NOTE ON BETA ELEMENTS IN HOMOTOPY, AND AN APPLICATION TO THE PRIME THREE CASE

KATSUMI SHIMOMURA

ABSTRACT. Let $S_{(p)}^0$ denote the sphere spectrum localized at an odd prime p. Then we have the first beta element $\beta_1 \in \pi_{2p^2-2p-2}(S_{(p)}^0)$, whose cofiber we denote by W. We also consider a generalized Smith-Toda spectrum V_r characterized by $BP_*(V_r) = BP_*/(p, v_1^r)$. In this note, we show that an element of $\pi_*(V_r \wedge W)$ gives rise to a beta element of homotopy groups of spheres. As an application, we show the existence of β_{9t+3} at the prime three to complete a conjecture of Ravenel's: $\beta_s \in \pi_{16s-6}(S_{(3)}^0)$ exists if and only if s is not congruent to 4, 7 or 8 mod 9.

1. INTRODUCTION AND STATEMENTS OF RESULTS

Let BP denote the Brown-Peterson spectrum at an odd prime number p. Then, we have the Hopf algebroid BP_*BP over BP_* , where

$$BP_* = \pi_*(BP) = \mathbb{Z}_{(p)}[v_1, v_2, \dots]$$
 and $BP_*BP = BP_*(BP) = BP_*[t_1, t_2, \dots]$

for $v_i \in BP_{2p^i-2}$ and $t_i \in BP_{2p^i-2}BP$. It gives rise to the Adams-Novikov spectral sequence converging to homotopy groups $\pi_*(X)$ of a connective spectrum X with E_2 -term

$$E_2^{s,t}(X) = \operatorname{Ext}_{BP_*BP}^{s,t}(BP_*, BP_*(X)).$$

We consider the sphere spectrum S^0 , the modulo p Moore spectrum M and a cofiber V_r of the map $\alpha^r : \Sigma^{rq} M \to M$ for a positive integer r and the Adams map $\alpha : \Sigma^q M \to M$, so that

(1.1)
$$S^0 \xrightarrow{p} S^0 \xrightarrow{i} M \xrightarrow{j} S^1$$
 and $\Sigma^{rq} M \xrightarrow{\alpha^r} M \xrightarrow{i_r} V_r \xrightarrow{j_r} \Sigma^{rq+1} M$

are cofiber sequences. Here q = 2p-2 as usual. Suppose that $v_1^t v_2^s \in E_2^{0,(sp+s+t)q}(V_r)$ for integers r > 0, s > 0 and $t \ge 0$. Then, we define the beta element $\beta_{s/r-t}$ in the E_2 -term by

(1.2)
$$\beta_{s/r-t} = \delta \delta_r(v_1^t v_2^s) \in E_2^{2,(sp+s+t-r)q}(S^0)$$

for the connecting homomorphisms $\delta_r \colon E_2^{s,t}(V_r) \to E_2^{s+1,t-rq}(M)$ and $\delta \colon E_2^{s,t}(M) \to E_2^{s+1,t}(S^0)$ associated to the cofiber sequences (1.1). We note that if r-t=r'-t', then $\beta_{s/r-t} = \beta_{s/r'-t'}$, and abbreviate $\beta_{s/1}$ to β_s . In this paper, we study which of these elements survives to the homotopy groups $\pi_*(S^0)$ of spheres. For a prime greater than three, the following beta elements survive:

 $\begin{array}{ll} \beta_s & \text{for } s>0 \text{ by L. Smith [9]}, \\ \beta_{tp/r} & \text{for } t>0 \text{ and } r\leq p \text{ with } (t,r)\neq (1,p) \text{ by S. Oka [4],[5], and} \\ \beta_{tp^2/r} & \text{for } t>0 \text{ and } r\leq 2p \text{ by S. Oka [6].} \end{array}$

At the prime three, β_s survives if s < 4 by Toda [10], and does not if s = 4, and does if s = 5 by Oka [2]. Ravenel then conjectured that β_s survives in the spectral sequence if and only if $s \equiv 0, 1, 2, 3, 5, 6 \mod 9$. In [8], we proved the 'only if' part. For the survivors, we have

 β_s for s > 0 with $s \equiv 0, 1, 2, 5, 6 \mod 9$ by M. Behrens and S. Pemmaraju [1].

We note that the element $\beta_1 \in \pi_{pq-2}(S^0)$ is given by

$$\beta_1 = jj_1[\beta i_1]i$$

for the maps i, j, i_1 and j_1 are the maps given in (1.1). Here, $[\beta i_1]$ denotes βi_1 for the self-map $\beta \in [V(1), V(1)]_{(p+1)q}$ $(V(1) = V_1)$ constructed by Smith [9] at a prime greater than three, and the generator of the homotopy group $[M, V(1)]_{16}$ given in [11] at the prime three. We define W by the cofiber sequence

(1.3)
$$S^{pq-2} \xrightarrow{\beta_1} S^0 \xrightarrow{\iota} W \xrightarrow{\kappa} S^{pq-1}$$

Then we have our main theorem:

Theorem 1.4. Suppose that there is an element $B_s \in \pi_{s(p+1)q}(V_r \wedge W)$ detected by $v_2^s \in E_2^{0,s(p+1)q}(V_r \wedge W)$. Then, the beta element $\beta_{s/l}$ for $0 < l \le r-2$ survives to $\pi_{(sp+s-l)q-2}(S^0)$.

As an example, we have

Lemma 1.5. At an odd prime, there exists $B_{tp} \in \pi_{tp(p+1)q}(V_p \wedge W)$ for t > 0detected by $v_2^{tp} \in E_2^{0,tp(p+1)q}(V_p \wedge W)$.

Corollary 1.6. The beta elements $\beta_{tp/l}$ for t > 0 and $0 < l \le p - 2$ survives.

This corollary shows that β_{3t} survives at the prime three, and completes a proof of the conjecture.

2. Proofs of results

Applying the BP_* -homology to the first cofiber sequence of (1.1), we obtain

$$BP_*(M) = BP_*/(p).$$

We observe the E_2 -term $E_2^*(X)$ of the Adams-Novikov spectral sequence as the cohomology of the reduced cobar complex $\widetilde{\Omega}^*_{BP_*BP}BP_*(X)$. Then, we have a vanishing line for a (-1)-connected spectrum X:

(2.1)
$$E_2^{s,t}(X) = 0$$
 if $t < sq$.

The structure maps of the Hopf algebroid BP_*BP act on generators by

(2.2)
$$\begin{aligned} \eta_R(v_1) &= v_1 + pt_1 \\ \eta_R(v_2) &\equiv v_2 + v_1 t_1^p - v_1^p t_1 \mod (p), \text{ and} \\ \Delta(t_1) &= t_1 \otimes 1 + 1 \otimes t_1 \end{aligned}$$

(cf. [7]). By this, we see that $v_1 \in E_2^{0,q}(M)$. Since $E_2^{sq+1,(s+1)q}(M) = 0$ for s > 0 by (2.1), v_1 is a permanent cycle. The Adams map α in (1.1) is given by $\alpha = m(M \wedge v_1)$ for the multiplication m of M, and so it induces v_1 -multiplication on the BP_* -homology. It follows that

$$BP_*(V_r) = BP_*/(p, v_1^r)$$

for r > 0, and we see that

(2.3)
$$v_1 \in E_2^{0,q}(V_r) \text{ and } v_2^p \in E_2^{0,(p^2+p)q}(V_p)$$

by (2.2). For the later use, we notice that

(2.4)
$$\alpha i = m(i \wedge v_1) = v_1.$$

From [12], we read off

Lemma 2.5. Suppose that $t - s < (p^2 + p + 1)q$. In this range, the Adams-Novikov E_2 -term $E_2^{*,*}(M)$ is a subquotient of $\mathbb{Z}/p[v_1, v_2] \otimes \{h_0, h_1, h_2, g_0, k_0, k_0h_0, h_0h_2\} \otimes P(b_0, b_1, b_{20})$. Here the bi-degrees of the generators are:

$$\begin{aligned} |h_i| &= (1, p^i q) \ (i = 0, 1, 2), \quad |g_0| &= (2, (p+2)q), \quad |k_0| &= (2, (2p+1)q), \\ |b_0| &= (2, pq), \quad |b_1| &= (2, p^2 q), \quad and \quad |b_{20}| &= (2, (p^2+p)q). \end{aligned}$$

Proof. We have short exact sequences $0 \to BP_*/(p) \xrightarrow{v_1} BP_*/(p) \to BP_*/(p, v_1) \to 0$ and $0 \to BP_*/(p, v_1) \xrightarrow{v_2} BP_*/(p, v_1) \to BP_*/(p, v_1, v_2) \to 0$, which give rise to Bockstein spectral sequences converging to the Adams-Novikov E_2 -terms $E_2^*(M)$ and $E_2^*(V_1)$ with E_1 -terms $E_2^*(V_1)$ and $\operatorname{Ext}_{BP_*BP}^*(BP_*, BP_*/(p, v_1, v_2))$, respectively. In our range, we have $\operatorname{Ext}_{BP_*BP}^*(BP_*, BP_*/(p, v_1, v_2)) = \operatorname{Ext}_{\mathcal{P}}^*(\mathbb{Z}/p, \mathbb{Z}/p)$ for the subalgebra \mathcal{P} of the Steenrod algebra generated by the reduced power operations. Thus, $E_2^*(M)$ is a subquotient of $\mathbb{Z}/p[v_1, v_2] \otimes \operatorname{Ext}_{\mathcal{P}}^*(\mathbb{Z}/p, \mathbb{Z}/p)$. We now read off the structure of $\operatorname{Ext}_{\mathcal{P}}^*(\mathbb{Z}/p, \mathbb{Z}/p)$ from [12]. □

Corollary 2.6. In our range, we have a vanishing line: $E_2^{2s+\varepsilon,tq}(V) = 0$ for $V = M, V_r$, if $t < ps + \varepsilon$. Here, $\varepsilon = 0, 1$.

Lemma 2.7. Let $\delta: E_2^s(M) \to E_2^{s+1}(S^0)$ be the connecting homomorphism associated with the first cofiber sequence in (1.1). Then, it is a derivation and

 $\delta(v_1) = h_0, \quad \delta(h_2) = -b_1 \quad and \quad \delta(b_0) = 0.$

Proof. Note that h_i and b_i are represented by cocycles $t_1^{p^i}$ and $\sum_{k=1}^{p-1} \frac{1}{p} {p \choose k} t_1^{p-k} \otimes t_1^k$ of the cobar complex. By (2.2), we see that the differential d of the cobar complex acts on v_1 and $t_1^{p^i}$ as $d(v_1) = pt_1$ and $d(t_1^{p^i}) = -pb_{i-1}$ for i > 0. The lemma now follows from the definition of the connecting homomorphism. \Box

The cofiber sequence (1.3) induces a split short exact sequence

$$0 \longrightarrow E_2^{s.t}(V) \xrightarrow{\iota_*} E_2^{s,t}(V \wedge W) \xrightarrow{\kappa_*} E_2^{s,t-pq+1}(V) \longrightarrow 0$$

of E_2 -terms for V = M and V_r , and so

$$E_2^*(V \wedge W) = E_2(V) \oplus gE_2(V),$$

where g denotes a generator of degree pq - 1 such that $\kappa_*(xg) = x$. Since E_3 -term is a homology of E_2 -terms and $d_2(g) = \beta_1$ for the element β_1 in (1.2), we have the long exact sequence

(2.8)
$$E_3^{s,t}(M) \xrightarrow{\partial} E_3^{s+2,t+pq}(M) \xrightarrow{\iota_*} E_3^{s+2,t+pq}(M \wedge W) \xrightarrow{\kappa_*} E_3^{s+2,t+1}(M)$$

with the connecting homomorphism ∂ given by $\partial(x) = x\beta_1$.

Lemma 2.9. The element $v_2^p \in E_2^0(V_p \wedge W)$ in (2.3) survives to an element $B_p \in \pi_{p(p+1)q}(V_p \wedge W)$.

Proof. Consider the cofiber sequence (1.1) with r = p. In the Adams-Novikov spectral sequence for computing $\pi_*(S^0)$, we have the Toda differential $d_{q+1}(b_1) = h_0 b_0^p \in E_2^{q+3,(p^2+1)q}(S^0)$ up to nonzero scalar. By Lemma 2.5, $E_2^{q+2,(p^2+1)q}(M)$ is a subquotient of $\{v_1 b_0^p\}$. Since $\delta(v_1 b_0^p) = h_0 b_0^p$, we see $d_{q+1}(h_2) = v_1 b_0^p \in E_2^{q+2,(p^2+1)q}(M)$ up to nonzero scalar by Lemma 2.7. Note that $\beta_1 = b_0$. In the exact sequence (2.8), $v_1 b_0^p = \partial(v_1 b_0^{p-1})$, and so $d_{q+1}(\iota_*(h_2)) = 0$ in $E_3^{q+2,(p^2+1)q}(M \wedge W)$. Besides, Corollary 2.6 shows that $E_2^{sq+2,(p^2+s)q}(M) = 0$ for s > 1, and we see that $\iota_*(h_2) \in E_2^{1,p^2q}(M \wedge W)$ is a permanent cycle, which detects an element $\beta'_{p/p} \in \pi_{p^2q-1}(M \wedge W)$. Send it by α^p in (1.1). The element $\alpha^p \beta'_{p/p} \in \pi_{(p^2+p)q-1}(M \wedge W)$ is detected by an element of $E_2^{q+1,(p^2+p+1)q}(M \wedge W)$, since the E_2 -term $E_2^{sq+1,p(p+1)q+sq}(M \wedge W) = E_2^{sq+1,p(p+1)q+sq}(M)$ for s > 1 is zero by Corollary 2.6. The E_2 -term $E_2^{q+1,(p^2+p+1)q}(M)$ for s = 1 is a subquotient of

$$h_0b_0b_1 \ (p=3), \ v_1^{p-1}v_2h_0b_0^{p-1}, \ v_1^{2p}h_0b_0^{p-1}, \ v_2h_1b_0^{p-1}, \ v_1^{p+1}h_1b_0^{p-1}, v_1^{p-1}k_0h_0b_0^{p-2}$$

by Lemma 2.5, and so the E_3 -term $E_3^{q+1,(p^2+p+1)q}(M \wedge W) = 0$ by (2.8). Therefore, $\alpha^p \beta'_{p/p} = 0$ and $\beta'_{p/p}$ is pulled back to an element B_p under the map j_p .

We call a spectrum R a ring spectrum if there exist a multiplication $\mu: R \wedge R \to R$ and a unit $\iota: S^0 \to R$ such that $\mu(\iota \wedge R) = 1_R = \mu(R \wedge \iota): R \to R$. By [3, Ex. 2.9] and [3, Ex. 5.7], we have

(2.10) W and V_r for r > 1 are ring spectra.

In particular, the spectrum $R_r = V_r \wedge W$ for r > 1 is a ring spectrum with multiplication $m_r = (\mu_r \wedge \mu_W)(V_r \wedge T \wedge W): R_r \wedge R_r = V_r \wedge W \wedge V_r \wedge W \rightarrow$ $V_r \wedge V_r \wedge W \wedge W \rightarrow V_r \wedge W = R_r$, where T denotes the switching map and μ_r and μ_W are the multiplications of V_r and W, respectively.

Proof of Lemma 1.5. Since $R_p = V_p \wedge W$ is a ring spectrum, we obtain a selfmap $[\beta^p]: R_p \xrightarrow{R_p \wedge B_p} R_p \wedge R_p \xrightarrow{m_p} R_p$ inducing v_2^p on BP_* -homology. Now put $B_{tp} = [\beta^p]^{t-1}B_p$ to see the lemma.

We consider the element $i_r \alpha^2 i \in \pi_{2q}(V_r) \cong \pi_{2q}(M) = \mathbb{Z}/p\{\alpha^2 i\}$ for r > 2 and for the maps in (1.1), which is detected by the element $v_1^2 \in E_2^0(V_r)$ by (2.4).

Lemma 2.11. Let r > 2. There exists an element $\eta_r \in \pi_{(p+2)q-1}(V_r \wedge W)$ such that $\kappa_*(\eta_r) = i_r \alpha^2 i \in \pi_{2q}(V_r)$. Besides, it is detected by $v_1^2 g \in E_2^0(V_r \wedge W) = E_2^0(V_r) \oplus gE_2^0(V_r)$.

Proof. Put $\delta = ij$ for the maps i, j in (1.1), and we have Yamamoto's relation $\alpha^2 \delta = 2\alpha \delta \alpha - \delta \alpha^2 \in [M, M]_{2q-1}$ (cf. [11]). We compute

$$\alpha^2 i\beta_1 = \alpha^2 \delta j_1 [\beta i_1] i = (\delta \alpha^2 + \alpha \delta \alpha) j_1 [\beta i_1] i = 0,$$

since $\alpha j_1 = 0$ by (1.1). It follows that $i_r \alpha^2 i \in \pi_{2q}(V_r)$ is pulled back to an element $\eta_r \in \pi_{(p+2)q-1}(V_r \wedge W)$ as desired. Since $i_r \alpha^2 i$ is detected by $v_1^2 \in E_2^0(V_r)$, η_r is detected by the element $v_1^2 g \in E_2^0(V_r \wedge W) = E_2^0(V_r) \oplus g E_2^0(V_r)$.

Proof of Theorem 1.4. Consider the product $B_s\eta_r \in \pi_*(V_r \wedge W)$ for the element η_r in Lemma 2.11. Then, it is detected by $v_1^2 v_2^s g$, since η_r induces a $BP_*BP_{comodule map}(\eta_r)_*$: $BP_*(V_r) \to BP_*(V_r \wedge W)$ such that $(\eta_r)_*(x) = v_1^2 xg$ and B_s is detected by v_2^s . The map $\kappa_* : E_2^0(V_r \wedge W) \to E_2^0(V_r)$ assigns $v_1^2 v_2^s g$ to $v_1^2 v_2^s$, which is a permanent cycle detected by $\kappa(B_s\eta_r)$. Put now $\beta_{s/l} = jj_{l+2}a^{r,l+2}\kappa(B_s\eta_r) = j\alpha^{r-2-l}j_r\kappa(B_s\eta_r) \in \pi_*(S^0)$ for l < r-2, and we see the theorem by the Geometric Boundary Theorem (cf. [7]). Here, $a^{r,k}$ denotes a map in the cofiber sequence $V_{r-k} \to V_r \xrightarrow{a^{r,k}} V_k$ obtained from applying the 3×3 Lemma to the cofiber sequence sequences of (1.1) for r-k, r and k. We note that it satisfies $j_k a^{r,k} = \alpha^{r-k} j_r$. \Box

References

- 1. M. Behrens and S. Pemmaraju, On the existence of the self map v_2^9 on the Smith-Toda complex V(1) at the prime 3, Contemp. Math. **346** (2004), 9–49.
- 2. S. Oka, The homotopy groups of spheres II, Hiroshima Math. J. 2 (1972), 99-161.
- 3. Oka, Ring spectra with few cells, Japan J. Math. 5 (1979), 81-100.
- 4. S. Oka, A new family in the stable homotopy groups of sphere I, Hiroshima Math. J. **5** (1975), 87–114.
- 5. S. Oka, A new family in the stable homotopy groups of sphere II, Hiroshima Math. J. **6** (1976), 331–342.
- S. Oka, Realizing some cyclic BP_{*}-modules and applications to stable homotopy of spheres, Hiroshima Math. J. 7 (1977), 427–447.
- D. C. Ravenel, Complex Cobordism and Stable Homotopy Groups of Spheres, Second edition, AMS Chelsea Publishing, Providence, 2004.
- 8. K. Shimomura, The homotopy groups of the L_2 -localized Toda-Smith spectrum V(1) at the prime 3, Trans. Amer. Math. Soc. **349** (1997), 1821–1850.
- L. Smith, On realizing complex bordism modules, IV, Applications to the stable homotopy groups of spheres, Amer. J. Math. 99 (1971), 418–436.
- H. Toda, p-primary components of homotopy groups IV, Mem. Coll. Sci. Univ. Kyoto Ser. A, 32 (1959), 288–332.
- H. Toda, Algebra of stable homotopy of Z_p-spaces and applications, J. Math. Kyoto Univ., 11 (1971), 197–251.
- H. Toda, On spectra realizing exterior parts of the Steenrod algebra, Topology 10 (1971), 53–65.

Department of Mathematics, Faculty of Science, Kochi University, Kochi, 780-8520, Japan

E-mail address: katsumi@math.kochi-u.ac.jp