The existence of [y ,3 in stable homotopy of spheres at the prime three

Katsumi Shimomura

Abstract. Let 35 be the generator of the second line of the Fa-term of the Adams-Novikov spectral sequence
converging to the stable homotopy groups m«(S°) of spheres at the prime three. Ravenel conjectured that the
generator 3 survives to a homotopy element if and only if s = 0,1,2,3,5,6 mod 9. In [9], we proved the

‘only if” part. In [1], Behrens and Pemmaraju showed that 3 survives to a homotopy element if s =0,1,2,5,6

mod 9. In this paper, we show the existence of a self-map B: £V, — V, for r < 9, that induces v on

BP,-homology. Here V. denotes the spectrum characterized by the BPi-homology BP.(V;) = BPs/(3,v7]).
Oka [5] showed that the ‘if’ part follows from the existence of the self-map 8 on V3. Therefore, in particular,
we obtain Bost3 € T144:+42(S°). The self-maps show the existence of other members Bot/r € 144t —ar—2(S°)
for t >0and 0 <7 <9, B3;/2 € mast—10(5°) for t > 0 and Bot+6/3 € m144t+82(S?) for t > 0 of the beta family
in 7. (S9).

1. Introduction

Let S° denote the sphere spectrum localized at a prime p, and let V(n) for n > 0 denote the Smith-Toda
spectrum defined by the BP,-homology BP.(V(n)) = BP./(p,v1,...,v,). Here, BP denotes the Brown-
Peterson spectrum with coefficient ring BP, = Z,)[v1, va,...]. Note that V(—1) = 5°, and V(0) is the mod p
Moore spectrum M. It is shown that if n < 4, then V(n) exists if and only if p > 2n (cf. [11], [15], [7]). The
spectra V(0) = M and V(1) for p > 3 lie in the cofiber sequences
(1.1) 50280 L8t and P 2M S M S v() D e,
where a denotes the Adams map such that BP,(«) = v;. For the prime p > 3, L. Smith [11] defined the j3-
element as B, = jj13%1i for s > 0 in the homotopy groups ., (S°) by constructing the self-map 8: $2P°~2V (1) —
V(1). We notice that the cofiber of 5 is V(2). Hereafter, we assume that the prime p is three. Then, Toda
[15] showed the non-existence of the Smith-Toda spectrum V'(2), which indicates the non-existence of the self-
map 3. Thus, there seems no way to define the B-family in the homotopy groups . (S?) different from the
case where the prime p is greater than three. Consider the Adams-Novikov spectral sequence converging to
the homotopy groups m.(X) of a spectrum X with Es-term Ey"(X) = Extyp pp(BP., BP,(X)) for the Hopf
algebroid (BP,, BP,BP) associated to BP. Then Miller, Ravenel and Wilson [2] defined a (-element g5 for
s > 0 in the Ey-term E2'%°74(8%) as 68'(v3) for v§ € ES'%(V(1)), where § : EY'0~4(M) — EZ'074(89)
and ¢&': EY'%(V (1)) — B3 *(M) are the connecting homomorphisms associated to the cofiber sequences in
(1.1). Toda [12] constructed the homotopy element 3, detected by 8, € Ea*(S°) for s < 4 and Oka [3] showed
that 54 € E22 *(8Y) is not a permanent cycle and 35 is, and Ravenel conjectured that 3 is a permanent cycle
of the spectral sequence if and only if s = 0,1,2,3,5,6 mod 9. In [9], we proved the ‘only if” part. Behrens
and Pemmaraju showed in [1] the ‘if’ part except for B9;13 by constructing the self-map [5°]: L4V (1) — V(1)
that induces v§ on BP,-homology. Let V, denote a spectrum with BP,-homology BP./(3,v}), which lies in the
cofiber sequence

(1.2) IRV ANV SN VLS SR S VS

Note that V3 = V(1) and that V,. for » > 1 is a ring spectrum by Oka [4], while V(1) is not by Toda [15]. Oka
showed in [5] that the ‘if’ part of the conjecture follows from the existence of a similar self-map [3°]: L4415 — V3
that induces v§ on BP,-homology.

We study such a self-map in this paper. For this sake, we consider the element x106 = B9/9 &= 87 € 7106 (S9)
given by Ravenel [7]. Since the order of x1¢6 is three, we have an element x4 € m107(M) such that j.(z106) =
106, and define 3, = a7l 06 € T1a3_ar(M) for 0 < r < 9. By the self-map [3°] given in [1], we define the
B-element 3y = j1[3%)i1i, and aBy = 0 € m143(M); nevertheless, the relation aﬂé/l =0 € m43(M) is not trivial.
The following is our key lemma.

Lemma 1.3. a’zjos = 0 € m.(M), and so a’f,, =0 € m.(M) for 0 <r <9.

This implies that ﬂé/r is pulled back to v§ € m144(V;.) under the map j,, : 7144(V;-) — m1a3-—4.-(M). Since V.
is a ring spectrum if r > 1, the element v§ yields the self-map.
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Theorem 1.4. There exists the self-map [3°]: B4V, — V,. for 1 <r <9 that induces v on BP,-homology.
Corollary 1.5. (c¢f. Oka [5]) If s =0,1,2,3,5,6 mod 9, then 3, € E§’163_4(50) is a permanent cycle.

In order to define fBgs+3 and Bosig in 7. (S°) from the self-map, Oka showed the existence of the homotopy
elements v?v3 of m56(V3) and v10§ of m09(V2) in [5, Lemmas 3 and 4].

Lemma 1.6. There exist elements vivy and v1v§ € m.(Vy) that induces viv3 and viv§ on BP.-homology.
This follows from Lemmas 3.17 and 3.18. In the same manner as Oka did in [5], we obtain

Corollary 1.7. Lett be a positive integer. Then there exist essential homotopy elements Bgt/r S 7r144t,4r,2(50)
for 0 <r <9, B3, € Tagt—ar—2(S%) for r = 1,2 and Bot—3/3 € m144t—62(SY) of order three. Besides, we have

Bgt/g € Taar—3s(SY) such that <O‘1537§9t/9> = Pot/s-

Here, o, € m4,_1(S°) for r > 0 denotes the a-element defined by a, = ja™i for the maps in (1.1). These a-
and [-elements satisfy the Toda bracket relations (g, 3, Bo;/r) = Bot/r—r for 0 < k <, (1,3, B31/2) = P3¢ and

(2,3, Botte/3) = (1,3, Bort6/2) = Potye in the homotopy groups 7.(S%) by definition.

Proposition 1.8. Lett be a non-negative integer. Inm.(S°), (., 3, Botsr) = 0, (1,3, 83) = 0, (a2, 3, Bory3/2) =
Bor+207 (t > 0), (3,3, Boryess) = Bor+s07 and (s, 3, Borrss2) = Por41B1 up to sign.

The cofiber of the self-map of Theorem 1.4 yields the spectrum M(1,7,9).
Corollary 1.9. There exists a spectrum M (1,7,9) such that BP,(M(1,7,9)) = BP,/(3,v],v)) for 1 <r < 9.

Furthermore, the element 4 itself is pulled back to an element detected by v§ +v$v] by Lemma 1.3, which
induces the self-map (see Corollary 5.1).

Proposition 1.10. There exists a spectrum M(1,9,9) such that BP,(M(1,9,9)) = BP,/(3,v],v) + v§v]).

This paper is organized as follows: In the next section, we introduce the §-elements in the Fo-terms of the
Adams-Novikov spectral sequence, and then we determine some Adams-Novikov FEs-terms by Ravenel’s small
descent spectral sequence. In section 3, we show Lemma 3.13 on the differential d5(v3), which plays the crucial
role to show Lemma 1.6 and Proposition 1.8. Section four is devoted to study the homotopy group mi43(M).
By use of this, we prove Lemma 1.3 in the last section. We also introduce §-elements in the homotopy groups
7.(S%) and prove Corollary 1.7 and Proposition 1.8.

The author would like to thank the referee for not only reminding him that ds(v3) # 0 in the Adams-
Novikov spectral sequence for m, (V4 Ugz ¥21V7), but also pointing him out that original version of Lemma 5.4
is ambiguous.

2. The (-elements in the E>-term of the Adams-Novikov spectral sequence and the small descent
spectral sequence

Let BP denote the Brown-Peterson spectrum at the prime three. Then it defines the Hopf algebroid
(BP,,BP,BP) = (m.(BP), BP.(BP)) = (Z(3)[v1,v2,...], BP,[t1,t3,...]). The internal degrees of the genera-
tors are |v,| = 2 x 3" — 2 = |t,|. The structure maps of it behave on generators as follows:

nr(v1) = v +3t1, nNr(ve) = ve +v1ts —v3t; mod (3),

nr(v3) = v3 + vaot] — v3t] +v1t3 mod (3,v?)

A(tl):t1®1+1®t17 A(tQ):t2®1+t1®t?+1®t2+’l}1b10 and
Alts) =t3 @1+t @13+t @] + 1 @ t3 + vabiy +vibyy  mod (3,v3),

where by, for k£ > 0 and by is defined by
A3y =3by, and  d(£3) = —t3 @ 9 — v3byy + 3byo

in the cobar complex QEP*(BP)BP*' This implies

(2.1)

(2.2) bk = —t?k ® t%x‘gk - t%XBk ® t‘;’k and  d(byg) = bio @t —t3 ®@by; mod (3).

It gives rise to the Adams-Novikov spectral sequence Ey* (X) = m,_(X) with E3"(X) = Exth’tP*BP(BP*, BP,.(X)).
Consider the spectra M and V. for r > 0 defined by the cofiber sequences (1.1) and (1.2). Then they induces
the long exact sequences

o B3(S°) B B3(S°) <5 B3 (M) > B5TH(S°) -, and
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of the Adams-Novikov Fs-terms. By (2.1), we see that for ¢ > 0,
(2.4) vh e ESN (V). o3t e EY*N(V) (0<r<3), and o € EYM(V) (0<r<09).
We define the 3-elements 3, in E}(M) (resp. B/, in E3(SY)) with 3] = Bip (resp. By = By1) by

(2.5) Bijr = 0r(v)  (vesp. Byyr = 60, (v3)),

if vi € E9(V,.). By cochains of the cobar complex Q% p.ppBPx, these B-elements are represented as
(2.6) Br=[bio], Bajz=1Ibui+--], By=[-vat] +vitd + vivaty + vt 4+ 07]],
where - - in the representative of 35,3 denotes an element of the ideal (3, v}).

We call a spectrum R a ring spectrum if there exist a multiplication y: RA R — R and a unit ¢: S° = R
such that u(¢ AR) = 1g = u(RAt): R — R. Note that the mod 3 Moore spectrum is not an associative ring
spectrum by Toda [15, Lemma 6.2], and neither are V,’s. Though V7 is not a ring spectrum [14], Oka showed
in [4, Ex. 2.9] and [4, Cor. 2.6] the following theorem:

(2.7) (Oka) V. for r > 1 are ring spectra.

In order to study the FEo-terms of the Adams-Novikov spectral sequence, we adopt Ravenel’s small de-
scent spectral sequence. Ravenel constructed spectra T'(m) and T(m)y for m,k > 0 such that BP.(T(m)) =
BP,[t1,...,tm] C BP.(BP) and BP.(T(m);) = BP*(T(m)){tfnJrl :0<j<k}C BP(T(m+1))in [7] and
[8], which fit in the cofiber sequences

Kom, m,k

tm,k 3 m A
T(m)ge_1 =S T(m)gerr_q 223 C" =D (m)y o ST (m)ge_,  and
T(m)zxzzk—l T T(m)?,wrl 1 24x3"'(3”"”+1 —1)T(m)3k—1/\f' 2T(m)2x3k—1

m,k m,

Lvn,k k
(see [7, (7.1.14), (7.1.15)]). These induce an exact couple that defines the algebraic (resp. topological) small
descent spectral sequence

ABY = Ml © Z/30bu 1] © B5(X AT(m)geen_1) = F5(X AT(m)ge_y)
(resp.TEl’ = A(hm+17k) X Z/3[bm+17k] X TI'*(X A T(m)3k+1_1) B 7T*(X A T(m)gk_l))

(2.8)

(2.9)

. 1,0 1,2 3k(gm+l_q 2,0 2,2 gk+1gm+1_q
for a spectrum X with hy, 1, € AE;" (resp. TE;™" ( )), bmsix € AE, (vesp. TE]™™ ( )

and d,: AE" — AT (resp. dy s TEDT — TESYTTY (¢f [7, Th. 7.1.13, Th. 7.1.16], see also [8,

Th. 1.17, Th. 1.21]). Here, h;; and b;; are represented by a cochain of the cobar complex Q*BP*(BP)BP* whose

leading terms are tfj and ft;‘»sj ® t?xy - th?’] ® t?], respectively. Let s and t denote positive integers with
t — s < 144, and consider the mod 3 Moore spectrum M. Then, we see that E5(M AT (3)) = Z/3[v1, va,v3),
which is isomorphic to E3(M A T(2)z2). The small descent spectral sequence 4 E; = A(hsg) ® Z/3[v1, va, v3] =
E3(M AT(2)) for m = 2 and k = 0 collapses from the Fj-term. In our range, E5(M AT(1)s) = E5(M AT(2)).
The spectral sequence 4Ey = A(hay, hso) ® Z/3[v1,ve,v3] = E5(M AT(1)3) for m = 1 and k = 1 has the
differentials induced by the relation dj(vs) = viho; read off from (2.1). Then, we obtain E5(M A T(1)z) =
(Z /3[v1,v2) ® ho1 Z /3[v2] @ A(v3)) @ A(hso). In the spectral sequence 4E; = A(hag) ® Z/3[bao] @ E3(M A
T(1)2) = E5(M AT(1)), the relation d;(hsg) = v1b2o seen by (2.1) yields non-trivial differentials and

(2.10) E;*(M A T(l)) = (Z/?)[’Ul7 1)2] ©® bzoZ/?)[Ug, bzo] S h21Z/3[U2, bgo] ® A(vs, hgo)) ® A(hao).
Put X = T(0)3x_;. Then, the spectral sequence (2.9) is rewritten as
(2.11) AE, = A(hy) ® Z/3[bk] @ E5 (X A Xpy1) = E5(X A Xy)

for a spectrum X and k& > 0. Here, hy and by denotes the elements represented by the cocycles t:fk and byy,
respectively.

Lemma 2.12. The Ex-term E5(M A Xo) with the internal degree less than 144 is isomorphic to the tensor
product of A(hag) and the direct sum

Z/3[v1,02]/(v3) @ A(ha) © b2Z /3[v1,v2]/ (vF,03) ® haZ /31, v2] / (v}, 05)
®Z /3[v2]{ha1,b20} @ A(bag) B hoho1A(vs, hao) @ habaoA(ha1, bao).

Proof. Noticing that E3*(M A X4) = E3(M AT(1)) in our range, we see that the spectral sequence (2.11)
for k = 3 collapses and so E;"(M A X3) = E3"(M AT(1)) ® A(hs). Consider the spectral sequence (2.11)
for k = 2. Then, the differential d;(v3) = vihy and d;(vSha) = v§by act on the first summand of (2.10), and
d1 (1}3]121) = 1}2/7,21/7,2 and d1 (hgthO + U3b20) = ’Ugbzohz + h21 hgohg act on the direct sum of the second and the
third summands of (2.10). Observing the homology of each summand gives the lemma. q.e.d.
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Since |vg| = 2 x 3¥ — 2 = |t} and |by| = 48, the lemma implies the vanishing line.

Corollary 2.13. The Ex-term E'(M A X3) = 0 if one of the following conditions holds: (1) s > 5, (2) s =5,
t<112, (3) s=4,t<96, (4) s=3,t <64, (5)s=2,t<48, (6) s=1,t< 16.

Corollary 2.14. The homotopy groups m.(M A X3) is isomorphic to the Ea-term.

We notice that this is also shown by the topological version of the spectral sequence (2.11):

(2.15) TE, = AMhi) ® Z/3[b] @ me(X A Xpp1) = m(X A X3).

Lemma 2.16. E§’52(V3) C Z/3{Z'3*55512,ig*i*alﬁg/gﬁh’U%’Ughoﬁ%}.

Proof. Consider the exact sequence
3 . .
ESTROM A Xo) D BSH(M A Xo) B3 ESN(Vs A Xo) 25 BSTV 2 (M A Xy).

For the internal degree less than 53, Ej(M A X») is isomorphic to (Z/3[v1,vs]/(v3) ® haZ /3[v1,v2]/(v])) ®
A(hao) ® Z/3{ha1,bs} by Lemma 2.12. Since js,(v3) = ha, F3(V3 A X3) is isomorphic to the direct sum of
v3A(v1) and the image of i3, : i3, ((Z/3[v1,v2]/ (v}, v3) ® ha Z /3[v1, v2]/(v3)) @ A(h2o) ® Z /3{hs1,b20}). By the
spectral sequences (2.11) for k = 0 and 1, we see that Ey°>(V3) C (E3™* (Vs A X2) @ A(ho, h1) @ Z/3[bo, bl])5’52 =
Z /3{iz, v3vahob?, iz, vah1bE, i3, hob1bo}. Since by = B, i3, v2h1 = B and hoby = ix0133/3, the lemma follows.
q.e.d.

Lemma 2.17. Each element of Ey (M) is killed by v?.

Proof. Consider the spectral sequences (2.11) for k = 1,2. Then, v? killed elements of E5'*®(M) originated
from the summands of E} (X2 AM) other than the first summand A = Z/3[v1, v2]/(v3) @ A(hzo, hs, b2). Put K =
{z € B (M) : vdz = 0}. Then, ES'(M)/K C (A® A(ho, h1) @ Z/3[bo, b1])*'*® by the spectral sequence
(2.11) for k = 0,1. We consider the complex A ® A(h1) ® Z/3[by] with differential given by dy(ve) = v1hy and
dy(v3h1) = viby. Then, the cohomology of it is (Z/3[v1]®b1 Z /3[b1]@A(v1) ® hiA(v2)®Z /3[b1]) @A(hao, hs, ba).
Similarly, consider the complex Z/3[v1] ® A(ho, hao, hs, b2) ® Z/3[bg] with differentials given by da(vihao) =
v2bg. Then its cohomology is (Z/3[v1] @ Z /3{hao, bo, v1bo} @ Z /3[bo]) @ A(hg, h3, bs), and ES"°(M)/K = 0 as
desired. q.e.d.

Lemma 2.18. In the Ey-term E3(Vy), hib? = £v3h b2

Proof. Consider elements of E2(V;) defined by the Massey products: b, = (hn, s Bn)y Gn = (hny By 1),
kn = (hn, hnt1, hny1) and a, = (A, Ry, hpyo). Then these satisfies bphy 1 = Angn, Angnt1 = knhnio and
gnhnt2 = hpay by the juggling theorem [7, Th. A1.4.6]. Furthermore, the differentials d(bag), d(t3) and d(vs) of
the cobar complex Qpp, (pp)yBP./(3,v1) gives us the relations hib; = boha (by (2.2)), ap = v2b1 (by (2.1)) and
vohy = v3hg (by (2.1)), respectively. Now the lemma follows from the computation h1b? = haob1by = h1g1by =
glhOgO = kogohg = k‘ohoao = UQQOhlbl = 'Uggohgbo = Ughogobo = Ughlbg in E;(Vl) qed

Lemma 2.19. Let z € Ey?°(M) be the element that detects izgy € moo(M). Then, biz # 0 € B> (M).

Proof. The element byz € ES’NS(M) is essential, since wg2(3; is the generator of m102(S°) of order three in [7,
Table A.3.4]. In the spectral sequence (2.11) for k = 0, a killer of b3z sits in the direct sum of

By M A X)), By MO (M A X)), ESTP(M A X)), ESY (M A X)), B30 (M A Xy) and ESM(M A X).

Since Ey*(M A X1) C Ey™*(M A Xa) ® A(hy) @ Z/3[b1], we see that the above Fa-terms are zero except for
EFPO(M A X)) € Z/3{hb3} and ESMO(M A X1) © Z/3{vahaoh1b3, vihaohi b3, 0303} by Lemma 2.12 and
Corollary 2.13. We see that di(vivahaob?) = vihooh1b? and dy(v3h1b3) = v3b3 in the spectral sequence (2.11)
for k = 1. We also see that d,.(h1b3) = 0 and dj(vah1haob?) = v1v2b3hg in the spectral sequence (2.11) for
k = 0, and nothing kills the element b3z in the spectral sequence (2.11) for k = 0. q.e.d.



The existence of Bg:43 in stable homotopy of spheres at the prime three 5

3. The Adams-Novikov differential on v3
In this section we compute the Adams-Novikov differential on v3 € Eg ’48(V3) by use of some relations in

[M, M], given in [14, (6.5), Th. 6.8]:

3

(31) (111 015,8(1) = ﬂ(l)éa

(iv) Ba)Bay = dadB1y6B(1)6

(V) afa) = Beya = BaydBa)dBa)
Here, a denotes the Adams map as before, § = ij, By = ji[Bi1] = [j1B]ir and B2y = [j16][Bi1], in which
i,7,11,j1 are maps in (1.1) and [3i1] and [j10] are the elements introduced in [14] to define the (-elements
B = 7Byt in my (S9) for k = 1,2. For the later use, we also introduce elements:

(3.2) e = (1,00, 3) = jB1)Beyi € m37(S°) and € = B1)Ba)i € m3s(M).
Note that e (resp. ¢’) is detected by hoby € E3*°(S°) (resp. aib € TE10’38(M A X7)). Before computing the
differential, we show the following well known lemma which is shown easily from the above relations:

Lemma 3.3. §(1)i3] = 0.

Proof. This follows from the computation: ﬁ(l)iﬁ? = B(1)08(1)08(1)08(1)08(1)0B(1)i = B2yadaB(2yi = 0, since
6(2)012 =0= Ozzﬂ(g). q.e.d.
Since (33 generates m42(S?) and is of order three, we have an element B3y € [M, M43 such that jB3syi = fs.

We also consider the operation 0: [X,Y]. — [X,Y].11 given in [14, p.209]. Toda [14, (2.10), (3.7)] shows that
for any £ € [M, M],,

(3.4) fa — at = adf(§) — 60(&)a = —0(&)da + (—1)"tad(€)s.

It is shown in [14, (2.7)] that &6 — (—1)16¢ + 00(€)S = (j&i) A 1y for € € [M, M];. By [14, Th. 6.4, Th. 6.8], we
see that B0 + 085y = Bs A 1a for s = 1,2, and so

(3.5) (B5)0 + 66(5))& = E(Bsy0 + 0B(sy) (s =1,2) for any & € [M, M], (cf. [14, (3.8)"]).

Proposition 3.6. In [M, M4z, we have the following relations up to sign:

ab@) = BBy — B1)0B2)081) + 081)B2)08x)
= —BwB2)981)0 +081)B2)08x)-

Proof. From [7, Table A3.4], we read off the homotopy group [M, M]y7 = Z/3{B31)681)0B2), 81)B(2)08(1),
6(1)6(2)56(1)6} (see (32)) By (31) and (35),
(3.7) ByB2)0B1yd = Buy(Be)d +B2))B81)0 — BydByB1)yd = —B1)6B2)B1)d
= —B1)0B82)(B1yd +08(1)) + B1)dB2y081y = —B1)ydB1)0B82) + B1)0B2)081)-
Then, we put
(3.8) aBz) = aB1)081)082) + bB1)082)08(1) + cdB(1)B(2)08)
for some a,b,c € Z/3. Since 0(B3)) € [M, M4y = Z/3{a'?,iz455}, we put
0(B)) = matt + nizysj
for m,n € Z/3, and see that 00(6(3)) = mda*'. By (3.1), (3.4) and (3.8), afz — a?B(3) = a(adbd(Bs)) —
60(Bs))a) = m(a?dat! — adat?) = m(—dat? + al3d),
of@e = a(B1)0)*Bay and o) = c(Bw)d)* Bay.
Since [M, M]s51 = Z/3{5a'3, a'36, (ﬁ(1)5)4,6(1)755(2)55(2)6}, we see that a = ¢ and m = 0. On the other hand,
(a+b)a1fiB; = aiB:(aBifa + bG3i6s)

= a1625(aB1)08(1)082) + bB1)0B2)08(1) + cdB(1)B(2)081))

= wafjafii (by (3.8)) = BeanjafBiyi = jhe)dadafsyi

= jBeyadadfsyi  (by B.1)() = j(B1)6)’adfs)i

= [Paifs = 0 (since a1} € m33(S°) = 0)
in w75(SY) = Z/3{019} B Z /9{ w75}, where 3x75 = 3753 It follows that b = —a. If a = 0, then B3yi € ma3(M)
is pulled back to v3 € 7, (V;) under the map j;, and so v3 € EQ**(LyV}) is a permanent cycle, which contradicts
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to [9, Prop. 8.4]. Here, Ly denotes the Bousfield-Ravenel localization functor with respect to vy LBP. Therefore,
’ 7'éT(I)l.e second equation follows from by (3.7). q.e.d.
Remark. In this proof, we also show that 66(8(3)) = 0 = 0(8(3))J, and so B30 + d83) = Bz A 1.

Note that 7, (S°) is a commutative ring and ic = 3By Be2yi by (3.2).

Corollary 3.9. af; =igf € mys(M) up to sign.

Corollary 3.10. In the Adams-Novikov spectral sequence for m,.(V1),
d5(v3) = i1, i(a1P8s/361) € E2%(W).

Proof. Since ji,(v3) = B4 € Ey*(M) is a permanent cycle in the Adams-Novikov spectral sequence,
11+ (0%) = i1,(af;) must be kllled by v3, and the corollary follows from Corollary 3.9, since £ € m37(S°)
is detected by a13/3 € ES’AO(SO). q.e.d.

Lemma 3.11. For the maps 6 and &3 in (2.3), we have §63(vivahg) = hobo in E3(S°).

Proof. Note that voho in EJ(V3) is represented by wvat; — vits + viti. Then a routine computation with (2.1)
shows d3(v3vghg) = v1by, whose d-image is hoby, since 6(v1) = ho and 6(by) = 0 by (2.1). q.e.d.

Recall [13] the Toda differential
(3.12) ds(Bs3) = £ B} = Lhoby € Ey**(S°).
Lemma 3.13. For v3 € ES™(Va) in (2.4), ds(v3) = igxix(133/301) £ vivaho 57 € E>%(Vs) up to sign.

Proof. By Lemma 2.16, we put

(3.14) d5(v3) = ais. (By57) + bis. i1 Baya 1) + cvivaho 5 € Ey™(Vs)
for integers a,b,c € Z /3. Consider the cofiber sequence
(3.15) 24, S v 2y, 23y,

obtained by Verdier’s axiom from the cofiber sequences of (1.2). Send the equation (3.14) to E3 (V1) under p31,
and we see that a = 0 and b = +1 by Corollary 3.10.

Next send (3.14) to E3(S°) under the maps d3 and 6 in (2.3). Then we obtain ds(83/3) = chobj in E3(S?)
by Lemma 3.11, and the Toda differential (3.12) shows that ¢ = £1 as desired. q.e.d.

Lemma 3.16. ds(vy'™®) = £8§, ,b3 € EY' % (V)) for t > 0 and d5(v90) = £8),, 508 € E3" (1)
fort>0.

Proof. In this proof, we compute everythlng up to sign. By Lemma 3.13, d5(v 9”3) = v9hoby bo—i—vlvthhObQ
E5 144’5+52(V3)7 and so ds(v 9t+3) = v hob1by € E5 144t+52(V1). The cochain vg 3ugbigb1 yields the relation
vgthobobl = vy 9 =2hyboby of homology, which equals UQt_zhlbf by d(vgt_2b20b1) with (2.2). Then the first relation
follows from Lemma 2.18, since 3}, 5 = v3' " hy.

The second one follows similarly from ds(v 91tJFG) vgt+3h0b1bo € ES’144H100(V1). q.e.d.

Lemma 3.17. do(v1v3) = +hb} in Ey®(V3), and v3}vd is a permanent cycle in E®5%(V).

Proof. Consider the cofiber sequence (3.15). Lemma 3.13 shows that ds(v3) = £hoboby in E5**(Va). Let
go be the element defined by the Massey product (hg, ho,h1), which contains an element represented by the
cochain t; ® to — t7 @ 5. Then, d(t; @ to — 3 @ t3) = v1t; @ by in the cobar complex Q3BP,/(3), which shows
that 812, (go) = hobo for the connecting homomorphism §12,. It follows that ds(v3) = d12,(gob1). Furthermore,
ds(gob1) = gods(b1) = £gohob3 = £h1bd, since by belongs to the Es-term E2(S°) and go € E2(V1) is a permanent
cycle. Therefore, do(v1v3) = do(@.(v3)) = £hibh € ES0(V3).

Send the relation to V, under the map a: V3 — V, obtained in the same manner as the one in (3.15), and
we have dg(vivi) = fv1h1bg = 0, since vihy = vihg in the Es-term by d(v2) and v?hob3 = 0 in the Eg-term
by the Toda differential. The elements aq = hg € Ey*(S°) and f; = by € E5?(S°) gives the vanishing line:
EyY(X) =0if t < 65 — 2 for a connected spectrum X. It follows that £’ SJF55(V4) =0 for s > 9, and v?v3 is a
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permanent cycle. q.e.d.

In [5, Lemma 3], Oka showed the existence of the element [a3%] € m100(Vz) detected by vyv§ € ES'%(V5).

Lemma 3.18. The element v1v$ € Ey'°°(Vy) is a permanent cycle, which detects an element [63°%] € m100(Vy).

Proof. From Ravenel’s table [7, Table A.3.4], we read off the existence of f;,, € ms3(M). Then a2ﬂé/3
belongs to mg1 (M), which is a Z/3-module generated by (3§, 8172, i812s1 and iaas by the table. We may put
azﬂéw = 0% + aif1y2 + bif1asy for some a,b € Z/3, since 3§ and iaos are detected by elements of Eé’gz(M),
and a2ﬂé/3 = (3 in the Ey-term E5*(M). On the other hand, Oka’s result shows that o235 = a2js, (v105) = 0.
Besides, a?if; = a23j1[Bi1]i = —(da? + ada)j1[Bi1]i = 0 by (3.1). It follows that a4ﬁé/3 = a?(B5 + aiBiye +

bif1xg1) = 0, and ﬁé/g is pulled back to v1v§ € m100(Va) under the map ju, : m100(Va) — ms3(M). q.e.d.

4. On the homotopy group 7435(M)

For proving Lemma 4.5 below, we read off the homotopy groups (M A X;) from Ravenel’s table [7, Table
A.3.4]. Here M and X; are the mod 3 Moore spectrum and Ravenel’s spectrum considered in section two. Put
X; =T(0)1, and we have the cofiber sequence

(4.1) 5§32, 60 X B gt
We read off the homotopy groups m.(M) from Ravenel’s table [7, Table A.3.4] and we obtain the homotopy

groups 7. (M A X7) as in the following tables. In the tables, &’ € s 1(M) for an element & € 74(S%) denotes
an element such that j,(&') = £&. We further notice the relations

(4.2) a1, (a3%) = a®*6ai = dazp 1, a1, () = a3 5ai = —a®F(6a? 4 a?0)i = iaspg e,
by (3.1) and ay, (a®*1i) = ik /y42 DY v:fkflho =iy p42) in the Ey-term for v = max{n : 3"|k}.
’ dimension k H Fk,g(M) H 7T]€,3(M) ‘ ﬂ'k(M) H 7Tk,4(M) ‘ 7Tk,1(M) H Wk(M/\Xil) ‘
Q26 . 5 . 1111065 159 /9,
. i 4T ,
106 0 ﬂé/?ﬁ% iT106 ﬂ;/,g’%g 7,95261 YB3y h20’72517/
Tho 1 8171 12 (B1y, By B 3)
i - o izgs, 0oy 2,
22 P a”, i3106/3, i1 51863, hao"a2,
96 a= L92, B . Bra / '8 24
B . B1 6/3~71¢1 ’71251, 7/2 1001, L%t
6/3 Blxs1 Brrsian
/
. ) ! s, ’ Y2l
36 10 T75 112, féﬁ 725 ;,2’ TG 01, 1101275,
= izgsf1 ﬂé/g i/ /0471 iﬂ?; i1 Bg /3, 111036 /2
6/3 / iB1x75
17, 19, 18; taqg, 19,
al’i at?q al8q , 1109
76 ) ) / 2 5 ) 9 i i %
1268 Bal0b1 B5 2871 i3 55 57/5’ LT
5

Here, we use the relations r1,(if/9) = i66/3ﬁf, k1. ((Bays 6(1),ﬂé/3>) = x4, 6? and k1, (h2oY2) = T2 given in
[7, Th. 7.5.3] in the dimensions 106 and 96. In the dimension 76, 125, € m76(M A X7) denotes an element
detected by 1, (2hs) € Ey®*(M AX7) for aby € Ey®°(M) such that §(ahs) = x75 € Ey®°(S°), where § is

the connecting homomorphism in (2.3). The element z7; € F.

ds(2hs) = i1 B33, and k1, (112hs) = i3733.

4,80

(M) supports the Adams-Novikov differential

’ dimension k H T—s(M) ‘ T—5 (M) H mg—7(M) ‘ T—a(M) H Th_a(M A X71) H (M) ‘
ias, B, Beat, a3, iy, 1Qigy )2, s
99 201, a1 P12, 131563, i1 51063, a3 ixgg’
128151 i353% V551, 5, B, vyBan, B BE
. . i1 63
iy a?li, iB36/3; V’Otl/
89 7 iQ1y2, V2 2 11101775 0
181 i0n Tl 2 Tg101,
81 131775
. ‘ Ozlsi, '5'0115% L11$Z57 x’75a1,
79 g3 i35 29 20 1275, 113, ‘
10183 / — 1020
B a18/3
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Here w99 = (a1, a1, Z92) and xg1; = B5051, and @5 denotes an element such that ky (@) = ias.
Consider the commutative diagram

p—7(M) ——= m—7(M)

A (e %1

Fk(M) % ﬂ'k(M/\E) L’ 7rk—4(M) L’ ﬂ-k—l(M)

’ !

(M) ———— (M A X1) —"— m_y(M AX7) —2— M1 (M)

Ti—s(M) ——= m—s(M)

induced from the cofiber sequences in (2.8) and (4.1), in which ¢, //, k and " denote 19,0, L, 0,0 and kg o in

(2.8). We notice that AN = 8 A M and N\ = 8; A M A X;. Then we obtain the following lemma from the
above tables:

Lemma 4.3. The homotopy groups mp(M A X1) are as follows:

Ti06(M A X1) = Z /3{viz106, 1899, ' (B(1), B1ys B 30 }-
moo(M A Xy) = Z /3{tixgg, a3 }. Here, x99 = {1, i1, T92).
7T96(M A Xl) = Z/3{La24i, L/hgo’}/g}.
mso(M AN Xy) = Z/3{/ns}. Here, k1,(n3) = iB1275.
7T86(M N Xl) = Z/3{Lﬁi$75, Liﬁ(;/g}
7T79(M A\ Xl) = Z/3{L’u’2,m}
7. m6(M A Xy) = Z/3{1a i, 12l }
Here, a; denotes an element such that k. (a5) = ias for the projection k': M N X1 — M to the top cells, and
wals € mya(M A X1) denotes an element detected by t.(2h5) € Ey® (M A Xy) for by € Ey®O(M).

SOt Wi =

Proof. From [7, Th. 7.5.3], we read off the relations
Re(U'n3) = wifriars,  Ka(uz) = Bs and K, (baof2) = wes.

In dimensions 99, 96, 79 and 76, we use the relation (4.2). Furthermore, in dimension 106, N (ixgg) = haoy201,
since K1, (hooy201) = 12921 = i1Tgg = K1Nixgg, and so ¢/ (haoyefB1) = N (izgg) = 0. The element N (i) €
77(M A X7) satisfies k1N (i) = ia; and AN (i) = i3;. This together with 81275 # 0 € 7.(S°), we see that i 275
is not pulled back to 7gg(M) under the map «’. In dimension 79, note that A (t1ix75) = ixrs1 = if1268 # 0.
We also see that izgs is not pull back to 776(M A X1) under &/, since Nizgs # 0 by AN izgs = 1265 # 0. q.e.d.

If ¢ € m.(X) for a spectrum X is detected by an element = € E5(X), then we write filt £ = s. Let H; denote
the subgroup of 7 (M A X1) generated by the elements with filt £ > s.

Lemma 4.4. The subgroups H; of the homotopy groups m:(M A X1) are as follows:
H1840 =0.

Hf33 - Z/3{b1Lil’99}.

H1630 C Z/S{blblhgo’}/g}.

H1523 - Z/3{U2h20b%0, blblng}.

H%?O C Z/3{b1Lﬁi$75, blbiﬁ6/2}.

H1313 = 71'113(M A Xl) C Z/3{b1L/u,2}

7. H1210 = 7T110(M A Xl) - Z/3{U1b2,b1b$,75}.

O3 O s OO =

Proof. Observe the spectral sequence (2.15) for k = 1, and we have a spectral sequence
(M A X)) @ him—11(M A Xo) ® bimp—3a(M A Xq) = m (M A X7).
In particular,
KP @ MK}, ® b1 H; =3 = H.
Here, K} denotes the subgroup of m;(M A X3) generated by the elements with filt £ > s. By Corollary 2.13,
we see that Hby, C biHSys, Higs C biHSy and HYyy C biHgs. Since HYyy = 0, Hyy = Z/3{vizgg} and
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His = Z/3{(haoy2} by Lemma 4.3, we obtain the first three inclusions of the lemma. By Lemma 2.12, the
above spectral sequences for the other homotopy groups are:

Z [3{vahoob3y} & biHiy = HPys,  Z/3{vah1ha1bag, vihihaoobao} & b1 His = Hiyg,
Z/?){’Ul’l)ghlhghgo} G b17T79(M A\ Xl) > 7T113(M A Xl) and
Z [3{v1ba, v3haoha1, v3bao, vi2v3 hy hag, v vahy hoo, Vit hihoo, v3hiha} @ bimre (M A X1) = m110(M A X7).

Let g1 denote an element represented by the cocycle t?@t% —t?@t?—‘rv%bgo in the cobar complex. Then vahqha1bag
is replaced by Ugbgogl. Since dg(Ungo — h1h30) = Ughlbl, d3<’02h1h21b20) = dg(’l)gbgogl) = U2h1b1g1 = Ughgb%
mod (v3). Indeed, g1 = (h1,h1,h2) mod (v}). Thus, the first element of the second spectral sequence dies.
For the second element, we see the essential differential do(v3hihaobag) = v3hohihaobag = —vivahahoghiby,
since ’U:fbgo = —hogho — ’U%”Ugbl. In the third spectral sequence, d; (v%hghgo) = vlvg’hthhgo, and in the last
spectral sequence, di(vihagha1) = vihaohiha, do(vibag + v3haoha1) = v3v5haby, di(vi3v3hihag) = vi%hagby,
d1 (U%6U%h20) = —U%7’U2h1h20, d1 (U%nghgo) = U%lhlhgo and dl (’U%hgl) = U%hlhg. Therefore,

Hi:)23 C Z/?){Ughzobgo} EBb1Hg9, HilQO - b1H8267 7T113(M/\X1) C b17T79(M/\X1) and
71'110(M/\X1) C Z/3{’Ulb2} @b17T76(M/\X1).

We observe that ta'?ib; = ta'®e’aq = 1a'®f(1)B2)yicy = 0 by (3.1) and (3.2). We further see that @z 3b; =
v1°byvghg = 0, since v§by = vihihy = 0. Here, aig/3 = v{°vahg for an element vahg by the definition of @yg;3.
The lemma now follows from Lemma 4.3. q.e.d.

Lemma 4.5. Each essential element of m143(M) has the Adams-Novikov filtration less than nine.

Proof. Let Gj denotes the subgroup of m;(M) consisting of elements & with filt £ > s. As above, we have
another spectral sequence
Bimios(M) © D S B HY 3 105 -3 = Glus
£4+25<7,6=0,1,s>0
arising from the spectral sequence (2.15) for £ = 0. Indeed, comparing with (2.11) for k£ = 0, we see that the
above spectral sequence detects G¥,5. From Ravenel’s table [7], we read off the homotopy group mo3(M) is
Z /3-module generated by iaag, 5(1)i6186/3 and (2)5(1)i61, where 7(2) denotes an element such that jy()i = 2.
Note that Ravenel wrote xgy for jvy(2)B(1)i. It is well known that f(1yi3; = 0 and so 3§ = jf1)i3] = 0 (see
Lemma 3.3). Besides, ags01 = ja%dﬂ(l)i =0 by (3.1). Thus, the first summand of the E;-term is zero.
Next we evaluate 7113(M). Similarly consider a part of the above spectral sequence:

Bimio3(M) @ armiio(M A Xq) & m13(M A Xq) = ma3(M).

Then, the generators v1bo and blﬁ € m10(M A X;) are pulled back to 7119(M A X1), and we have A, (viby) =
v1hoby and )\*(blﬁ) = ¢'zy5 in m13(M), since A\ (112hs) = aizrs. The element hobs is represented by
(ozhal,ﬁg/s), since ds(by) = hob? in the Adams-Novikov spectral sequence [6], and a1 = hgy and B33 = by in
the Fa-term. Turn to the generators of m113(M A X1). di(Jubby) = ke (Jubby) = ¢8Lby, which is detected by
viv3hy € m75(M A X3) in the spectral sequence (2.15) for k = 2. No generator of mgg(M A X5) and m119(M A X2)
hits any of 3% and X1, for the boundary Ao, : m75(M A X1) — mos(M A X) induced from the map in
(2.8). Indeed, the relevant generators of m.(M A X3) are viha, viba, v3bag and vihaohai, and none of the
differentials on them hits v?vahy € m75(M A X3) in (2.15) for k = 2. Therefore, di (/'ubby) = 185b1 # 0. These
argument shows that m1135(M) C Z/S{i(ag,041,ﬁfﬁﬁ/3),5’:1:75,ﬁ(l)iﬂfﬂ6/3,’y(g)ﬂ(l)iﬁf}. Here v1hgbs represents
aifar, o, B3 5) = i{az, a1, 67 Bs/3)-
We next consider

Brimiiz(M) & armigo(M A X1) & Hipy = Glos.
In the spectral sequence, di(v2haob3y) = hohihaibaohao + ... and wahogb3, dies in G353. The localization
map E3(M) — E3(LaM) assigns n3 to 8s¢1 by [7, (7.5.7)], and we have the Adams-Novikov differential
d5(/86b1<2) = ﬂﬁhgb%CQ 7£ 0 by [9, PI‘Op. 997 Cor. 104] It follows that b1773 € 71'123(M A Xl) also dies in
the above spectral sequence. Noticing that byt = /11012 and Ae1biz = a1b1x = ez, we obtain
Ya3 C Z/3{uB1exrs, 1ifs 28, (iva, a1, B3 Bs 3). €' Brars, B(1)iBi Be 3 Vi2)B1yiBi }-
Here, (iovg, a1, 33 86/3) = i’ B /3. Since £'87 = 0 and B1)667 = 0, we see F1GFy3 = 0.

The element vizgg is detected by (ho, ho, Zg2). Since ds(by) = hob3 by the Toda differential, ds(izgob;) =
ir99hoby = —iho(ho, ho, To2)b3 = iz92b3 # 0 by Lemma 2.19, and 799333 dies in the Adams-Novikov spectral
sequence for computing the homotopy group m133(M). Besides, by observing mgg(M), we see that A.(hagy2) =
aizgg for some a € Z/3 if hapys is a permanent cycle in (2.15) for k = 0. Indeed, there are two generators
in mgg(M) and the other generator has the filtration degree one. Therefore, . (b1hooy2) = aizgeBs/3, which is
shown above to be zero, and we obtain G5 = 0 as desired. q.e.d.
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5. The (-elements in stable homotopy
The cofiber sequences in (1.2) that define V,. induce the cofiber sequence that lies in the commutative diagram

M:M

Ppor

Vo—r Vo Vi

Proof of Lemma 1.3. Put ¢ = %2 € m43(M). By virtue of Lemma 4.5, we assume that the Adams-
Novikov filtration of ¢ is five. If there exists an element x € 7m197(M) of filtration degree five such that oy = &,
then 2,5 — x is pulled back to v £ v$v3. Therefore, we replace 2,5 with },5 — X, and obtain & = 0. If no such
element exists, then ig, (€) = ds(v] £ v¥v]) € ESM8(Vy). Since i3, (&) = (po3i9)«(€) = wos. (ds(v] £ vdv])) =
ds (03, (v] £ v80])) = ds(v)) = 3vSds(v3) = 0 in ES'3(V3), we have an element y € ES'%(M) such that
vix = ¢ By Lemma 2.17,  is killed by v$, and so & = v§x = 0. q.e.d.

Corollary 5.1. The element v§+viv] € Eg’144(‘/9) is a permanent cycle in the Adams-Novikov spectral sequence
converging to m.(Vy). Besides, it yields a self-map 1*4Vy — Vg that induces v + v§vs on BP,-homology.

Corollary 5.2. ds(v)) = +vvihi b3 € Ey'** (V).

Proof. Suppose that ds(v)) = . By Lemma 3.16, d5(vS) = 6537, and so ds(viv]) = vfvads(v§) = £ofv3hi b3
in E2(Vy). Then, ds(v] + v8v]) = ¢ £ v§v3h b2, which is zero. q.e.d.

We define the (3-elements in the homotopy groups not in the Fs-term. For s = 1,2, we state the definition
in section three. The (-elements () € [M, M], for s =0,1,2,5,6 mod 9 are given as the composites

Beory = 71[B%i1,  Borr1y = 11lB°1*[Bir],  Brorra) = [ B][B%) [Bir),
Bior+s) = j1[B°1[3%1] and  Brorre) = [168][3%][8%4]
for the self-map [3°]: 144V}, — V; given in [1]. Here [z] denotes an imaginary element used in [14]. Assuming
the existence of the self-map [3%]: ¥4V, — V4, Oka also gave another definition:

Biot+s) = J2[8°]' @B iz
by use of the homotopy elements [a3°] € [Va, Va]i6s4a for s = 0,1,2,5,6 in [5, Lemma 3]. Similarly, we define
the (-elements ﬁ(gt/r) for0<r<9, ﬂ(9t+3/r) for r = 1,2 and /6(9t+6/r) for r =1,2,3 with ﬂ(Ss/l) = 6(35) as

(5~3) 5(9t/r) = jr[ﬂg]tim ﬂ(9t+3/r) = jr+2[ﬂg]t[a§ﬁ3]ir+2 and ﬁ(9t+6/r) = jr+1[ﬂ9}t[&ﬁ6]ir+1-

Here, the elements [Zx\éﬁg] and [aB3%] in [V,., V,.]. for r = 2,3,4 denote the self-maps induced from the homotopy
elements v{vj and viv§ in Lemma 1.6. We also write 8, = f(4)i € m.(M) and §; = j3, € . (5°). Note that

ﬁé/r = ag_rxlmﬁ and ﬁ9/r = (ag_p, 37$106>~

Proof of Corollary 1.7. By the geometric boundary theorem [7], we see that each §-element in (2.5) detects
the corresponding element in (5.3). Let B: X144V — V; denote the self-map given in Corollary 5.1. Then, the

latter half follows from defining the S-elements by Bg; /9 = jjoBtigi. q.e.d.

, , i
By a diagram chasing on the Adams-Novikov resolutions over the cofiber sequence M 2% V; 25 n4k+1pr &

¥ M in (1.2), we obtain the following lemma:

Lemma 5.4. Suppose that d,.(v) = ix,(z) € E7 (Vi) for an element v € E2(Vy) and an element x € E7 (M),
which detects an essential homotopy element & € m.(M) and that 6(v) € EX(M) detects a homotopy element (.
Then, o*¢ = €.

The basic idea of the proof is described by the chart:

/W
,\dr //
7/
/
//
v — d(v) -
M — Vi — M
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The same argument as [10] using Bo¢1185 = [Bor+581](2 € 77(2?\2) instead of Bot11082 = [Bor+201]C2 € 17(52)
in the proof of [10, Th. A, Cor. B] shows the following

Lemma 5.5. (o;41058] # 0 € m.(S°) if j < 2 and Bo456? # 0 € m,(S°).

There are some examples:
943\ _ 4o (g 2 5 / 2 i S
o ds(vy ) = i1, (8o 007) € ER (V1) for t > 0 by Lemma 3.16, and 3j; ,,/37 is an essential homotopy
element by [10, Cor. B].
9+6\ _ 4. (gl 2 5 / 2 .
o ds(vy ") = i1, (8o 507) € Eg (V1) for t > 0 by Lemma 3.16, and 3y, , 537 is an essential homotopy
element by Lemma 5.5.
o do(v1vy ™) = £vdthibg = £4,., 8t in E§(Va) by Lemma 3.17, and ), ,,5f is an essential permanent
cycle, since so is Bo¢+1/81 by [10, Th. Al.
Corollary 3.9 and these examples with Lemma 5.4 implies

Theorem 5.6. Let t be non-negative integers. Then a2ﬁé/2 = af} = icef, a26é(t+1)+3/2 = aﬁé(t+1)+3 =
ﬁé(t+1)+2ﬂ%’ agﬂ§t+6/3 = a25§t+6/2 = aByri6 = PorssBt and O‘?)ﬂs/atjuzs/z = &®Byy3 = Por B In particular,
aﬁ{)(t+1)+2ﬁ% = ﬁé(ﬂ_l)“ﬁj‘. Here, every equality is up to sign.

Proof of Proposition 1.8. The relation o3 = ¢ € m.(M) for 4’ such that j3' = 3 implies (ay, 3, 8) = j¢ €
7.(S%) by the definition of the Toda bracket. Therefore, Lemma 1.3 implies the first relation (., 3, Bo; Ir) =
0. Furthermore, we read off from Theorem 5.6 that (ag,3,0s5/2) = (@1,3,83) = 0, and that for ¢ > 0,

(02,3, Boe1)+3/2) = (1,3, Boes1)+3) = Bogr1)+20%, (3,3, Borrey3) = (2,3, Borres2) = (01,3, Borgs) =
Boi+50% and (s, 3, Borya/2) = (2,3, Borts) = Bor+151 in the homotopy groups m.(S°) up to sign. q.e.d.
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