generators are:

|hi| = (1, piq) (i = 0, 1, 2), |g0| = (2, (p + 2)q), |k0| = (2, (2p + 1)q),
|b0| = (2, pq), |b1| = (2, p2q), and |b20| = (2, (p2 + p)q).

Proof. We have short exact sequences 0 w BP∗/(p) wv1
BP∗/(p) w BP∗/(p, v1) w

0 and 0 w BP∗/(p, v1) wv2
BP∗/(p, v1) w BP∗/(p, v1, v2) w 0, which give rise to

Bockstein spectral sequences converging to the Adams-Novikov E2-terms E∗
2 (M)

and E∗
2 (V1) with E1-terms E∗

2 (V1) and Ext∗BP∗BP (BP∗, BP∗/(p, v1, v2)), respec-
tively. In our range, we have Ext∗BP∗BP (BP∗, BP∗/(p, v1, v2)) = Ext∗P(Z/p,Z/p)
for the subalgebra P of the Steenrod algebra generated by the reduced power op-
erations. Thus, E∗

2 (M) is a subquotient of Z/p[v1, v2] ⊗ Ext∗P(Z/p,Z/p). We now
read off the structure of Ext∗P(Z/p,Z/p) from [12]. ¤

Corollary 2.6. In our range, we have a vanishing line: E2s+ε,tq
2 (V ) = 0 for

V = M, Vr, if t < ps + ε. Here, ε = 0, 1.

Lemma 2.7. Let δ : Es
2(M) → Es+1

2 (S0) be the connecting homomorphism associ-
ated with the first cofiber sequence in (1.1). Then, it is a derivation and

δ(v1) = h0, δ(h2) = −b1 and δ(b0) = 0.

Proof. Note that hi and bi are represented by cocycles tp
i

1 and
∑p−1

k=1
1
p

(
p
k

)
tp−k
1 ⊗ tk1

of the cobar complex. By (2.2), we see that the differential d of the cobar complex
acts on v1 and tp

i

1 as d(v1) = pt1 and d(tp
i

1 ) = −pbi−1 for i > 0. The lemma now
follows from the definition of the connecting homomorphism. ¤

The cofiber sequence (1.3) induces a split short exact sequence

0 w Es.t
2 (V ) wι∗

Es,t
2 (V ∧W ) wκ∗

Es,t−pq+1
2 (V ) w 0

of E2-terms for V = M and Vr, and so

E∗
2 (V ∧W ) = E2(V )⊕ gE2(V ),

where g denotes a generator of degree pq − 1 such that κ∗(xg) = x. Since E3-term
is a homology of E2-terms and d2(g) = β1 for the element β1 in (1.2), we have the
long exact sequence

(2.8) Es,t
3 (M) w∂

Es+2,t+pq
3 (M) wι∗

Es+2,t+pq
3 (M ∧W ) wκ∗

Es+2,t+1
3 (M)

with the connecting homomorphism ∂ given by ∂(x) = xβ1.

Lemma 2.9. The element vp
2 ∈ E0

2(Vp ∧W ) in (2.3) survives to an element Bp ∈
πp(p+1)q(Vp ∧W ).
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Proof. Consider the cofiber sequence (1.1) with r = p. In the Adams-Novikov
spectral sequence for computing π∗(S0), we have the Toda differential dq+1(b1) =

h0b
p
0 ∈ E

q+3,(p2+1)q
2 (S0) up to nonzero scalar. By Lemma 2.5, E

q+2,(p2+1)q
2 (M)

is a subquotient of {v1b
p
0}. Since δ(v1b

p
0) = h0b

p
0, we see dq+1(h2) = v1b

p
0 ∈

E
q+2,(p2+1)q
2 (M) up to nonzero scalar by Lemma 2.7. Note that β1 = b0. In the ex-

act sequence (2.8), v1b
p
0 = ∂(v1b

p−1
0 ), and so dq+1(ι∗(h2)) = 0 in E

q+2,(p2+1)q
3 (M ∧

W ). Besides, Corollary 2.6 shows that E
sq+2,(p2+s)q
2 (M) = 0 for s > 1, and

we see that ι∗(h2) ∈ E1,p2q
2 (M ∧ W ) is a permanent cycle, which detects an el-

ement β′p/p ∈ πp2q−1(M ∧ W ). Send it by αp in (1.1). The element αpβ′p/p ∈
π(p2+p)q−1(M ∧ W ) is detected by an element of E

q+1,(p2+p+1)q
2 (M ∧ W ), since

the E2-term E
sq+1,p(p+1)q+sq
2 (M ∧W ) = E

sq+1,p(p+1)q+sq
2 (M) for s > 1 is zero by

Corollary 2.6. The E2-term E
q+1,(p2+p+1)q
2 (M) for s = 1 is a subquotient of

h0b0b1 (p = 3), vp−1
1 v2h0b

p−1
0 , v2p

1 h0b
p−1
0 , v2h1b

p−1
0 , vp+1

1 h1b
p−1
0 , vp−1

1 k0h0b
p−2
0

by Lemma 2.5, and so the E3-term E
q+1,(p2+p+1)q
3 (M ∧W ) = 0 by (2.8). Therefore,

αpβ′p/p = 0 and β′p/p is pulled back to an element Bp under the map jp. ¤

We call a spectrum R a ring spectrum if there exist a multiplication µ : R∧R → R
and a unit ι : S0 → R such that µ(ι∧R) = 1R = µ(R ∧ ι) : R → R. By [3, Ex. 2.9]
and [3, Ex. 5.7], we have

(2.10) W and Vr for r > 1 are ring spectra.

In particular, the spectrum Rr = Vr ∧ W for r > 1 is a ring spectrum with
multiplication mr = (µr ∧ µW )(Vr ∧ T ∧ W ) : Rr ∧ Rr = Vr ∧ W ∧ Vr ∧ W →
Vr ∧ Vr ∧W ∧W → Vr ∧W = Rr, where T denotes the switching map and µr and
µW are the multiplications of Vr and W , respectively.

Proof of Lemma 1.5. Since Rp = Vp ∧ W is a ring spectrum, we obtain a self-

map [βp] : Rp Rp ∧RpwRp∧Bp wmp

Rp inducing vp
2 on BP∗-homology. Now put

Btp = [βp]t−1Bp to see the lemma. ¤

We consider the element irα
2i ∈ π2q(Vr) ∼= π2q(M) = Z/p{α2i} for r > 2 and

for the maps in (1.1), which is detected by the element v2
1 ∈ E0

2(Vr) by (2.4).

Lemma 2.11. Let r > 2. There exists an element ηr ∈ π(p+2)q−1(Vr ∧ W ) such
that κ∗(ηr) = irα

2i ∈ π2q(Vr). Besides, it is detected by v2
1g ∈ E0

2(Vr ∧ W ) =
E0

2(Vr)⊕ gE0
2(Vr).

Proof. Put δ = ij for the maps i, j in (1.1), and we have Yamamoto’s relation
α2δ = 2αδα− δα2 ∈ [M, M ]2q−1 (cf. [11]). We compute

α2iβ1 = α2δj1[βi1]i = (δα2 + αδα)j1[βi1]i = 0,

since αj1 = 0 by (1.1). It follows that irα
2i ∈ π2q(Vr) is pulled back to an element

ηr ∈ π(p+2)q−1(Vr ∧W ) as desired. Since irα
2i is detected by v2

1 ∈ E0
2(Vr), ηr is

detected by the element v2
1g ∈ E0

2(Vr ∧W ) = E0
2(Vr)⊕ gE0

2(Vr). ¤
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Proof of Theorem 1.4. Consider the product Bsηr ∈ π∗(Vr ∧ W ) for the element
ηr in Lemma 2.11. Then, it is detected by v2

1vs
2g, since ηr induces a BP∗BP -

comodule map (ηr)∗ : BP∗(Vr) → BP∗(Vr ∧W ) such that (ηr)∗(x) = v2
1xg and Bs

is detected by vs
2. The map κ∗ : E0

2(Vr∧W ) → E0
2(Vr) assigns v2

1vs
2g to v2

1vs
2, which

is a permanent cycle detected by κ(Bsηr). Put now βs/l = jjl+2a
r,l+2κ(Bsηr) =

jαr−2−ljrκ(Bsηr) ∈ π∗(S0) for l < r−2, and we see the theorem by the Geometric
Boundary Theorem (cf. [7]). Here, ar,k denotes a map in the cofiber sequence
Vr−k Vr Vkw war,k

obtained from applying the 3 × 3 Lemma to the cofiber

sequences of (1.1) for r− k, r and k. We note that it satisfies jkar,k = αr−kjr. ¤
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