The existence of β_{9t+3} in stable homotopy of spheres at the prime three

Katsumi Shimomura

Abstract. Let β_s be the generator of the second line of the E_2 -term of the Adams-Novikov spectral sequence converging to the stable homotopy groups $\pi_*(S^0)$ of spheres at the prime three. Ravenel conjectured that the generator β_s survives to a homotopy element if and only if $s \equiv 0, 1, 2, 3, 5, 6 \mod 9$. In [9], we proved the 'only if' part. In [1], Behrens and Pemmaraju showed that β_s survives to a homotopy element if $s \equiv 0, 1, 2, 5, 6 \mod 9$. In this paper, we show the existence of a self-map $\beta: \Sigma^{144}V_r \to V_r$ for r < 9, that induces v_2^9 on BP_* -homology. Here V_r denotes the spectrum characterized by the BP_* -homology $BP_*(V_r) = BP_*/(3, v_1^r)$. Oka [5] showed that the 'if' part follows from the existence of the self-map β on V_3 . Therefore, in particular, we obtain $\beta_{9t+3} \in \pi_{144t+42}(S^0)$. The self-maps show the existence of other members $\beta_{9t/r} \in \pi_{144t-4r-2}(S^0)$ for t > 0 and 0 < r < 9, $\beta_{3t/2} \in \pi_{48t-10}(S^0)$ for t > 0 and $\beta_{9t+6/3} \in \pi_{144t+82}(S^0)$ for $t \ge 0$ of the beta family in $\pi_*(S^0)$.

1. Introduction

Let S^0 denote the sphere spectrum localized at a prime p, and let V(n) for $n \ge 0$ denote the Smith-Toda spectrum defined by the BP_* -homology $BP_*(V(n)) = BP_*/(p, v_1, \ldots, v_n)$. Here, BP denotes the Brown-Peterson spectrum with coefficient ring $BP_* = \mathbb{Z}_{(p)}[v_1, v_2, \ldots]$. Note that $V(-1) = S^0$, and V(0) is the mod pMoore spectrum M. It is shown that if n < 4, then V(n) exists if and only if p > 2n (cf. [11], [15], [7]). The spectra V(0) = M and V(1) for $p \ge 3$ lie in the cofiber sequences

(1.1)
$$S^0 \xrightarrow{3} S^0 \xrightarrow{i} M \xrightarrow{j} S^1 \text{ and } \Sigma^{2p-2}M \xrightarrow{\alpha} M \xrightarrow{i_1} V(1) \xrightarrow{j_1} \Sigma^{2p-1}M,$$

where α denotes the Adams map such that $BP_*(\alpha) = v_1$. For the prime p > 3, L. Smith [11] defined the β element as $\beta_s = jj_1\beta^s i_1 i$ for s > 0 in the homotopy groups $\pi_*(S^0)$ by constructing the self-map $\beta \colon \Sigma^{2p^2-2}V(1) \to V(1)$. We notice that the cofiber of β is V(2). Hereafter, we assume that the prime p is three. Then, Toda [15] showed the non-existence of the Smith-Toda spectrum V(2), which indicates the non-existence of the self-map β . Thus, there seems no way to define the β -family in the homotopy groups $\pi_*(S^0)$ different from the case where the prime p is greater than three. Consider the Adams-Novikov spectral sequence converging to the homotopy groups $\pi_*(X)$ of a spectrum X with E_2 -term $E_2^{*,*}(X) = \operatorname{Ext}_{BP_*BP}^{*,*}(BP_*, BP_*(X))$ for the Hopf algebroid (BP_*, BP_*BP) associated to BP. Then Miller, Ravenel and Wilson [2] defined a β -element β_s for s > 0 in the E_2 -term $E_2^{2,16s-4}(S^0)$ as $\delta\delta'(v_2^s)$ for $v_2^s \in E_2^{0,16s}(V(1))$, where $\delta : E_2^{1,16s-4}(M) \to E_2^{2,16s-4}(S^0)$ and $\delta' : E_2^{0,16s}(V(1)) \to E_2^{1,16s-4}(M)$ are the connecting homomorphisms associated to the cofiber sequences in (1.1). Toda [12] constructed the homotopy element β_s detected by $\beta_s \in E_2^{2,*}(S^0)$ for s < 4 and Oka [3] showed that $\beta_4 \in E_2^{2,*}(S^0)$ is not a permanent cycle and β_5 is, and Ravenel conjectured that β_s is a permanent cycle of the spectral sequence if and only if $s \equiv 0, 1, 2, 3, 5, 6 \mod 9$. In [9], we proved the 'only if' part. Behrens and Pemmaraju showed in [1] the 'if' part except for β_{9t+3} by constructing the self-map $[\beta^9] \colon \Sigma^{144}V(1) \to V(1)$ that induces v_2^9 on BP_* -homology. Let V_r denote a spectrum with BP_* -homology $BP_*/(3, v_1^r)$, which lies in the cofiber sequence

(1.2)
$$\Sigma^{4r} M \xrightarrow{\alpha^r} M \xrightarrow{i_r} V_r \xrightarrow{j_r} \Sigma^{4r+1} M.$$

Note that $V_1 = V(1)$ and that V_r for r > 1 is a ring spectrum by Oka [4], while V(1) is not by Toda [15]. Oka showed in [5] that the 'if' part of the conjecture follows from the existence of a similar self-map $[\beta^9]: \Sigma^{144}V_3 \to V_3$ that induces v_2^9 on BP_* -homology.

We study such a self-map in this paper. For this sake, we consider the element $x_{106} = \beta_{9/9} \pm \beta_7 \in \pi_{106}(S^0)$ given by Ravenel [7]. Since the order of x_{106} is three, we have an element $x'_{106} \in \pi_{107}(M)$ such that $j_*(x'_{106}) = x_{106}$, and define $\beta'_{9/r} = \alpha^{9-r} x'_{106} \in \pi_{143-4r}(M)$ for 0 < r < 9. By the self-map $[\beta^9]$ given in [1], we define the β -element $\beta'_9 = j_1[\beta^9]i_1i$, and $\alpha\beta'_9 = 0 \in \pi_{143}(M)$; nevertheless, the relation $\alpha\beta'_{9/1} = 0 \in \pi_{143}(M)$ is not trivial. The following is our key lemma.

Lemma 1.3. $\alpha^9 x'_{106} = 0 \in \pi_*(M)$, and so $\alpha^r \beta'_{9/r} = 0 \in \pi_*(M)$ for 0 < r < 9.

This implies that $\beta'_{9/r}$ is pulled back to $v_2^9 \in \pi_{144}(V_r)$ under the map $j_{r*}: \pi_{144}(V_r) \to \pi_{143-4r}(M)$. Since V_r is a ring spectrum if r > 1, the element v_2^9 yields the self-map.

Theorem 1.4. There exists the self-map $[\beta^9]: \Sigma^{144}V_r \to V_r$ for 1 < r < 9 that induces v_2^9 on BP_* -homology.

Corollary 1.5. (cf. Oka [5]) If $s \equiv 0, 1, 2, 3, 5, 6 \mod 9$, then $\beta_s \in E_2^{2,16s-4}(S^0)$ is a permanent cycle.

In order to define β_{9t+3} and β_{9t+6} in $\pi_*(S^0)$ from the self-map, Oka showed the existence of the homotopy elements $v_1^2 v_2^3$ of $\pi_{56}(V_3)$ and $v_1 v_2^6$ of $\pi_{100}(V_2)$ in [5, Lemmas 3 and 4].

Lemma 1.6. There exist elements $v_1^2 v_2^3$ and $v_1 v_2^6 \in \pi_*(V_4)$ that induces $v_1^2 v_2^3$ and $v_1 v_2^6$ on BP_* -homology.

This follows from Lemmas 3.17 and 3.18. In the same manner as Oka did in [5], we obtain

Corollary 1.7. Let t be a positive integer. Then there exist essential homotopy elements $\beta_{9t/r} \in \pi_{144t-4r-2}(S^0)$ for 0 < r < 9, $\beta_{3t/r} \in \pi_{48t-4r-2}(S^0)$ for r = 1, 2 and $\beta_{9t-3/3} \in \pi_{144t-62}(S^0)$ of order three. Besides, we have $\tilde{\beta}_{9t/9} \in \pi_{144t-38}(S^0)$ such that $\langle \alpha_1, 3, \tilde{\beta}_{9t/9} \rangle = \beta_{9t/8}$.

Here, $\alpha_r \in \pi_{4r-1}(S^0)$ for r > 0 denotes the α -element defined by $\alpha_r = j\alpha^r i$ for the maps in (1.1). These α and β -elements satisfy the Toda bracket relations $\langle \alpha_k, 3, \beta_{9t/r} \rangle = \beta_{9t/r-k}$ for 0 < k < r, $\langle \alpha_1, 3, \beta_{3t/2} \rangle = \beta_{3t}$ and $\langle \alpha_2, 3, \beta_{9t+6/3} \rangle = \langle \alpha_1, 3, \beta_{9t+6/2} \rangle = \beta_{9t+6}$ in the homotopy groups $\pi_*(S^0)$ by definition.

Proposition 1.8. Let t be a non-negative integer. In $\pi_*(S^0)$, $\langle \alpha_r, 3, \beta_{9t/r} \rangle = 0$, $\langle \alpha_1, 3, \beta_3 \rangle = 0$, $\langle \alpha_2, 3, \beta_{9t+3/2} \rangle = \beta_{9t+2}\beta_1^2$ (t > 0), $\langle \alpha_3, 3, \beta_{9t+6/3} \rangle = \beta_{9t+5}\beta_1^2$ and $\langle \alpha_3, 3, \beta_{9t+3/2} \rangle = \beta_{9t+1}\beta_1^4$ up to sign.

The cofiber of the self-map of Theorem 1.4 yields the spectrum M(1, r, 9).

Corollary 1.9. There exists a spectrum M(1, r, 9) such that $BP_*(M(1, r, 9)) = BP_*/(3, v_1^r, v_2^9)$ for 1 < r < 9.

Furthermore, the element x'_{106} itself is pulled back to an element detected by $v_2^9 \pm v_1^8 v_2^7$ by Lemma 1.3, which induces the self-map (see Corollary 5.1).

Proposition 1.10. There exists a spectrum M(1,9,9) such that $BP_*(M(1,9,9)) = BP_*/(3,v_1^9,v_2^9 \pm v_1^8v_2^7)$.

This paper is organized as follows: In the next section, we introduce the β -elements in the E_2 -terms of the Adams-Novikov spectral sequence, and then we determine some Adams-Novikov E_2 -terms by Ravenel's small descent spectral sequence. In section 3, we show Lemma 3.13 on the differential $d_5(v_2^3)$, which plays the crucial role to show Lemma 1.6 and Proposition 1.8. Section four is devoted to study the homotopy group $\pi_{143}(M)$. By use of this, we prove Lemma 1.3 in the last section. We also introduce β -elements in the homotopy groups $\pi_*(S^0)$ and prove Corollary 1.7 and Proposition 1.8.

The author would like to thank the referee for not only reminding him that $d_5(v_2^3) \neq 0$ in the Adams-Novikov spectral sequence for $\pi_*(V_1 \cup_{\beta_1^2} \Sigma^{21} V_1)$, but also pointing him out that original version of Lemma 5.4 is ambiguous.

2. The β -elements in the E_2 -term of the Adams-Novikov spectral sequence and the small descent spectral sequence

Let *BP* denote the Brown-Peterson spectrum at the prime three. Then it defines the Hopf algebroid $(BP_*, BP_*BP) = (\pi_*(BP), BP_*(BP)) = (\mathbb{Z}_{(3)}[v_1, v_2, \ldots], BP_*[t_1, t_2, \ldots])$. The internal degrees of the generators are $|v_n| = 2 \times 3^n - 2 = |t_n|$. The structure maps of it behave on generators as follows:

(2.1)
$$\begin{aligned} \eta_R(v_1) &= v_1 + 3t_1, \quad \eta_R(v_2) \equiv v_2 + v_1 t_1^3 - v_1^3 t_1 \mod (3), \\ \eta_R(v_3) &\equiv v_3 + v_2 t_1^9 - v_2^3 t_1 + v_1 t_2^3 \mod (3, v_1^2) \\ \Delta(t_1) &= t_1 \otimes 1 + 1 \otimes t_1, \quad \Delta(t_2) = t_2 \otimes 1 + t_1 \otimes t_1^3 + 1 \otimes t_2 + v_1 b_{10} \text{ and} \\ \Delta(t_3) &\equiv t_3 \otimes 1 + t_1 \otimes t_2^3 + t_2 \otimes t_1^9 + 1 \otimes t_3 + v_2 b_{11} + v_1 b_{20} \mod (3, v_1^2), \end{aligned}$$

where b_{1k} for $k \ge 0$ and b_{20} is defined by

 $d(t_1^{3^{k+1}}) = 3b_{1k}$ and $d(t_2^3) = -t_1^3 \otimes t_1^9 - v_1^3 b_{11} + 3b_{20}$

in the cobar complex $\Omega^*_{BP_*(BP)}BP_*$. This implies

(2.2)
$$b_{1k} \equiv -t_1^{3^k} \otimes t_1^{2 \times 3^k} - t_1^{2 \times 3^k} \otimes t_1^{3^k}$$
 and $d(b_{20}) \equiv b_{10} \otimes t_1^9 - t_1^3 \otimes b_{11} \mod (3)$

It gives rise to the Adams-Novikov spectral sequence $E_2^{s,t}(X) \Rightarrow \pi_{t-s}(X)$ with $E_2^{s,t}(X) = \operatorname{Ext}_{BP_*BP}^{s,t}(BP_*, BP_*(X))$. Consider the spectra M and V_r for r > 0 defined by the cofiber sequences (1.1) and (1.2). Then they induces the long exact sequences

(2.3)
$$\cdots \longrightarrow E_2^s(S^0) \xrightarrow{3} E_2^s(S^0) \xrightarrow{i_*} E_2^s(M) \xrightarrow{\delta} E_2^{s+1}(S^0) \longrightarrow \cdots, \text{ and} \\ \cdots \longrightarrow E_2^s(M) \xrightarrow{\alpha^r_*} E_2^s(M) \xrightarrow{i_{r_*}} E_2^s(V_r) \xrightarrow{\delta} E_2^{s+1}(M) \longrightarrow \cdots$$

of the Adams-Novikov E_2 -terms. By (2.1), we see that for t > 0,

(2.4) $v_2^t \in E_2^{0,16t}(V_1), \quad v_2^{3t} \in E_2^{0,48t}(V_r) \quad (0 < r \le 3), \text{ and } v_2^{9t} \in E_2^{0,144t}(V_r) \quad (0 < r \le 9).$ We define the β -elements $\beta'_{t/r}$ in $E_2^1(M)$ (resp. $\beta_{t/r}$ in $E_2^2(S^0)$) with $\beta'_t = \beta'_{t/1}$ (resp. $\beta_t = \beta_{t/1}$) by

(2.5)
$$\beta'_{t/r} = \delta_r(v_2^t) \quad (\text{resp. } \beta_{t/r} = \delta\delta_r(v_2^t)),$$

if $v_2^t \in E_2^0(V_r)$. By cochains of the cobar complex $\Omega^*_{BP,BP}BP_*$, these β -elements are represented as

(2.6)
$$\beta_1 = [b_{10}], \quad \beta_{3/3} = [b_{11} + \cdots], \quad \beta'_2 = [-v_2t_1^3 + v_1t_1^6 + v_1^2v_2t_1 + v_1^3t_1^4 + v_1^5t_1^2],$$

where \cdots in the representative of $\beta_{3/3}$ denotes an element of the ideal $(3, v_1^5)$.

We call a spectrum R a ring spectrum if there exist a multiplication $\mu: R \wedge R \to R$ and a unit $\iota: S^0 \to R$ such that $\mu(\iota \wedge R) = 1_R = \mu(R \wedge \iota): R \to R$. Note that the mod 3 Moore spectrum is not an associative ring spectrum by Toda [15, Lemma 6.2], and neither are V_r 's. Though V_1 is not a ring spectrum [14], Oka showed in [4, Ex. 2.9] and [4, Cor. 2.6] the following theorem:

(2.7) (Oka) V_r for r > 1 are ring spectra.

In order to study the E_2 -terms of the Adams-Novikov spectral sequence, we adopt Ravenel's small descent spectral sequence. Ravenel constructed spectra T(m) and $T(m)_k$ for $m, k \ge 0$ such that $BP_*(T(m)) =$ $BP_*[t_1, \ldots, t_m] \subset BP_*(BP)$ and $BP_*(T(m)_k) = BP_*(T(m))\{t_{m+1}^j : 0 \le j \le k\} \subset BP_*(T(m+1))$ in [7] and [8], which fit in the cofiber sequences

(2.8)
$$T(m)_{3^{k}-1} \xrightarrow{\iota_{m,k}} T(m)_{3^{k+1}-1} \xrightarrow{\kappa_{m,k}} \Sigma^{2 \times 3^{k}} (3^{m+1}-1) T(m)_{2 \times 3^{k}-1} \xrightarrow{\lambda_{m,k}} \Sigma T(m)_{3^{k}-1} \text{ and }$$
$$T(m)_{2 \times 3^{k}-1} \xrightarrow{\to} T(m)_{3^{k+1}-1} \xrightarrow{\to} \Sigma^{4 \times 3^{k}} (3^{m+1}-1) T(m)_{3^{k}-1} \xrightarrow{\to} \Sigma T(m)_{2 \times 3^{k}-1}$$

(see [7, (7.1.14), (7.1.15)]). These induce an exact couple that defines the algebraic (resp. topological) small descent spectral sequence

(2.9)
$${}^{A}E_{1}^{*,*} = \Lambda(h_{m+1,k}) \otimes \mathbb{Z}/3[b_{m+1,k}] \otimes E_{2}^{*}(X \wedge T(m)_{3^{k+1}-1}) \Longrightarrow E_{2}^{*}(X \wedge T(m)_{3^{k}-1})$$

(resp. ${}^{T}E_{1}^{*,*} = \Lambda(h_{m+1,k}) \otimes \mathbb{Z}/3[b_{m+1,k}] \otimes \pi_{*}(X \wedge T(m)_{3^{k+1}-1}) \Longrightarrow \pi_{*}(X \wedge T(m)_{3^{k}-1}))$

for a spectrum X with $h_{m+1,k} \in {}^{A}E_{1}^{1,0}$ (resp. ${}^{T}E_{1}^{1,2\times3^{k}(3^{m+1}-1)}$), $b_{m+1,k} \in {}^{A}E_{1}^{2,0}$ (resp. ${}^{T}E_{1}^{2,2\times3^{k+1}(3^{m+1}-1)}$) and $d_{r} : {}^{A}E_{r}^{s,t} \to {}^{A}E_{r}^{s+r,t-r+1}$ (resp. $d_{r} : {}^{T}E_{r}^{s,t} \to {}^{T}E_{r}^{s+r,t+r-1}$) (cf. [7, Th. 7.1.13, Th. 7.1.16], see also [8, Th. 1.17, Th. 1.21]). Here, h_{ij} and b_{ij} are represented by a cochain of the cobar complex $\Omega_{BP_{*}(BP)}^{*}BP_{*}$ whose leading terms are $t_{i}^{3^{j}}$ and $-t_{i}^{3^{j}} \otimes t_{i}^{2\times3^{j}} - t_{i}^{2\times3^{j}} \otimes t_{i}^{3^{j}}$, respectively. Let s and t denote positive integers with t - s < 144, and consider the mod 3 Moore spectrum M. Then, we see that $E_{2}^{*}(M \wedge T(3)) = \mathbb{Z}/3[v_{1}, v_{2}, v_{3}]$, which is isomorphic to $E_{2}^{*}(M \wedge T(2)_{2})$. The small descent spectral sequence ${}^{A}E_{1} = \Lambda(h_{30}) \otimes \mathbb{Z}/3[v_{1}, v_{2}, v_{3}] \Rightarrow E_{2}^{*}(M \wedge T(2))$ for m = 2 and k = 0 collapses from the E_{1} -term. In our range, $E_{2}^{*}(M \wedge T(1)_{8}) = E_{2}^{*}(M \wedge T(2))$. The spectral sequence ${}^{A}E_{1} = \Lambda(h_{21}, h_{30}) \otimes \mathbb{Z}/3[v_{1}, v_{2}, v_{3}] \Rightarrow E_{2}^{*}(M \wedge T(1)_{2})$ for m = 1 and k = 1 has the differentials induced by the relation $d_{1}(v_{3}) = v_{1}h_{21}$ read off from (2.1). Then, we obtain $E_{2}^{*}(M \wedge T(1)_{2}) = (\mathbb{Z}/3[v_{1}, v_{2}] \oplus h_{21}\mathbb{Z}/3[v_{2}] \otimes \Lambda(v_{3})) \otimes \Lambda(h_{30})$. In the spectral sequence ${}^{A}E_{1} = \Lambda(h_{20}) \otimes \mathbb{Z}/3[b_{20}] \otimes E_{2}^{*}(M \wedge T(1)_{2}) = E_{2}^{*}(M \wedge T(1))$, the relation $d_{1}(h_{30}) = v_{1}b_{20}$ seen by (2.1) yields non-trivial differentials and

$$(2.10) E_2^{*,*}(M \wedge T(1)) = (\mathbf{Z}/3[v_1, v_2] \oplus b_{20}\mathbf{Z}/3[v_2, b_{20}] \oplus h_{21}\mathbf{Z}/3[v_2, b_{20}] \otimes \Lambda(v_3, h_{30})) \otimes \Lambda(h_{20}).$$

Put $X_k = T(0)_{3^k-1}$. Then, the spectral sequence (2.9) is rewritten as

(2.11)
$${}^{A}E_{1} = \Lambda(h_{k}) \otimes \mathbb{Z}/3[b_{k}] \otimes E_{2}^{*}(X \wedge X_{k+1}) \Longrightarrow E_{2}^{*}(X \wedge X_{k})$$

for a spectrum X and $k \ge 0$. Here, h_k and b_k denotes the elements represented by the cocycles $t_1^{3^k}$ and b_{1k} , respectively.

Lemma 2.12. The E_2 -term $E_2^*(M \wedge X_2)$ with the internal degree less than 144 is isomorphic to the tensor product of $\Lambda(h_{20})$ and the direct sum

$$\mathbf{Z}/3[v_1, v_2]/(v_2^3) \otimes \Lambda(h_3) \oplus b_2 \mathbf{Z}/3[v_1, v_2]/(v_1^6, v_2^3) \oplus h_2 \mathbf{Z}/3[v_1, v_2]/(v_1^3, v_2^6) \\ \oplus \mathbf{Z}/3[v_2]\{h_{21}, b_{20}\} \otimes \Lambda(b_{20}) \oplus h_2 h_{21} \Lambda(v_3, h_{30}) \oplus h_2 b_{20} \Lambda(h_{21}, b_{20}).$$

Proof. Noticing that $E_2^{*,*}(M \wedge X_4) = E_2^{*,*}(M \wedge T(1))$ in our range, we see that the spectral sequence (2.11) for k = 3 collapses and so $E_2^{*,*}(M \wedge X_3) = E_2^{*,*}(M \wedge T(1)) \otimes \Lambda(h_3)$. Consider the spectral sequence (2.11) for k = 2. Then, the differential $d_1(v_2^3) = v_1^3h_2$ and $d_1(v_2^6h_2) = v_1^6b_2$ act on the first summand of (2.10), and $d_1(v_3h_{21}) = v_2h_{21}h_2$ and $d_1(h_{21}h_{30} + v_3b_{20}) = v_2b_{20}h_2 + h_{21}h_{20}h_2$ act on the direct sum of the second and the third summands of (2.10). Observing the homology of each summand gives the lemma.

Since $|v_k| = 2 \times 3^k - 2 = |t_k|$ and $|b_{20}| = 48$, the lemma implies the vanishing line.

Corollary 2.13. The E_2 -term $E_2^{s,t}(M \wedge X_2) = 0$ if one of the following conditions holds: (1) s > 5, (2) s = 5, t < 112, (3) s = 4, t < 96, (4) s = 3, t < 64, (5) s = 2, t < 48, (6) s = 1, t < 16.

Corollary 2.14. The homotopy groups $\pi_*(M \wedge X_2)$ is isomorphic to the E_2 -term.

We notice that this is also shown by the topological version of the spectral sequence (2.11):

(2.15)
$${}^{T}E_{1} = \Lambda(h_{k}) \otimes \mathbb{Z}/3[b_{k}] \otimes \pi_{*}(X \wedge X_{k+1}) \Longrightarrow \pi_{*}(X \wedge X_{k}).$$

Lemma 2.16. $E_2^{5,52}(V_3) \subset \mathbb{Z}/3\{i_{3*}\beta_2'\beta_1^2, i_{3*}i_*\alpha_1\beta_{3/3}\beta_1, v_1^2v_2h_0\beta_1^2\}.$

Proof. Consider the exact sequence

$$E_2^{s,t-12}(M \wedge X_2) \xrightarrow{v_1^3} E_2^{s,t}(M \wedge X_2) \xrightarrow{i_{3*}} E_2^{s,t}(V_3 \wedge X_2) \xrightarrow{j_{3*}} E_2^{s+1,t-12}(M \wedge X_2).$$

For the internal degree less than 53, $E_2^*(M \wedge X_2)$ is isomorphic to $(\mathbf{Z}/3[v_1, v_2]/(v_2^3) \oplus h_2\mathbf{Z}/3[v_1, v_2]/(v_1^3)) \otimes \Lambda(h_{20}) \oplus \mathbf{Z}/3\{h_{21}, b_{20}\}$ by Lemma 2.12. Since $j_{3*}(v_2^3) = h_2$, $E_2^*(V_3 \wedge X_2)$ is isomorphic to the direct sum of $v_2^3\Lambda(v_1)$ and the image of $i_{3*}: i_{3*}((\mathbf{Z}/3[v_1, v_2]/(v_1^3, v_2^3) \oplus h_2\mathbf{Z}/3[v_1, v_2]/(v_1^3)) \otimes \Lambda(h_{20}) \oplus \mathbf{Z}/3\{h_{21}, b_{20}\})$. By the spectral sequences (2.11) for k = 0 and 1, we see that $E_2^{5,52}(V_3) \subset (E_2^{*,*}(V_3 \wedge X_2) \otimes \Lambda(h_0, h_1) \otimes \mathbf{Z}/3[b_0, h_1])^{5,52} = \mathbf{Z}/3\{i_{3*}v_1^2v_2h_0b_0^2, i_{3*}v_2h_1b_0^2, i_{3*}h_0b_1b_0\}$. Since $b_0 = \beta_1, i_{3*}v_2h_1 = \beta_2'$ and $h_0b_1 = i_*\alpha_1\beta_{3/3}$, the lemma follows. q.e.d.

Lemma 2.17. Each element of $E_2^{5,136}(M)$ is killed by v_1^3 .

Proof. Consider the spectral sequences (2.11) for k = 1, 2. Then, v_1^3 killed elements of $E_2^{5,136}(M)$ originated from the summands of $E_2^*(X_2 \wedge M)$ other than the first summand $A = \mathbb{Z}/3[v_1, v_2]/(v_2^3) \otimes \Lambda(h_{20}, h_3, b_2)$. Put $K = \{x \in E_2^{5,136}(M) : v_1^3 x = 0\}$. Then, $E_2^{5,136}(M)/K \subset (A \otimes \Lambda(h_0, h_1) \otimes \mathbb{Z}/3[b_0, b_1])^{5,136}$ by the spectral sequence (2.11) for k = 0, 1. We consider the complex $A \otimes \Lambda(h_1) \otimes \mathbb{Z}/3[b_1]$ with differential given by $d_1(v_2) = v_1h_1$ and $d_1(v_2^2h_1) = v_1^2b_1$. Then, the cohomology of it is $(\mathbb{Z}/3[v_1] \oplus b_1\mathbb{Z}/3[b_1] \otimes \Lambda(v_1) \oplus h_1\Lambda(v_2) \otimes \mathbb{Z}/3[b_1]) \otimes \Lambda(h_{20}, h_3, b_2)$. Similarly, consider the complex $\mathbb{Z}/3[v_1] \otimes \Lambda(h_0, h_{20}, h_3, b_2) \otimes \mathbb{Z}/3[b_0]$ with differentials given by $d_2(v_1h_{20}) = v_1^2b_0$. Then its cohomology is $(\mathbb{Z}/3[v_1] \oplus \mathbb{Z}/3\{h_{20}, b_0, v_1b_0\} \otimes \mathbb{Z}/3[b_0]) \otimes \Lambda(h_0, h_3, b_2)$, and $E_2^{5,136}(M)/K = 0$ as desired.

Lemma 2.18. In the E_2 -term $E_2^3(V_1)$, $h_1b_1^2 = \pm v_2^3h_1b_0^2$.

Proof. Consider elements of $E_2^2(V_1)$ defined by the Massey products: $b_n = \langle h_n, h_n, h_n \rangle$, $g_n = \langle h_n, h_n, h_{n+1} \rangle$, $k_n = \langle h_n, h_{n+1}, h_{n+1} \rangle$ and $a_n = \langle h_n, h_{n+1}, h_{n+2} \rangle$. Then these satisfies $b_n h_{n+1} = h_n g_n$, $h_n g_{n+1} = k_n h_{n+2}$ and $g_n h_{n+2} = h_n a_n$ by the juggling theorem [7, Th. A1.4.6]. Furthermore, the differentials $d(b_{20})$, $d(t_3)$ and $d(v_2)$ of the cobar complex $\Omega_{BP_*(BP)}BP_*/(3, v_1)$ gives us the relations $h_1b_1 = b_0h_2$ (by (2.2)), $a_0 = v_2b_1$ (by (2.1)) and $v_2h_2 = v_2^3h_0$ (by (2.1)), respectively. Now the lemma follows from the computation $h_1b_1^2 = h_2b_1b_0 = h_1g_1b_0 = g_1h_0g_0 = k_0g_0h_2 = k_0h_0a_0 = v_2g_0h_1b_1 = v_2g_0h_2b_0 = v_2^3h_0g_0b_0 = v_2^3h_1b_0^2$ in $E_2^3(V_1)$.

Lemma 2.19. Let $x \in E_2^{4,96}(M)$ be the element that detects $ix_{92} \in \pi_{92}(M)$. Then, $b_0^4 x \neq 0 \in E_2^{12,144}(M)$.

Proof. The element $b_0 x \in E_2^{6,108}(M)$ is essential, since $x_{92}\beta_1$ is the generator of $\pi_{102}(S^0)$ of order three in [7, Table A.3.4]. In the spectral sequence (2.11) for k = 0, a killer of $b_0^4 x$ sits in the direct sum of

$$E_2^{11,144}(M \wedge X_1), E_2^{10,140}(M \wedge X_1), E_2^{9,132}(M \wedge X_1), E_2^{8,128}(M \wedge X_1), E_2^{7,120}(M \wedge X_1) \text{ and } E_2^{6,116}(M \wedge X_1).$$

Since $E_2^{s,t}(M \wedge X_1) \subset E_2^{*,*}(M \wedge X_2) \otimes \Lambda(h_1) \otimes \mathbb{Z}/3[b_1]$, we see that the above E_2 -terms are zero except for $E_2^{7,120}(M \wedge X_1) \subset \mathbb{Z}/3\{h_1b_1^3\}$ and $E_2^{6,116}(M \wedge X_1) \subset \mathbb{Z}/3\{v_2h_{20}h_1b_1^2, v_1^4h_{20}h_1b_1^2, v_1^2b_1^3\}$ by Lemma 2.12 and Corollary 2.13. We see that $d_1(v_1^3v_2h_{20}b_1^2) = v_1^4h_{20}h_1b_1^2$ and $d_1(v_2^2h_1b_1^2) = v_1^2b_1^3$ in the spectral sequence (2.11) for k = 1. We also see that $d_r(h_1b_1^3) = 0$ and $d_1(v_2h_1h_{20}b_1^2) = v_1v_2b_1^3h_0$ in the spectral sequence (2.11) for k = 0, and nothing kills the element b_0^4x in the spectral sequence (2.11) for k = 0. q.e.d.

3. The Adams-Novikov differential on v_2^3

In this section we compute the Adams-Novikov differential on $v_2^3 \in E_2^{0,48}(V_3)$ by use of some relations in $[M, M]_*$ given in [14, (6.5), Th. 6.8]:

- (i) $\delta \delta = 0 = \alpha \beta_{(1)} = \beta_{(1)} \alpha$
- (ii) $\alpha^2 \delta = -\delta \alpha^2 \alpha \delta \alpha$, and so $\alpha \delta \alpha \delta = \delta \alpha \delta \alpha$ and $\alpha^3 \delta = \delta \alpha^3$

(3.1) (iii)
$$\alpha\delta\beta_{(1)} = \beta_{(1)}\delta\alpha$$

(iv) $\beta_{(1)}\beta_{(1)} = \delta\alpha\delta\beta_{(1)}\delta\beta_{(1)}\delta$
(v) $\alpha\beta_{(2)} = \beta_{(2)}\alpha = \beta_{(1)}\delta\beta_{(1)}\delta\beta_{(1)}$

Here, α denotes the Adams map as before, $\delta = ij$, $\beta_{(1)} = j_1[\beta i_1] = [j_1\beta]i_1$ and $\beta_{(2)} = [j_1\beta][\beta i_1]$, in which i, j, i_1, j_1 are maps in (1.1) and $[\beta i_1]$ and $[j_1\beta]$ are the elements introduced in [14] to define the β -elements $\beta_k = j\beta_{(k)}i$ in $\pi_*(S^0)$ for k = 1, 2. For the later use, we also introduce elements:

(3.2)
$$\varepsilon = \langle \alpha_1, \alpha_1, \beta_1^3 \rangle = j\beta_{(1)}\beta_{(2)}i \in \pi_{37}(S^0) \text{ and } \varepsilon' = \beta_{(1)}\beta_{(2)}i \in \pi_{38}(M).$$

Note that ε (resp. ε') is detected by $h_0b_1 \in E_2^{3,40}(S^0)$ (resp. $\alpha ib_1 \in {}^TE_1^{0,38}(M \wedge X_1))$). Before computing the differential, we show the following well known lemma which is shown easily from the above relations:

Lemma 3.3. $\beta_{(1)}i\beta_1^5 = 0.$

Proof. This follows from the computation: $\beta_{(1)}i\beta_1^5 = \beta_{(1)}\delta\beta_{(1)}\delta\beta_{(1)}\delta\beta_{(1)}\delta\beta_{(1)}\delta\beta_{(1)}i = \beta_{(2)}\alpha\delta\alpha\beta_{(2)}i = 0$, since $\beta_{(2)}\alpha^2 = 0 = \alpha^2\beta_{(2)}$. q.e.d.

Since β_3 generates $\pi_{42}(S^0)$ and is of order three, we have an element $\beta_{(3)} \in [M, M]_{43}$ such that $j\beta_{(3)}i = \beta_3$. We also consider the operation $\theta \colon [X,Y]_* \to [X,Y]_{*+1}$ given in [14, p.209]. Toda [14, (2.10), (3.7)] shows that for any $\xi \in [M, M]_t$,

$$\xi \alpha - \alpha \xi = \alpha \delta \theta(\xi) - \delta \theta(\xi) \alpha = -\theta(\xi) \delta \alpha + (-1)^{t+1} \alpha \theta(\xi) \delta.$$

It is shown in [14, (2.7)] that $\xi\delta - (-1)^t\delta\xi + \delta\theta(\xi)\delta = (j\xi i) \wedge 1_M$ for $\xi \in [M, M]_t$. By [14, Th. 6.4, Th. 6.8], we see that $\beta_{(s)}\delta + \delta\beta_{(s)} = \beta_s \wedge 1_M$ for s = 1, 2, and so

(3.5)
$$(\beta_{(s)}\delta + \delta\beta_{(s)})\xi = \xi(\beta_{(s)}\delta + \delta\beta_{(s)}) \quad (s = 1, 2) \text{ for any } \xi \in [M, M]_* \ (cf. \ [14, \ (3.8)']).$$

Proposition 3.6. In $[M, M]_{47}$, we have the following relations up to sign:

$$\begin{aligned} \alpha \beta_{(3)} &= \beta_{(1)} \delta \beta_{(1)} \delta \beta_{(2)} - \beta_{(1)} \delta \beta_{(2)} \delta \beta_{(1)} + \delta \beta_{(1)} \beta_{(2)} \delta \beta_{(1)} \\ &= -\beta_{(1)} \beta_{(2)} \delta \beta_{(1)} \delta + \delta \beta_{(1)} \beta_{(2)} \delta \beta_{(1)}. \end{aligned}$$

Proof. From [7, Table A3.4], we read off the homotopy group $[M, M]_{47} = \mathbb{Z}/3\{\beta_{(1)}\delta\beta_{(1)}\delta\beta_{(2)}, \delta\beta_{(1)}\beta_{(2)}\delta\beta_{(1)}, \beta_{(1)}\beta_{(2)}\delta\beta_{(1)}, \delta\beta_{(1)}\delta\beta_{(2)}, \delta\beta_{(1)}\beta_{(2)}\delta\beta_{(1)}, \delta\beta_{(1)}\delta\beta_{(2)}, \delta\beta_{(2)}\delta\beta_{(2)}, \delta\beta_{(2)}, \delta\beta_{(2)}\delta\beta_{(2)}, \delta\beta_{(2)}, \delta\beta_{$

Then, we put

(3.4)

(3.8)
$$\alpha\beta_{(3)} = a\beta_{(1)}\delta\beta_{(1)}\delta\beta_{(2)} + b\beta_{(1)}\delta\beta_{(2)}\delta\beta_{(1)} + c\delta\beta_{(1)}\beta_{(2)}\delta\beta_{(1)}$$

for some $a, b, c \in \mathbb{Z}/3$. Since $\theta(\beta_{(3)}) \in [M, M]_{44} = \mathbb{Z}/3\{\alpha^{11}, ix_{45}j\}$, we put

$$\mathcal{D}(\beta_{(3)}) = m\alpha^{11} + nix_{45}j$$

for $m, n \in \mathbb{Z}/3$, and see that $\delta\theta(\beta_{(3)}) = m\delta\alpha^{11}$. By (3.1), (3.4) and (3.8), $\alpha\beta_{(3)}\alpha - \alpha^2\beta_{(3)} = \alpha(\alpha\delta\theta(\beta_{(3)}) - \delta\theta(\beta_{(3)})\alpha) = m(\alpha^2\delta\alpha^{11} - \alpha\delta\alpha^{12}) = m(-\delta\alpha^{13} + \alpha^{13}\delta)$,

$$\alpha \beta_{(3)} \alpha = a(\beta_{(1)}\delta)^4 \beta_{(1)}$$
 and $\alpha^2 \beta_{(3)} = c(\beta_{(1)}\delta)^4 \beta_{(1)}$

Since
$$[M, M]_{51} = \mathbf{Z}/3\{\delta\alpha^{13}, \alpha^{13}\delta, (\beta_{(1)}\delta)^4\beta_{(1)}, \delta\beta_{(2)}\delta\beta_{(2)}\delta\}$$
, we see that $a = c$ and $m = 0$. On the other hand,
 $(a+b)\alpha_1\beta_1^2\beta_2^2 = \alpha_1\beta_2(a\beta_1^2\beta_2 + b\beta_1^2\beta_2)$

$$= \alpha_1 \beta_2 j (a\beta_{(1)} \delta\beta_{(1)} \delta\beta_{(2)} + b\beta_{(1)} \delta\beta_{(2)} \delta\beta_{(1)} + c\delta\beta_{(1)} \beta_{(2)} \delta\beta_{(1)})i$$

$$= \alpha_1 \beta_2 j \alpha\beta_{(3)} i \quad (by (3.8)) = \beta_2 \alpha_1 j \alpha\beta_{(3)} i = j\beta_{(2)} \delta\alpha\delta\alpha\beta_{(3)} i$$

$$= j\beta_{(2)} \alpha\delta\alpha\delta\beta_{(3)} i \quad (by (3.1)(ii)) = j(\beta_{(1)}\delta)^3 \alpha\delta\beta_{(3)} i$$

$$= \beta_1^3 \alpha_1 \beta_3 = 0 \quad (since \alpha_1 \beta_1^3 \in \pi_{33}(S^0) = 0)$$

in $\pi_{75}(S^0) = \mathbb{Z}/3\{\alpha_{19}\} \oplus \mathbb{Z}/9\{x_{75}\}$, where $3x_{75} = \alpha_1 \beta_1^2 \beta_2^2$. It follows that b = -a. If a = 0, then $\beta_{(3)}i \in \pi_{43}(M)$ is pulled back to $v_2^3 \in \pi_*(V_1)$ under the map j_{1*} and so $v_2^3 \in E_2^{0,48}(L_2V_1)$ is a permanent cycle, which contradicts

to [9, Prop. 8.4]. Here, L_2 denotes the Bousfield-Ravenel localization functor with respect to $v_2^{-1}BP$. Therefore, $a \neq 0$.

The second equation follows from by (3.7).

Remark. In this proof, we also show that $\delta\theta(\beta_{(3)}) = 0 = \theta(\beta_{(3)})\delta$, and so $\beta_{(3)}\delta + \delta\beta_{(3)} = \beta_3 \wedge 1_M$.

Note that $\pi_*(S^0)$ is a commutative ring and $i\varepsilon = \delta\beta_{(1)}\beta_{(2)}i$ by (3.2).

Corollary 3.9. $\alpha\beta'_3 = i\varepsilon\beta_1 \in \pi_{43}(M)$ up to sign.

Corollary 3.10. In the Adams-Novikov spectral sequence for $\pi_*(V_1)$,

$$d_5(v_2^3) = \pm i_{1*}i(\alpha_1\beta_{3/3}\beta_1) \in E_5^{5,52}(V_1).$$

Proof. Since $j_{1*}(v_2^3) = \beta'_3 \in E_2^{1,44}(M)$ is a permanent cycle in the Adams-Novikov spectral sequence, $i_{1*}\alpha_*(\beta'_3) = i_{1*}(\alpha\beta'_3)$ must be killed by v_2^3 , and the corollary follows from Corollary 3.9, since $\varepsilon \in \pi_{37}(S^0)$ is detected by $\alpha_1\beta_{3/3} \in E_2^{3,40}(S^0)$. q.e.d.

Lemma 3.11. For the maps δ and δ_3 in (2.3), we have $\delta\delta_3(v_1^2v_2h_0) = h_0b_0$ in $E_2^*(S^0)$.

Proof. Note that v_2h_0 in $E_2^1(V_2)$ is represented by $v_2t_1 - v_1t_2 + v_1t_1^4$. Then a routine computation with (2.1) shows $\delta_3(v_1^2v_2h_0) = v_1b_0$, whose δ -image is h_0b_0 , since $\delta(v_1) = h_0$ and $\delta(b_0) = 0$ by (2.1). q.e.d.

Recall [13] the Toda differential

(3.12)
$$d_5(\beta_{3/3}) = \pm \alpha_1 \beta_1^3 = \pm h_0 b_0^3 \in E_2^{5,38}(S^0).$$

Lemma 3.13. For $v_2^3 \in E_2^{0,48}(V_3)$ in (2.4), $d_5(v_2^3) = i_{3*}i_*(\alpha_1\beta_{3/3}\beta_1) \pm v_1^2v_2h_0\beta_1^2 \in E_2^{5,52}(V_3)$ up to sign.

Proof. By Lemma 2.16, we put

$$(3.14) d_5(v_2^3) = ai_{3*}(\beta_2'\beta_1^2) + bi_{3*}i_*(\alpha_1\beta_{3/3}\beta_1) + cv_1^2v_2h_0\beta_1^2 \in E_2^{5,52}(V_3)$$

for integers $a, b, c \in \mathbb{Z}/3$. Consider the cofiber sequence

(3.15)
$$\Sigma^4 V_2 \xrightarrow{\alpha} V_3 \xrightarrow{\phi_{31}} V_1 \xrightarrow{\phi_{12}} \Sigma^5 V_2$$

obtained by Verdier's axiom from the cofiber sequences of (1.2). Send the equation (3.14) to $E_2^5(V_1)$ under φ_{31} , and we see that a = 0 and $b = \pm 1$ by Corollary 3.10.

Next send (3.14) to $E_2^*(S^0)$ under the maps δ_3 and δ in (2.3). Then we obtain $d_5(\beta_{3/3}) = ch_0 b_0^3$ in $E_2^*(S^0)$ by Lemma 3.11, and the Toda differential (3.12) shows that $c = \pm 1$ as desired. a.e.d.

Lemma 3.16.
$$d_5(v_2^{9t+3}) = \pm \beta'_{9t+2}b_0^2 \in E_2^{5,144t+52}(V_1) \text{ for } t > 0 \text{ and } d_5(v_2^{9t+6}) = \pm \beta'_{9t+5}b_0^2 \in E_2^{5,144t+100}(V_1) \text{ for } t \ge 0.$$

Proof. In this proof, we compute everything up to sign. By Lemma 3.13, $d_5(v_2^{9t+3}) \equiv v_2^{9t}h_0b_1b_0 + v_1^2v_2^{9t+1}h_0b_0^2 \in E_2^{5,144t+52}(V_3)$, and so $d_5(v_2^{9t+3}) \equiv v_2^{9t}h_0b_1b_0 \in E_2^{5,144t+52}(V_1)$. The cochain $v_2^{9t-3}v_3b_{10}b_{11}$ yields the relation $v_2^{9t}h_0b_0b_1 = v_2^{9t-2}h_2b_0b_1$ of homology, which equals $v_2^{9t-2}h_1b_1^2$ by $d(v_2^{9t-2}b_{20}b_1)$ with (2.2). Then the first relation follows from Lemma 2.18, since $\beta'_{9t+2} = v_2^{9t+1}h_1$. The second one follows similarly from $d_5(v_2^{9t+6}) \equiv -v_2^{9t+3}h_0b_1b_0 \in E_2^{5,144t+100}(V_1)$.

q.e.d.

Lemma 3.17. $d_9(v_1v_2^3) = \pm h_1 b_0^4$ in $E_9^{9,60}(V_3)$, and $v_1^2 v_2^3$ is a permanent cycle in $E_r^{0,56}(V_4)$.

Proof. Consider the cofiber sequence (3.15). Lemma 3.13 shows that $d_5(v_2^3) = \pm h_0 b_0 b_1$ in $E_2^{5,52}(V_2)$. Let g_0 be the element defined by the Massey product $\langle h_0, h_0, h_1 \rangle$, which contains an element represented by the cochain $t_1 \otimes t_2 - t_1^2 \otimes t_1^3$. Then, $d(t_1 \otimes t_2 - t_1^2 \otimes t_1^3) = v_1 t_1 \otimes b_{10}$ in the cobar complex $\Omega^3 BP_*/(3)$, which shows that $\delta_{12*}(g_0) = h_0 b_0$ for the connecting homomorphism δ_{12*} . It follows that $d_5(v_2^3) = \delta_{12*}(g_0 b_1)$. Furthermore, $d_5(g_0b_1) = g_0d_5(b_1) = \pm g_0h_0b_0^3 = \pm h_1b_0^4$, since b_1 belongs to the E_2 -term $E_2^2(S^0)$ and $g_0 \in E_2^2(V_1)$ is a permanent cycle. Therefore, $d_9(v_1v_2^3) = d_9(\tilde{\alpha}_*(v_2^3)) = \pm h_1 b_0^4 \in E_2^{9,60}(V_3)$. Send the relation to V_4 under the map $\tilde{\alpha}: V_3 \to V_4$ obtained in the same manner as the one in (3.15), and

we have $d_9(v_1^2v_2^3) = \pm v_1h_1b_0^4 = 0$, since $v_1h_1 = v_1^3h_0$ in the E_2 -term by $d(v_2)$ and $v_1^3h_0b_0^3 = 0$ in the E_9 -term by the Toda differential. The elements $\alpha_1 = h_0 \in E_2^{1,4}(S^0)$ and $\beta_1 = b_0 \in E_2^{2,12}(S^0)$ gives the vanishing line: $E_2^{s,t}(X) = 0$ if t < 6s - 2 for a connected spectrum X. It follows that $E_2^{s,s+55}(V_4) = 0$ for s > 9, and $v_1^2v_2^3$ is a

q.e.d.

permanent cycle.

7

In [5, Lemma 3], Oka showed the existence of the element $[\widetilde{\alpha}\beta^6] \in \pi_{100}(V_2)$ detected by $v_1v_2^6 \in E_2^{0,100}(V_2)$.

Lemma 3.18. The element $v_1v_2^6 \in E_2^{0,100}(V_4)$ is a permanent cycle, which detects an element $[\widetilde{\alpha}\beta^6] \in \pi_{100}(V_4)$.

Proof. From Ravenel's table [7, Table A.3.4], we read off the existence of $\beta'_{6/3} \in \pi_{83}(M)$. Then $\alpha^2 \beta'_{6/3}$ belongs to $\pi_{91}(M)$, which is a $\mathbb{Z}/3$ -module generated by β'_6 , $i\beta_1\gamma_2$, $i\beta_1x_{81}$ and $i\alpha_{23}$ by the table. We may put $\alpha^2 \beta'_{6/3} = \beta'_6 + ai\beta_1\gamma_2 + bi\beta_1x_{81}$ for some $a, b \in \mathbb{Z}/3$, since β'_6 and $i\alpha_{23}$ are detected by elements of $E_2^{1,92}(M)$, and $\alpha^2 \beta'_{6/3} = \beta'_6$ in the E_2 -term $E_2^{1,92}(M)$. On the other hand, Oka's result shows that $\alpha^2 \beta'_6 = \alpha^2 j_{2*}(v_1v_2^6) = 0$. Besides, $\alpha^2 i\beta_1 = \alpha^2 \delta j_1 [\beta i_1] i = -(\delta \alpha^2 + \alpha \delta \alpha) j_1 [\beta i_1] i = 0$ by (3.1). It follows that $\alpha^4 \beta'_{6/3} = \alpha^2 (\beta'_6 + ai\beta_1\gamma_2 + bi\beta_1x_{81}) = 0$, and $\beta'_{6/3}$ is pulled back to $v_1v_2^6 \in \pi_{100}(V_4)$ under the map $j_{4*}: \pi_{100}(V_4) \to \pi_{83}(M)$. q.e.d.

4. On the homotopy group $\pi_{143}(M)$

For proving Lemma 4.5 below, we read off the homotopy groups $\pi_k(M \wedge X_1)$ from Ravenel's table [7, Table A.3.4]. Here M and X_1 are the mod 3 Moore spectrum and Ravenel's spectrum considered in section two. Put $\overline{X_1} = T(0)_1$, and we have the cofiber sequence

(4.1)
$$S^3 \xrightarrow{\alpha_1} S^0 \xrightarrow{\iota_1} \overline{X_1} \xrightarrow{\kappa_1} S^4$$

We read off the homotopy groups $\pi_*(M)$ from Ravenel's table [7, Table A.3.4] and we obtain the homotopy groups $\pi_*(M \wedge \overline{X_1})$ as in the following tables. In the tables, $\xi' \in \pi_{s+1}(M)$ for an element $\xi \in \pi_s(S^0)$ denotes an element such that $j_*(\xi') = \xi$. We further notice the relations

(4.2)
$$\alpha_{1*}(\alpha^{3k}i) = \alpha^{3k}\delta\alpha i = i\alpha_{3k+1}, \quad \alpha_{1*}(\alpha^{3k+1}i) = \alpha^{3k+1}\delta\alpha i = -\alpha^{3k}(\delta\alpha^2 + \alpha^2\delta)i = i\alpha_{3k+2}$$

by (3.1) and $\alpha_{1*}(\alpha^{3k-1}i) = i\alpha_{3k/\nu+2}$ by $v_1^{3k-1}h_0 = i_*(\alpha_{3k/\nu+2})$ in the E_2 -term for $\nu = \max\{n: 3^n|k\}$.

dimension k	$\pi_{k-8}(M)$	$\pi_{k-3}(M)$	$\pi_k(M)$	$\pi_{k-4}(M)$	$\pi_{k-1}(M)$	$\pi_k(M \wedge \overline{X_1})$
106	0	$\begin{array}{c c} i\alpha_{26} \\ \beta'_{6/3}\beta_1^2 \\ x'_{92}\beta_1 \end{array}$	ix_{106}	$\begin{array}{c} i\beta_{6/3}\beta_1^2, ix_{92}\beta_1, \\ x_{81}'\beta_1^2, \gamma_2'\beta_1^2 \end{array}$	$\gamma_2^\prime \beta_1^2 lpha_1$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
96	$\alpha^{22}i$	$ix_{93}, \\ x'_{92}, \\ \beta'_{6/3}\beta_1$	$\begin{array}{c} \alpha^{24}i,\\ \beta_{6/3}^{\prime}\beta_{1}\alpha_{1}\end{array}$	$lpha^{23}i, ix_{92},\ ieta_1eta_{6/3},\ \gamma_2'eta_1,\ eta_1'x_{81}$	$ilpha_{24/2},\ ilpha_{1}eta_{1}eta_{6/3},\ \gamma_{2}'eta_{1}lpha_{1},\ eta_{1}lpha_{1}$	$\begin{array}{c}h_{20}\gamma_2,\\\iota_1\alpha^{24}i\end{array}$
86	$i\alpha_1 x_{75} = ix_{68}\beta_1$	$\begin{matrix} i\alpha_{21/2},\\ \beta_{6/3}'\end{matrix}$	$egin{array}{l} eta_1' x_{75}, \ ieta_{6/2}, \ eta_{6/3} lpha_1 \end{array}$	$\gamma'_{2},\ x'_{81},\ ieta_{6/3}$	$\gamma'_2 lpha_1, \ x'_{81} lpha_1, \ i lpha_1 eta_{6/3}, \ i eta_1 x_{75}$	$\iota_1eta_1'x_{75},\ \iota_1ieta_{6/2}$
76	$lpha^{17}i,\ ix_{68}$	$eta_2^\primeeta_2eta_1^2$	$\begin{array}{c} \alpha^{19}i,\\ \beta_2^{\prime}\beta_2\beta_1^2\alpha_1 \end{array}$	$\begin{array}{c} \alpha^{18}i,\\ i\beta_1^2\beta_2^2 \end{array}$	$ilpha_{19},\ ix_{75},\ eta_{5}'$	$\frac{\iota_1 \alpha^{19} i}{\iota_1 x_{75}'},$

Here, we use the relations $\kappa_{1*}(i\beta_{9/9}) = i\beta_{6/3}\beta_1^2$, $\kappa_{1*}(\langle\beta_{(1)},\beta_{(1)},\beta_{6/3}\rangle) = x'_{81}\beta_1^2$ and $\kappa_{1*}(h_{20}\gamma_2) = ix_{92}$ given in [7, Th. 7.5.3] in the dimensions 106 and 96. In the dimension 76, $\overline{\iota_1 x'_{75}} \in \pi_{76}(M \wedge \overline{X_1})$ denotes an element detected by $\iota_{1*}(x'_{75}) \in E_2^{4,80}(M \wedge \overline{X_1})$ for $x'_{75} \in E_2^{4,80}(M)$ such that $\delta(x'_{75}) = x_{75} \in E_2^{5,80}(S^0)$, where δ is the connecting homomorphism in (2.3). The element $x'_{75} \in E_2^{4,80}(M)$ supports the Adams-Novikov differential $d_5(x'_{75}) = i\alpha_1\beta_1^2\beta_2^2$, and $\kappa_{1*}(\overline{\iota_1 x'_{75}}) = i\beta_1^2\beta_2^2$.

dimension k	$\pi_{k-8}(M)$	$\pi_{k-5}(M)$	$\pi_{k-7}(M)$	$\pi_{k-4}(M)$	$\pi_{k-4}(M \wedge \overline{X_1})$	$\pi_k(M)$
99	$\begin{vmatrix} i\alpha_{23},\beta_6',\\ i\gamma_2\beta_1,\\ ix_{81}\beta_1 \end{vmatrix}$	$\begin{array}{c}\beta_6'\alpha_1,\\i\alpha_1\beta_1\gamma_2,\\i\beta_5\beta_1^2\end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} i\alpha_{24/2}, \\ i\alpha_{1}\beta_{1}\beta_{6/3}, \\ \gamma'_{2}\beta_{1}\alpha_{1}, \beta'_{5}\beta_{1}^{2} \end{array}$	$\overline{\alpha_{23}}$	$ilpha_{25},\ ix_{99}$
89	$i\gamma_2,\ ix_{81}$	$\begin{array}{c} \alpha^{21}i, \\ i\alpha_1\gamma_2, \\ i\alpha_1x_{81} \end{array}$	$\begin{matrix} i\beta_{6/3},\\\gamma_2',\\x_{81}'\end{matrix}$	$ilpha_{1}eta_{6/3}\ \gamma_{2}'lpha_{1},\ x_{81}'lpha_{1},\ ieta_{1}x_{75}$	$\iota_1 i eta_1 x_{75}$	0
79	$i\alpha_{18/3}$	$ieta_5$	$\begin{array}{c} \alpha^{18}i,\\ i\beta_1^2\beta_2^2 \end{array}$	$egin{array}{c} ilpha_{19},\ ix_{75},\ eta_{5}' \end{array}$	$egin{array}{c} \iota_1 i x_{75}, \ \iota_1 eta_5', \ \overline{lpha_{18/3}} \end{array}$	$\begin{array}{c} x_{75}'\alpha_1, \\ i\alpha_{20} \end{array}$

Katsumi Shimomura

Here $x_{99} = \langle \alpha_1, \alpha_1, x_{92} \rangle$ and $x_{81}\alpha_1 = \beta_5\beta_1$, and $\overline{\alpha}_s$ denotes an element such that $\kappa_1(\overline{\alpha}_s) = i\alpha_s$. Consider the commutative diagram

$$\pi_{k-7}(M) = \pi_{k-7}(M)$$

$$\downarrow^{\lambda'} \qquad \downarrow^{\alpha_1}$$

$$\pi_k(M) \xrightarrow{\iota_1} \pi_k(M \wedge \overline{X_1}) \xrightarrow{\kappa_1} \pi_{k-4}(M) \xrightarrow{\alpha_1} \pi_{k-1}(M)$$

$$\parallel \qquad \downarrow^{\iota'} \qquad \downarrow^{\iota_1} \qquad \parallel$$

$$\pi_k(M) \xrightarrow{\iota} \pi_k(M \wedge X_1) \xrightarrow{\kappa} \pi_{k-4}(M \wedge \overline{X_1}) \xrightarrow{\lambda} \pi_{k-1}(M)$$

$$\downarrow^{\kappa'} \qquad \downarrow^{\kappa_1}$$

$$\pi_{k-8}(M) = \pi_{k-8}(M)$$

induced from the cofiber sequences in (2.8) and (4.1), in which ι , ι' , κ and κ' denote $\iota_{0,0}$, $\iota'_{0,0}$, $\kappa_{0,0}$ and $\kappa'_{0,0}$ in (2.8). We notice that $\lambda \lambda' = \beta_1 \wedge M$ and $\lambda' \lambda = \beta_1 \wedge M \wedge \overline{X_1}$. Then we obtain the following lemma from the above tables:

Lemma 4.3. The homotopy groups $\pi_k(M \wedge X_1)$ are as follows:

1. $\pi_{106}(M \wedge X_1) = \mathbb{Z}/3\{\iota i x_{106}, \iota' i \beta_{9/9}, \iota' \langle \beta_{(1)}, \beta_{(1)}, \beta_{6/3}' \rangle\}.$ 2. $\pi_{99}(M \wedge X_1) = \mathbb{Z}/3\{\iota i x_{99}, \overline{\alpha_{23}}\}$. Here, $x_{99} = \langle \alpha_1, \alpha_1, x_{92} \rangle$. 3. $\pi_{96}(M \wedge X_1) = \mathbf{Z}/3\{\iota \alpha^{24} i, \iota' h_{20} \gamma_2\}.$ 4. $\pi_{89}(M \wedge X_1) = \mathbf{Z}/3\{\iota'\eta_3\}$. Here, $\kappa_{1*}(\eta_3) = i\beta_1 x_{75}$. 5. $\pi_{86}(M \wedge X_1) = \mathbf{Z}/3\{\iota\beta_1' x_{75}, \iota i \beta_{6/2}\}$ 6. $\pi_{79}(M \wedge X_1) = \mathbf{Z}/3\{\iota' u_2', \overline{\alpha_{18/3}}\}$ 7. $\pi_{76}(M \wedge X_1) = \mathbf{Z}/3\{\iota \alpha^{19} i, \overline{\iota x'_{75}}\}$

Here, $\overline{\alpha_s}$ denotes an element such that $\kappa'_*(\overline{\alpha_s}) = i\alpha_s$ for the projection $\kappa' \colon M \land X_1 \to M$ to the top cells, and $\overline{\iota x'_{75}} \in \pi_{76}(M \wedge X_1)$ denotes an element detected by $\iota_*(x'_{75}) \in E_2^{4,80}(M \wedge X_1)$ for $x'_{75} \in E_2^{4,80}(M)$.

Proof. From [7, Th. 7.5.3], we read off the relations

$$\kappa_*(\iota'\eta_3) = \iota_1 i\beta_1 x_{75}, \quad \kappa_*(u_2) = \beta_5 \quad \text{and} \quad \kappa'_*(b_{20}\beta_2) = x_{68}$$

In dimensions 99, 96, 79 and 76, we use the relation (4.2). Furthermore, in dimension 106, $\lambda'(ix_{99}) = h_{20}\gamma_2\beta_1$, since $\kappa_{1*}(h_{20}\gamma_2\beta_1) = ix_{92}\beta_1 = i\alpha_1x_{99} = \kappa_1\lambda'ix_{99}$, and so $\iota'(h_{20}\gamma_2\beta_1) = \iota'\lambda'(ix_{99}) = 0$. The element $\lambda'(i) \in$ $\pi_7(M \wedge \overline{X_1})$ satisfies $\kappa_1 \lambda'(i) = i\alpha_1$ and $\lambda \lambda'(i) = i\beta_1$. This together with $\beta_1 x_{75} \neq 0 \in \pi_*(S^0)$, we see that $i\alpha_1 x_{75}$ is not pulled back to $\pi_{86}(M)$ under the map κ' . In dimension 79, note that $\lambda_*(\iota_1 i x_{75}) = i x_{75} \alpha_1 = i \beta_1 x_{68} \neq 0$. We also see that ix_{68} is not pull back to $\pi_{76}(M \wedge X_1)$ under κ' , since $\lambda' ix_{68} \neq 0$ by $\lambda\lambda' ix_{68} = i\beta_1 x_{68} \neq 0$. q.e.d.

If $\xi \in \pi_*(X)$ for a spectrum X is detected by an element $x \in E_2^s(X)$, then we write filt $\xi = s$. Let H_t^s denote the subgroup of $\pi_t(M \wedge X_1)$ generated by the elements with filt $\xi \geq s$.

Lemma 4.4. The subgroups H_t^s of the homotopy groups $\pi_t(M \wedge X_1)$ are as follows:

- 1. $H_{140}^8 = 0.$ 2. $H_{133}^7 \subset \mathbb{Z}/3\{b_1 \iota i x_{99}\}.$ 3. $H_{130}^6 \subset \mathbf{Z}/3\{b_1\iota'h_{20}\gamma_2\}.$ 4. $H_{123}^5 \subset \mathbf{Z}/3\{v_2h_{20}b_{20}^2, b_1\iota'\eta_3\}.$ 5. $H_{120}^{3} \subset \mathbf{Z}/3\{b_{1\iota}\beta_{1}'x_{75}, b_{1\iota}i\beta_{6/2}\}.$ 6. $H_{113}^{3} = \pi_{113}(M \wedge X_{1}) \subset \mathbf{Z}/3\{b_{1\iota}\iota'u_{2}'\}.$ 7. $H_{110}^{2} = \pi_{110}(M \wedge X_{1}) \subset \mathbf{Z}/3\{v_{1}b_{2}, b_{1}\iota x_{75}'\}.$

Proof. Observe the spectral sequence (2.15) for k = 1, and we have a spectral sequence

$$\pi_t(M \wedge X_2) \oplus h_1 \pi_{t-11}(M \wedge X_2) \oplus b_1 \pi_{t-34}(M \wedge X_1) \Longrightarrow \pi_t(M \wedge X_1)$$

In particular,

$$K_t^s \oplus h_1 K_{t-11}^{s-1} \oplus b_1 H_{t-34}^{s-2} \Longrightarrow H_t^s.$$

Here, K_t^s denotes the subgroup of $\pi_t(M \wedge X_2)$ generated by the elements with filt $\xi \geq s$. By Corollary 2.13, we see that $H_{140}^8 \subset b_1 H_{106}^6$, $H_{133}^7 \subset b_1 H_{99}^5$ and $H_{130}^6 \subset b_1 H_{96}^4$. Since $H_{106}^6 = 0$, $H_{99}^5 = \mathbb{Z}/3\{\iota i x_{99}\}$ and $H_{96}^4 = \mathbf{Z}/3\{\iota' h_{20}\gamma_2\}$ by Lemma 4.3, we obtain the first three inclusions of the lemma. By Lemma 2.12, the above spectral sequences for the other homotopy groups are:

$$\begin{aligned} \mathbf{Z}/3\{v_{2}h_{20}b_{20}^{2}\} \oplus b_{1}H_{89}^{3} \Longrightarrow H_{123}^{5}, \quad \mathbf{Z}/3\{v_{2}h_{1}h_{21}b_{20}, v_{2}^{3}h_{1}h_{20}b_{20}\} \oplus b_{1}H_{86}^{2} \Longrightarrow H_{120}^{4}, \\ \mathbf{Z}/3\{v_{1}v_{2}^{3}h_{1}h_{2}h_{20}\} \oplus b_{1}\pi_{79}(M \wedge X_{1}) \Longrightarrow \pi_{113}(M \wedge X_{1}) \quad \text{and} \\ \mathbf{Z}/3\{v_{1}b_{2}, v_{2}^{3}h_{20}h_{21}, v_{2}^{4}b_{20}, v_{1}^{13}v_{2}^{2}h_{1}h_{20}, v_{1}^{17}v_{2}h_{1}h_{20}, v_{1}^{21}h_{1}h_{20}, v_{2}^{4}h_{1}h_{2}\} \oplus b_{1}\pi_{76}(M \wedge X_{1}) \Longrightarrow \pi_{110}(M \wedge X_{1}). \end{aligned}$$

Let g_1 denote an element represented by the cocycle $t_1^3 \otimes t_2^3 - t_1^6 \otimes t_1^9 + v_1^3 b_{20}$ in the cobar complex. Then $v_2h_1h_{21}b_{20}$ is replaced by $v_2b_{20}g_1$. Since $d_3(v_2b_{20} - h_1h_{30}) = v_2h_1b_1$, $d_3(v_2h_1h_{21}b_{20}) = d_3(v_2b_{20}g_1) = v_2h_1b_1g_1 \equiv v_2h_2b_1^2$ mod (v_1^3) . Indeed, $g_1 = \langle h_1, h_1, h_2 \rangle$ mod (v_1^3) . Thus, the first element of the second spectral sequence dies. For the second element, we see the essential differential $d_2(v_2^3h_1h_{20}b_{20}) = v_1^3h_2h_1h_{20}b_{20} = -v_1^2v_2h_2h_{20}h_1h_1$, since $v_1^3b_{20} = -h_{20}h_2 - v_1^2v_2b_1$. In the third spectral sequence, $d_1(v_2^4h_2h_{20}) = v_1v_2^3h_1h_2h_{20}$, and in the last spectral sequence, $d_1(v_2^3h_{20}h_{21}) = v_2^3h_{20}h_1h_2$, $d_2(v_2^4b_{20} + v_2^3h_{20}h_{21}) = v_1^2v_2h_2b_1$, $d_1(v_1^{13}v_2^2h_1h_{20}) = v_1^{15}h_{20}b_1$, $d_1(v_1^{16}v_2^2h_{20}) = -v_1^{17}v_2h_1h_{20}$, $d_1(v_1^{20}v_2h_{20}) = v_1^{21}h_1h_{20}$ and $d_1(v_2^4h_{21}) = v_2^4h_1h_2$. Therefore,

$$H_{123}^5 \subset \mathbb{Z}/3\{v_2h_{20}b_{20}^2\} \oplus b_1H_{89}^3, \quad H_{120}^4 \subset b_1H_{86}^2, \quad \pi_{113}(M \wedge X_1) \subset b_1\pi_{79}(M \wedge X_1)$$
 and
$$\pi_{110}(M \wedge X_1) \subset \mathbb{Z}/3\{v_1b_2\} \oplus b_1\pi_{76}(M \wedge X_1).$$

We observe that $\iota \alpha^{19} i b_1 = \iota \alpha^{18} \varepsilon' \alpha_1 = \iota \alpha^{18} \beta_{(1)} \beta_{(2)} i \alpha_1 = 0$ by (3.1) and (3.2). We further see that $\overline{\alpha_{18/3}} b_1 = v_1^{15} b_1 \widetilde{v_2 h_0} = 0$, since $v_1^6 b_1 = v_1^3 h_1 h_2 = 0$. Here, $\overline{\alpha_{18/3}} = v_1^{15} \widetilde{v_2 h_0}$ for an element $\widetilde{v_2 h_0}$ by the definition of $\overline{\alpha_{18/3}}$. The lemma now follows from Lemma 4.3.

Lemma 4.5. Each essential element of $\pi_{143}(M)$ has the Adams-Novikov filtration less than nine.

Proof. Let G_t^s denotes the subgroup of $\pi_t(M)$ consisting of elements ξ with filt $\xi \ge s$. As above, we have another spectral sequence

$$\beta_1^4 \pi_{103}(M) \oplus \bigoplus_{\varepsilon + 2s \le 7, \varepsilon = 0, 1, s \ge 0} \alpha_1^{\varepsilon} \beta_1^s H_{143 - 10s - 3\varepsilon}^{9 - 2s - \varepsilon} \Longrightarrow G_{143}^9$$

arising from the spectral sequence (2.15) for k = 0. Indeed, comparing with (2.11) for k = 0, we see that the above spectral sequence detects G_{143}^9 . From Ravenel's table [7], we read off the homotopy group $\pi_{103}(M)$ is $\mathbb{Z}/3$ -module generated by $i\alpha_{26}$, $\beta_{(1)}i\beta_1\beta_{6/3}$ and $\gamma_{(2)}\beta_{(1)}i\beta_1$, where $\gamma_{(2)}$ denotes an element such that $j\gamma_{(2)}i = \gamma_2$. Note that Ravenel wrote x_{92} for $j\gamma_{(2)}\beta_{(1)}i$. It is well known that $\beta_{(1)}i\beta_1^5 = 0$ and so $\beta_1^6 = j\beta_{(1)}i\beta_1^5 = 0$ (see Lemma 3.3). Besides, $\alpha_{26}\beta_1 = j\alpha^{26}\delta\beta_{(1)}i = 0$ by (3.1). Thus, the first summand of the E_1 -term is zero.

Next we evaluate $\pi_{113}(M)$. Similarly consider a part of the above spectral sequence:

$$\beta_1 \pi_{103}(M) \oplus \alpha_1 \pi_{110}(M \wedge X_1) \oplus \pi_{113}(M \wedge X_1) \Longrightarrow \pi_{113}(M).$$

Then, the generators v_1b_2 and $b_1\overline{x'_{75}} \in \pi_{110}(M \wedge X_1)$ are pulled back to $\pi_{110}(M \wedge \overline{X_1})$, and we have $\lambda_*(v_1b_2) = v_1h_0b_2$ and $\lambda_*(b_1\overline{\iota_1x'_{75}}) = \varepsilon'x_{75}$ in $\pi_{113}(M)$, since $\lambda_*(\overline{\iota_1x'_{75}}) = \alpha ix_{75}$. The element h_0b_2 is represented by $\langle \alpha_1, \alpha_1, \beta_{3/3}^3 \rangle$, since $d_5(b_2) = h_0b_1^3$ in the Adams-Novikov spectral sequence [6], and $\alpha_1 = h_0$ and $\beta_{3/3} = b_1$ in the E_2 -term. Turn to the generators of $\pi_{113}(M \wedge X_1)$. $d_1(\iota'u'_2b_1) = \iota'\kappa_*(\iota'u'_2b_1) = \iota\beta'_5b_1$, which is detected by $v_1^2v_2^2h_2 \in \pi_{75}(M \wedge X_2)$ in the spectral sequence (2.15) for k = 2. No generator of $\pi_{99}(M \wedge X_2)$ and $\pi_{110}(M \wedge X_2)$ hits any of β'_5 and $\lambda_{0,1_*}\beta'_5$ for the boundary $\lambda_{0,1_*}: \pi_{75}(M \wedge X_1) \to \pi_{98}(M \wedge \overline{X_2})$ induced from the map in (2.8). Indeed, the relevant generators of $\pi_*(M \wedge X_2)$ are $v_2^4h_2$, v_1b_2 , $v_2^4b_{20}$ and $v_2^3h_{20}h_{21}$, and none of the differentials on them hits $v_1^2v_2h_2 \in \pi_{75}(M \wedge X_2)$ in (2.15) for k = 2. Therefore, $d_1(\iota'u'_2b_1) = \iota\beta'_5b_1 \neq 0$. These argument shows that $\pi_{113}(M) \subset \mathbb{Z}/3\{i\langle \alpha_2, \alpha_1, \beta_1^2\beta_{6/3} \rangle, \varepsilon'x_{75}, \beta_{(1)}i\beta_1^2\beta_{6/3}, \gamma_{(2)}\beta_{(1)}i\beta_1^2\}$. Here $v_1h_0b_2$ represents $\alpha i\langle \alpha_1, \alpha_1, \beta_{3/3}^3 \rangle = i\langle \alpha_2, \alpha_1, \beta_1^2\beta_{6/3} \rangle$.

We next consider

$$\beta_1 \pi_{113}(M) \oplus \alpha_1 \pi_{120}(M \wedge X_1) \oplus H^5_{123} \Longrightarrow G^5_{123}$$

In the spectral sequence, $d_1(v_2h_{20}b_{20}^2) = h_0h_1h_{21}b_{20}h_{20} + \dots$ and $v_2h_{20}b_{20}^2$ dies in G_{123}^5 . The localization map $E_2^*(M) \to E_2^*(L_2M)$ assigns η_3 to $\beta_6\zeta_1$ by [7, (7.5.7)], and we have the Adams-Novikov differential $d_5(\beta_6b_1\zeta_2) = \beta_6h_0b_0^2\zeta_2 \neq 0$ by [9, Prop. 9.9, Cor. 10.4]. It follows that $b_1\eta_3 \in \pi_{123}(M \wedge X_1)$ also dies in the above spectral sequence. Noticing that $b_1\iota x = \iota'\iota_1b_1x$ and $\lambda\iota_1b_1x = \alpha_1b_1x = \varepsilon x$, we obtain

$$G_{123}^5 \subset \mathbb{Z}/3\{\iota\beta_1'\varepsilon x_{75}, \iota i\beta_{6/2}\varepsilon, \langle i\alpha_2, \alpha_1, \beta_1^3\beta_{6/3} \rangle, \varepsilon'\beta_1 x_{75}, \beta_{(1)}i\beta_1^3\beta_{6/3}, \gamma_{(2)}\beta_{(1)}i\beta_1^3\}$$

Here, $\langle i\alpha_2, \alpha_1, \beta_1^3 \beta_{6/3} \rangle = i\alpha \varepsilon' \beta_{6/3}$. Since $\varepsilon' \beta_1^2 = 0$ and $\beta_{(1)} \delta \beta_1^5 = 0$, we see $\beta_1^2 G_{123}^5 = 0$.

The element $i x_{99}$ is detected by $\langle h_0, h_0, x_{92} \rangle$. Since $d_5(b_1) = h_0 b_0^3$ by the Toda differential, $d_5(i x_{99} b_1) = i x_{99} h_0 b_0^3 = -i h_0 \langle h_0, h_0, x_{92} \rangle b_0^3 = i x_{92} b_0^4 \neq 0$ by Lemma 2.19, and $i x_{99} \beta_{3/3}$ dies in the Adams-Novikov spectral sequence for computing the homotopy group $\pi_{133}(M)$. Besides, by observing $\pi_{99}(M)$, we see that $\lambda_*(h_{20}\gamma_2) = a i x_{99}$ for some $a \in \mathbb{Z}/3$ if $h_{20}\gamma_2$ is a permanent cycle in (2.15) for k = 0. Indeed, there are two generators in $\pi_{99}(M)$ and the other generator has the filtration degree one. Therefore, $\lambda_*(b_1h_{20}\gamma_2) = a i x_{99}\beta_{3/3}$, which is shown above to be zero, and we obtain $G_{143}^9 = 0$ as desired.

5. The β -elements in stable homotopy

The cofiber sequences in (1.2) that define V_r induce the cofiber sequence that lies in the commutative diagram

Proof of Lemma 1.3. Put $\xi = \alpha^9 x'_{106} \in \pi_{143}(M)$. By virtue of Lemma 4.5, we assume that the Adams-Novikov filtration of ξ is five. If there exists an element $\chi \in \pi_{107}(M)$ of filtration degree five such that $\alpha^9 \chi = \xi$, then $x'_{106} - \chi$ is pulled back to $v_2^9 \pm v_1^8 v_2^7$. Therefore, we replace x'_{106} with $x'_{106} - \chi$, and obtain $\xi = 0$. If no such element exists, then $i_{9*}(\xi) = d_5(v_2^9 \pm v_1^8 v_2^7) \in E_2^{5,148}(V_9)$. Since $i_{3*}(\xi) = (\varphi_{93}i_9)_*(\xi) = \varphi_{93*}(d_5(v_2^9 \pm v_1^8 v_2^7)) = d_5(\varphi_{93*}(v_2^9 \pm v_1^8 v_2^7)) = d_5(v_2^9) = 3v_2^6 d_5(v_2^3) = 0$ in $E_2^{5,148}(V_3)$, we have an element $\chi \in E_2^{5,136}(M)$ such that $v_1^3 \chi = \xi$. By Lemma 2.17, χ is killed by v_1^3 , and so $\xi = v_1^3 \chi = 0$.

Corollary 5.1. The element $v_2^9 \pm v_1^8 v_2^7 \in E_2^{0,144}(V_9)$ is a permanent cycle in the Adams-Novikov spectral sequence converging to $\pi_*(V_9)$. Besides, it yields a self-map $\Sigma^{144}V_9 \to V_9$ that induces $v_2^9 \pm v_1^8 v_2^7$ on BP_* -homology.

Corollary 5.2. $d_5(v_2^9) = \pm v_1^8 v_2^5 h_1 b_0^2 \in E_2^{5,148}(V_9).$

Proof. Suppose that $d_5(v_2^9) = \xi$. By Lemma 3.16, $d_5(v_2^6) = \pm \beta'_5 \beta_1^2$, and so $d_5(v_1^8 v_2^7) = v_1^8 v_2 d_5(v_2^6) = \pm v_1^8 v_2^5 h_1 b_0^2$ in $E_5^5(V_9)$. Then, $d_5(v_2^9 \pm v_1^8 v_2^7) = \xi \pm v_1^8 v_2^5 h_1 b_0^2$, which is zero. q.e.d.

We define the β -elements in the homotopy groups not in the E_2 -term. For s = 1, 2, we state the definition in section three. The β -elements $\beta_{(s)} \in [M, M]_*$ for $s \equiv 0, 1, 2, 5, 6 \mod 9$ are given as the composites

$$\begin{array}{ll} \beta_{(9t)} = j_1[\beta^9]i_1, & \beta_{(9t+1)} = j_1[\beta^9]^t[\beta i_1], & \beta_{(9t+2)} = [j_1\beta][\beta^9]^t[\beta i_1] \\ & \beta_{(9t+5)} = j_1[\beta^9]^t[\beta^5 i_1] & \text{and} & \beta_{(9t+6)} = [j_1\beta][\beta^9]^t[\beta^5 i_1] \end{array}$$

for the self-map $[\beta^9]: \Sigma^{144}V_1 \to V_1$ given in [1]. Here [x] denotes an imaginary element used in [14]. Assuming the existence of the self-map $[\beta^9]: \Sigma^{144}V_2 \to V_2$, Oka also gave another definition:

$$\beta_{(9t+s)} = j_2 [\beta^9]^t [\widetilde{\alpha}\beta^s] i_2$$

by use of the homotopy elements $[\tilde{\alpha}\beta^s] \in [V_2, V_2]_{16s+4}$ for s = 0, 1, 2, 5, 6 in [5, Lemma 3]. Similarly, we define the β -elements $\beta_{(9t/r)}$ for 0 < r < 9, $\beta_{(9t+3/r)}$ for r = 1, 2 and $\beta_{(9t+6/r)}$ for r = 1, 2, 3 with $\beta_{(3s/1)} = \beta_{(3s)}$ as

(5.3)
$$\beta_{(9t/r)} = j_r [\beta^9]^t i_r, \quad \beta_{(9t+3/r)} = j_{r+2} [\beta^9]^t [\widetilde{\alpha^2} \beta^3] i_{r+2} \quad \text{and} \quad \beta_{(9t+6/r)} = j_{r+1} [\beta^9]^t [\widetilde{\alpha} \beta^6] i_{r+1}.$$

Here, the elements $[\alpha^2 \beta^3]$ and $[\tilde{\alpha}\beta^6]$ in $[V_r, V_r]_*$ for r = 2, 3, 4 denote the self-maps induced from the homotopy elements $v_1^2 v_2^3$ and $v_1 v_2^6$ in Lemma 1.6. We also write $\beta'_s = \beta_{(s)} i \in \pi_*(M)$ and $\beta_s = j\beta'_s \in \pi_*(S^0)$. Note that $\beta'_{9/r} = \alpha^{9-r} x'_{106}$ and $\beta_{9/r} = \langle \alpha_{9-r}, 3, x_{106} \rangle$.

Proof of Corollary 1.7. By the geometric boundary theorem [7], we see that each β -element in (2.5) detects the corresponding element in (5.3). Let $B: \Sigma^{144}V_9 \to V_9$ denote the self-map given in Corollary 5.1. Then, the latter half follows from defining the β -elements by $\tilde{\beta}_{9t/9} = jj_9B^t i_9 i_1$. q.e.d.

By a diagram chasing on the Adams-Novikov resolutions over the cofiber sequence $M \xrightarrow{i_k} V_1 \xrightarrow{j_k} \Sigma^{4k+1} M \xrightarrow{\alpha^k} \Sigma M$ in (1.2), we obtain the following lemma:

Lemma 5.4. Suppose that $d_r(v) = i_{k*}(x) \in E_r^r(V_k)$ for an element $v \in E_r^0(V_k)$ and an element $x \in E_r^r(M)$, which detects an essential homotopy element $\xi \in \pi_*(M)$ and that $\delta(v) \in E_2^1(M)$ detects a homotopy element ζ . Then, $\alpha^k \zeta = \xi$.

The basic idea of the proof is described by the chart:

The same argument as [10] using $\beta_{9t+1}\beta_5 = [\beta_{9t+5}\beta_1']\zeta_2 \in \eta(\widetilde{GZ})$ instead of $\beta_{9t+1}\beta_2 = [\beta_{9t+2}\beta_1']\zeta_2 \in \eta(\widetilde{GZ})$ in the proof of [10, Th. A, Cor. B] shows the following

Lemma 5.5. $\beta_{9t+1}\beta_5\beta_1^j \neq 0 \in \pi_*(S^0)$ if j < 2 and $\beta_{9t+5}\beta_1^2 \neq 0 \in \pi_*(S^0)$.

There are some examples:

- $d_5(v_2^{9t+3}) = \pm i_{1*}(\beta'_{9t+2}\beta_1^2) \in E_5^5(V_1)$ for t > 0 by Lemma 3.16, and $\beta'_{9t+2}\beta_1^2$ is an essential homotopy element by [10, Cor. B]. $d_5(v_2^{9t+6}) = \pm i_{1*}(\beta'_{9t+5}\beta_1^2) \in E_5^5(V_1)$ for $t \ge 0$ by Lemma 3.16, and $\beta'_{9t+5}\beta_1^2$ is an essential homotopy element by Lemma 5.5
- element by Lemma 5.5. $d_9(v_1v_2^{9t+3}) = \pm v_2^{9t}h_1b_0^4 = \pm \beta'_{9t+1}\beta_1^4$ in $E_9^9(V_2)$ by Lemma 3.17, and $\beta'_{9t+1}\beta_1^4$ is an essential permanent
- cycle, since so is $\beta_{9t+1}\beta_1^4$ by [10, Th. A].

Corollary 3.9 and these examples with Lemma 5.4 implies

Theorem 5.6. Let t be non-negative integers. Then $\alpha^2 \beta'_{3/2} = \alpha \beta'_3 = i \varepsilon \beta_1$, $\alpha^2 \beta'_{9(t+1)+3/2} = \alpha \beta'_{9(t+1)+3} = \alpha \beta'_{9(t+1)+3/2} = \alpha \beta'_{9(t+1)+3/2}$ $\beta_{9(t+1)+2}^{\prime}\beta_{1}^{2}, \ \alpha^{3}\beta_{9t+6/3}^{\prime} = \alpha^{2}\beta_{9t+6/2}^{\prime} = \alpha\beta_{9t+6}^{\prime} = \beta_{9t+5}^{\prime}\beta_{1}^{2} \text{ and } \alpha^{3}\beta_{9t+3/2}^{\prime} = \alpha^{2}\beta_{9t+3}^{\prime} = \beta_{9t+1}^{\prime}\beta_{1}^{4}. \text{ In particular, } \alpha\beta_{9(t+1)+2}^{\prime}\beta_{1}^{2} = \beta_{9(t+1)+1}^{\prime}\beta_{1}^{4}. \text{ Here, every equality is up to sign.}$

Proof of Proposition 1.8. The relation $\alpha^k \beta' = \xi \in \pi_*(M)$ for β' such that $j\beta' = \beta$ implies $\langle \alpha_k, 3, \beta \rangle = j\xi \in \pi_*(M)$ $\pi_*(S^0)$ by the definition of the Toda bracket. Therefore, Lemma 1.3 implies the first relation $\langle \alpha_r, 3, \beta_{9t/r} \rangle =$ 0. Furthermore, we read off from Theorem 5.6 that $\langle \alpha_2, 3, \beta_{3/2} \rangle = \langle \alpha_1, 3, \beta_3 \rangle = 0$, and that for $t \geq 0$, $\langle \alpha_2, 3, \beta_{9(t+1)+3/2} \rangle = \langle \alpha_1, 3, \beta_{9(t+1)+3} \rangle = \beta_{9(t+1)+2} \beta_1^2, \ \langle \alpha_3, 3, \beta_{9t+6/3} \rangle = \langle \alpha_2, 3, \beta_{9t+6/2} \rangle = \langle \alpha_1, 3, \beta_{9t+6} \rangle = \beta_{9t+5} \beta_1^2 \text{ and } \langle \alpha_3, 3, \beta_{9t+3/2} \rangle = \langle \alpha_2, 3, \beta_{9t+3} \rangle = \beta_{9t+1} \beta_1^4 \text{ in the homotopy groups } \pi_*(S^0) \text{ up to sign.}$

References

- [1] M. Behrens and S. Pemmaraju, On the existence of the self map v_2^9 on the Smith-Toda complex V(1) at the prime 3, Contemp. Math. 346 (2004), 9-49.
- [2] H. R. Miller, D. C. Ravenel, and W. S. Wilson, Periodic phenomena in Adams-Novikov spectral sequence, Ann. of Math. 106 (1977), 469-516.
- [3] S. Oka, The homotopy groups of spheres II, Hiroshima Math. J. 2 (1972), 99-161.
- [4] S. Oka, Ring spectra with few cells, Japan J. Math. 5 (1979), 81–100.
- [5] S. Oka, Note on the β -family in stable homotopy of spheres at the prime 3, Mem. Fac. Sci. Kyushu Univ. 35 (1981), 367–373.
- [6] D. C. Ravenel, The nonexistence of odd primary Arf invariant elements in stable homotopy, Math. Proc. Cambridge Philos. Soc. bf 83 (1987), 429-433.
- [7] D. C. Ravenel, Complex Cobordism and Stable Homotopy Groups of Spheres, Second edition, AMS Chelsea Publishing, Providence, 2004.
- [8] D. C. Ravenel, The method of infinite descent in stable homotopy theory I, Contemp. Math. 293 (2002), 251–284.
- [9] K. Shimomura, The homotopy groups of the L_2 -localized Toda-Smith spectrum V(1) at the prime 3, Trans. Amer. Math. Soc. **349** (1997), 1821–1850.
- [10] K. Shimomura, On the action of β_1 in the stable homotopy of spheres at the prime 3, Hiroshima Math. J. **30** (2000), 345–362.
- [11] L. Smith, On realizing complex bordism modules, IV, Applications to the stable homotopy groups of spheres, Amer. J. Math. 99 (1971), 418-436.
- [12] H. Toda, p-primary components of homotopy groups IV, Mem. Coll. Sci. Univ. Kyoto Ser. A, 32 (1959), 288-332.
- [13] H. Toda, An important relation in homotopy groups of spheres, Proc. Japan Acad. 43 (1967), 839–942.
- [14] H. Toda, Algebra of stable homotopy of Z_p -spaces and applications, J. Math. Kyoto Univ., 11 (1971), 197–251.
- [15] H. Toda, On spectra realizing exterior parts of the Steenrod algebra, Topology 10 (1971), 53–65.

Department of Mathematics, Faculty of Science, Kochi University, Kochi, 780-8520, Japan E-mail address: katsumi@math.kochi-u.ac.jp