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Abstract. Let βs be the generator of the second line of the E2-term of the Adams-Novikov spectral sequence
converging to the stable homotopy groups π∗(S0) of spheres at the prime three. Ravenel conjectured that the
generator βs survives to a homotopy element if and only if s ≡ 0, 1, 2, 3, 5, 6 mod 9. In [9], we proved the
‘only if’ part. In [1], Behrens and Pemmaraju showed that βs survives to a homotopy element if s ≡ 0, 1, 2, 5, 6
mod 9. In this paper, we show the existence of a self-map β : Σ144Vr → Vr for r < 9, that induces v9

2 on
BP∗-homology. Here Vr denotes the spectrum characterized by the BP∗-homology BP∗(Vr) = BP∗/(3, vr

1).
Oka [5] showed that the ‘if’ part follows from the existence of the self-map β on V3. Therefore, in particular,
we obtain β9t+3 ∈ π144t+42(S0). The self-maps show the existence of other members β9t/r ∈ π144t−4r−2(S0)

for t > 0 and 0 < r < 9, β3t/2 ∈ π48t−10(S0) for t > 0 and β9t+6/3 ∈ π144t+82(S0) for t ≥ 0 of the beta family

in π∗(S0).

1. Introduction

Let S0 denote the sphere spectrum localized at a prime p, and let V (n) for n ≥ 0 denote the Smith-Toda
spectrum defined by the BP∗-homology BP∗(V (n)) = BP∗/(p, v1, . . . , vn). Here, BP denotes the Brown-
Peterson spectrum with coefficient ring BP∗ = Z(p)[v1, v2, . . . ]. Note that V (−1) = S0, and V (0) is the mod p
Moore spectrum M . It is shown that if n < 4, then V (n) exists if and only if p > 2n (cf. [11], [15], [7]). The
spectra V (0) = M and V (1) for p ≥ 3 lie in the cofiber sequences

(1.1) S0 w3
S0 wi

M wj
S1 and Σ2p−2M wα

M wi1
V (1) wj1 Σ2p−1M,

where α denotes the Adams map such that BP∗(α) = v1. For the prime p > 3, L. Smith [11] defined the β-
element as βs = jj1β

si1i for s > 0 in the homotopy groups π∗(S0) by constructing the self-map β : Σ2p2−2V (1) →
V (1). We notice that the cofiber of β is V (2). Hereafter, we assume that the prime p is three. Then, Toda
[15] showed the non-existence of the Smith-Toda spectrum V (2), which indicates the non-existence of the self-
map β. Thus, there seems no way to define the β-family in the homotopy groups π∗(S0) different from the
case where the prime p is greater than three. Consider the Adams-Novikov spectral sequence converging to
the homotopy groups π∗(X) of a spectrum X with E2-term E∗,∗

2 (X) = Ext∗,∗BP∗BP (BP∗, BP∗(X)) for the Hopf
algebroid (BP∗, BP∗BP ) associated to BP . Then Miller, Ravenel and Wilson [2] defined a β-element βs for
s > 0 in the E2-term E2,16s−4

2 (S0) as δδ′(vs
2) for vs

2 ∈ E0,16s
2 (V (1)), where δ : E1,16s−4

2 (M) → E2,16s−4
2 (S0)

and δ′ : E0,16s
2 (V (1)) → E1,16s−4

2 (M) are the connecting homomorphisms associated to the cofiber sequences in
(1.1). Toda [12] constructed the homotopy element βs detected by βs ∈ E2,∗

2 (S0) for s < 4 and Oka [3] showed
that β4 ∈ E2,∗

2 (S0) is not a permanent cycle and β5 is, and Ravenel conjectured that βs is a permanent cycle
of the spectral sequence if and only if s ≡ 0, 1, 2, 3, 5, 6 mod 9. In [9], we proved the ‘only if’ part. Behrens
and Pemmaraju showed in [1] the ‘if’ part except for β9t+3 by constructing the self-map [β9] : Σ144V (1) → V (1)
that induces v9

2 on BP∗-homology. Let Vr denote a spectrum with BP∗-homology BP∗/(3, vr
1), which lies in the

cofiber sequence

(1.2) Σ4rM wαr

M wir
Vr wjr Σ4r+1M.

Note that V1 = V (1) and that Vr for r > 1 is a ring spectrum by Oka [4], while V (1) is not by Toda [15]. Oka
showed in [5] that the ‘if’ part of the conjecture follows from the existence of a similar self-map [β9] : Σ144V3 → V3

that induces v9
2 on BP∗-homology.

We study such a self-map in this paper. For this sake, we consider the element x106 = β9/9 ± β7 ∈ π106(S0)
given by Ravenel [7]. Since the order of x106 is three, we have an element x′106 ∈ π107(M) such that j∗(x′106) =
x106, and define β′9/r = α9−rx′106 ∈ π143−4r(M) for 0 < r < 9. By the self-map [β9] given in [1], we define the
β-element β′9 = j1[β9]i1i, and αβ′9 = 0 ∈ π143(M); nevertheless, the relation αβ′9/1 = 0 ∈ π143(M) is not trivial.
The following is our key lemma.

Lemma 1.3. α9x′106 = 0 ∈ π∗(M), and so αrβ′9/r = 0 ∈ π∗(M) for 0 < r < 9.

This implies that β′9/r is pulled back to v9
2 ∈ π144(Vr) under the map jr∗ : π144(Vr) → π143−4r(M). Since Vr

is a ring spectrum if r > 1, the element v9
2 yields the self-map.

1



2 Katsumi Shimomura

Theorem 1.4. There exists the self-map [β9] : Σ144Vr → Vr for 1 < r < 9 that induces v9
2 on BP∗-homology.

Corollary 1.5. (cf. Oka [5]) If s ≡ 0, 1, 2, 3, 5, 6 mod 9, then βs ∈ E2,16s−4
2 (S0) is a permanent cycle.

In order to define β9t+3 and β9t+6 in π∗(S0) from the self-map, Oka showed the existence of the homotopy
elements v2

1v3
2 of π56(V3) and v1v

6
2 of π100(V2) in [5, Lemmas 3 and 4].

Lemma 1.6. There exist elements v2
1v3

2 and v1v
6
2 ∈ π∗(V4) that induces v2

1v3
2 and v1v

6
2 on BP∗-homology.

This follows from Lemmas 3.17 and 3.18. In the same manner as Oka did in [5], we obtain

Corollary 1.7. Let t be a positive integer. Then there exist essential homotopy elements β9t/r ∈ π144t−4r−2(S0)
for 0 < r < 9, β3t/r ∈ π48t−4r−2(S0) for r = 1, 2 and β9t−3/3 ∈ π144t−62(S0) of order three. Besides, we have
β̃9t/9 ∈ π144t−38(S0) such that 〈α1, 3, β̃9t/9〉 = β9t/8.

Here, αr ∈ π4r−1(S0) for r > 0 denotes the α-element defined by αr = jαri for the maps in (1.1). These α-
and β-elements satisfy the Toda bracket relations 〈αk, 3, β9t/r〉 = β9t/r−k for 0 < k < r, 〈α1, 3, β3t/2〉 = β3t and
〈α2, 3, β9t+6/3〉 = 〈α1, 3, β9t+6/2〉 = β9t+6 in the homotopy groups π∗(S0) by definition.

Proposition 1.8. Let t be a non-negative integer. In π∗(S0), 〈αr, 3, β9t/r〉 = 0, 〈α1, 3, β3〉 = 0, 〈α2, 3, β9t+3/2〉 =
β9t+2β

2
1 (t > 0), 〈α3, 3, β9t+6/3〉 = β9t+5β

2
1 and 〈α3, 3, β9t+3/2〉 = β9t+1β

4
1 up to sign.

The cofiber of the self-map of Theorem 1.4 yields the spectrum M(1, r, 9).

Corollary 1.9. There exists a spectrum M(1, r, 9) such that BP∗(M(1, r, 9)) = BP∗/(3, vr
1, v

9
2) for 1 < r < 9.

Furthermore, the element x′106 itself is pulled back to an element detected by v9
2± v8

1v7
2 by Lemma 1.3, which

induces the self-map (see Corollary 5.1).

Proposition 1.10. There exists a spectrum M(1, 9, 9) such that BP∗(M(1, 9, 9)) = BP∗/(3, v9
1 , v9

2 ± v8
1v7

2).

This paper is organized as follows: In the next section, we introduce the β-elements in the E2-terms of the
Adams-Novikov spectral sequence, and then we determine some Adams-Novikov E2-terms by Ravenel’s small
descent spectral sequence. In section 3, we show Lemma 3.13 on the differential d5(v3

2), which plays the crucial
role to show Lemma 1.6 and Proposition 1.8. Section four is devoted to study the homotopy group π143(M).
By use of this, we prove Lemma 1.3 in the last section. We also introduce β-elements in the homotopy groups
π∗(S0) and prove Corollary 1.7 and Proposition 1.8.

The author would like to thank the referee for not only reminding him that d5(v3
2) 6= 0 in the Adams-

Novikov spectral sequence for π∗(V1 ∪β2
1

Σ21V1), but also pointing him out that original version of Lemma 5.4
is ambiguous.

2. The β-elements in the E2-term of the Adams-Novikov spectral sequence and the small descent
spectral sequence

Let BP denote the Brown-Peterson spectrum at the prime three. Then it defines the Hopf algebroid
(BP∗, BP∗BP ) = (π∗(BP ), BP∗(BP )) = (Z(3)[v1, v2, . . . ], BP∗[t1, t2, . . . ]). The internal degrees of the genera-
tors are |vn| = 2× 3n − 2 = |tn|. The structure maps of it behave on generators as follows:

(2.1)

ηR(v1) = v1 + 3t1, ηR(v2) ≡ v2 + v1t
3
1 − v3

1t1 mod (3),
ηR(v3) ≡ v3 + v2t

9
1 − v3

2t1 + v1t
3
2 mod (3, v2

1)
∆(t1) = t1 ⊗ 1 + 1⊗ t1, ∆(t2) = t2 ⊗ 1 + t1 ⊗ t31 + 1⊗ t2 + v1b10 and
∆(t3) ≡ t3 ⊗ 1 + t1 ⊗ t32 + t2 ⊗ t91 + 1⊗ t3 + v2b11 + v1b20 mod (3, v2

1),

where b1k for k ≥ 0 and b20 is defined by

d(t3
k+1

1 ) = 3b1k and d(t32) = −t31 ⊗ t91 − v3
1b11 + 3b20

in the cobar complex Ω∗BP∗(BP )BP∗. This implies

(2.2) b1k ≡ −t3
k

1 ⊗ t2×3k

1 − t2×3k

1 ⊗ t3
k

1 and d(b20) ≡ b10 ⊗ t91 − t31 ⊗ b11 mod (3).

It gives rise to the Adams-Novikov spectral sequence Es,t
2 (X) ⇒ πt−s(X) with Es,t

2 (X) = Exts,t
BP∗BP (BP∗, BP∗(X)).

Consider the spectra M and Vr for r > 0 defined by the cofiber sequences (1.1) and (1.2). Then they induces
the long exact sequences

(2.3) · · · w Es
2(S0) w3

Es
2(S0) wi∗

Es
2(M) wδ

Es+1
2 (S0) w · · · , and

· · · w Es
2(M) w

αr∗
Es

2(M) w
ir∗

Es
2(Vr) w

δr

Es+1
2 (M) w · · ·
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of the Adams-Novikov E2-terms. By (2.1), we see that for t > 0,

(2.4) vt
2 ∈ E0,16t

2 (V1), v3t
2 ∈ E0,48t

2 (Vr) (0 < r ≤ 3), and v9t
2 ∈ E0,144t

2 (Vr) (0 < r ≤ 9).

We define the β-elements β′t/r in E1
2(M) (resp. βt/r in E2

2(S0)) with β′t = β′t/1 (resp. βt = βt/1) by

(2.5) β′t/r = δr(vt
2) (resp. βt/r = δδr(vt

2)),

if vt
2 ∈ E0

2(Vr). By cochains of the cobar complex Ω∗BP∗BP BP∗, these β-elements are represented as

(2.6) β1 = [b10], β3/3 = [b11 + · · · ], β′2 = [−v2t
3
1 + v1t

6
1 + v2

1v2t1 + v3
1t41 + v5

1t21],

where · · · in the representative of β3/3 denotes an element of the ideal (3, v5
1).

We call a spectrum R a ring spectrum if there exist a multiplication µ : R ∧ R → R and a unit ι : S0 → R
such that µ(ι ∧ R) = 1R = µ(R ∧ ι) : R → R. Note that the mod 3 Moore spectrum is not an associative ring
spectrum by Toda [15, Lemma 6.2], and neither are Vr’s. Though V1 is not a ring spectrum [14], Oka showed
in [4, Ex. 2.9] and [4, Cor. 2.6] the following theorem:

(2.7) (Oka) Vr for r > 1 are ring spectra.

In order to study the E2-terms of the Adams-Novikov spectral sequence, we adopt Ravenel’s small de-
scent spectral sequence. Ravenel constructed spectra T (m) and T (m)k for m, k ≥ 0 such that BP∗(T (m)) =
BP∗[t1, . . . , tm] ⊂ BP∗(BP ) and BP∗(T (m)k) = BP∗(T (m)){tjm+1 : 0 ≤ j ≤ k} ⊂ BP∗(T (m + 1)) in [7] and
[8], which fit in the cofiber sequences

(2.8) T (m)3k−1 wιm,k

T (m)3k+1−1 wκm,k

Σ2×3k(3m+1−1)T (m)2×3k−1 wλm,k

ΣT (m)3k−1 and
T (m)2×3k−1 w

ι′m,k

T (m)3k+1−1 w
κ′m,k

Σ4×3k(3m+1−1)T (m)3k−1 w
λ′m,k

ΣT (m)2×3k−1

(see [7, (7.1.14), (7.1.15)]). These induce an exact couple that defines the algebraic (resp. topological) small
descent spectral sequence

(2.9)
AE

∗,∗
1 = Λ(hm+1,k)⊗Z/3[bm+1,k]⊗ E∗

2 (X ∧ T (m)3k+1−1) =⇒ E∗
2 (X ∧ T (m)3k−1)

(resp.T E
∗,∗
1 = Λ(hm+1,k)⊗Z/3[bm+1,k]⊗ π∗(X ∧ T (m)3k+1−1) =⇒ π∗(X ∧ T (m)3k−1))

for a spectrum X with hm+1,k ∈ AE
1,0
1 (resp. T E

1,2×3k(3m+1−1)
1 ), bm+1,k ∈ AE

2,0
1 (resp. T E

2,2×3k+1(3m+1−1)
1 )

and dr : AE
s,t
r → AE

s+r,t−r+1
r (resp. dr : T E

s,t
r → T E

s+r,t+r−1
r ) (cf. [7, Th. 7.1.13, Th. 7.1.16], see also [8,

Th. 1.17, Th. 1.21]). Here, hij and bij are represented by a cochain of the cobar complex Ω∗BP∗(BP )BP∗ whose

leading terms are t3
j

i and −t3
j

i ⊗ t2×3j

i − t2×3j

i ⊗ t3
j

i , respectively. Let s and t denote positive integers with
t − s < 144, and consider the mod 3 Moore spectrum M . Then, we see that E∗

2 (M ∧ T (3)) = Z/3[v1, v2, v3],
which is isomorphic to E∗

2 (M ∧ T (2)2). The small descent spectral sequence AE1 = Λ(h30)⊗Z/3[v1, v2, v3] ⇒
E∗

2 (M ∧ T (2)) for m = 2 and k = 0 collapses from the E1-term. In our range, E∗
2 (M ∧ T (1)8) = E∗

2 (M ∧ T (2)).
The spectral sequence AE1 = Λ(h21, h30) ⊗ Z/3[v1, v2, v3] ⇒ E∗

2 (M ∧ T (1)2) for m = 1 and k = 1 has the
differentials induced by the relation d1(v3) = v1h21 read off from (2.1). Then, we obtain E∗

2 (M ∧ T (1)2) =
(Z/3[v1, v2]⊕ h21Z/3[v2]⊗ Λ(v3)) ⊗ Λ(h30). In the spectral sequence AE1 = Λ(h20) ⊗ Z/3[b20] ⊗ E∗

2 (M ∧
T (1)2) ⇒ E∗

2 (M ∧ T (1)), the relation d1(h30) = v1b20 seen by (2.1) yields non-trivial differentials and

(2.10) E∗,∗
2 (M ∧ T (1)) = (Z/3[v1, v2]⊕ b20Z/3[v2, b20]⊕ h21Z/3[v2, b20]⊗ Λ(v3, h30))⊗ Λ(h20).

Put Xk = T (0)3k−1. Then, the spectral sequence (2.9) is rewritten as

(2.11) AE1 = Λ(hk)⊗Z/3[bk]⊗ E∗
2 (X ∧Xk+1) =⇒ E∗

2 (X ∧Xk)

for a spectrum X and k ≥ 0. Here, hk and bk denotes the elements represented by the cocycles t3
k

1 and b1k,
respectively.

Lemma 2.12. The E2-term E∗
2 (M ∧ X2) with the internal degree less than 144 is isomorphic to the tensor

product of Λ(h20) and the direct sum

Z/3[v1, v2]/(v3
2)⊗ Λ(h3)⊕ b2Z/3[v1, v2]/(v6

1 , v3
2)⊕ h2Z/3[v1, v2]/(v3

1 , v6
2)

⊕Z/3[v2]{h21, b20} ⊗ Λ(b20)⊕ h2h21Λ(v3, h30)⊕ h2b20Λ(h21, b20).

Proof. Noticing that E∗,∗
2 (M ∧X4) = E∗,∗

2 (M ∧ T (1)) in our range, we see that the spectral sequence (2.11)
for k = 3 collapses and so E∗,∗

2 (M ∧ X3) = E∗,∗
2 (M ∧ T (1)) ⊗ Λ(h3). Consider the spectral sequence (2.11)

for k = 2. Then, the differential d1(v3
2) = v3

1h2 and d1(v6
2h2) = v6

1b2 act on the first summand of (2.10), and
d1(v3h21) = v2h21h2 and d1(h21h30 + v3b20) = v2b20h2 + h21h20h2 act on the direct sum of the second and the
third summands of (2.10). Observing the homology of each summand gives the lemma. q.e.d.
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Since |vk| = 2× 3k − 2 = |tk| and |b20| = 48, the lemma implies the vanishing line.

Corollary 2.13. The E2-term Es,t
2 (M ∧X2) = 0 if one of the following conditions holds: (1) s > 5, (2) s = 5,

t < 112, (3) s = 4, t < 96, (4) s = 3, t < 64, (5) s = 2, t < 48, (6) s = 1, t < 16.

Corollary 2.14. The homotopy groups π∗(M ∧X2) is isomorphic to the E2-term.

We notice that this is also shown by the topological version of the spectral sequence (2.11):

(2.15) T E1 = Λ(hk)⊗Z/3[bk]⊗ π∗(X ∧Xk+1) =⇒ π∗(X ∧Xk).

Lemma 2.16. E5,52
2 (V3) ⊂ Z/3{i3∗β′2β2

1 , i3∗i∗α1β3/3β1, v
2
1v2h0β

2
1}.

Proof. Consider the exact sequence

Es,t−12
2 (M ∧X2) wv3

1
Es,t

2 (M ∧X2) wi3∗
Es,t

2 (V3 ∧X2) wj3∗
Es+1,t−12

2 (M ∧X2).

For the internal degree less than 53, E∗
2 (M ∧ X2) is isomorphic to

(
Z/3[v1, v2]/(v3

2)⊕ h2Z/3[v1, v2]/(v3
1)

) ⊗
Λ(h20) ⊕ Z/3{h21, b20} by Lemma 2.12. Since j3∗(v3

2) = h2, E∗
2 (V3 ∧ X2) is isomorphic to the direct sum of

v3
2Λ(v1) and the image of i3∗ : i3∗

(
(Z/3[v1, v2]/(v3

1 , v3
2)⊕h2Z/3[v1, v2]/(v3

1))⊗Λ(h20)⊕Z/3{h21, b20}
)
. By the

spectral sequences (2.11) for k = 0 and 1, we see that E5,52
2 (V3) ⊂

(
E∗,∗

2 (V3 ∧X2)⊗ Λ(h0, h1)⊗Z/3[b0, b1]
)5,52 =

Z/3{i3∗v2
1v2h0b

2
0, i3∗v2h1b

2
0, i3∗h0b1b0}. Since b0 = β1, i3∗v2h1 = β′2 and h0b1 = i∗α1β3/3, the lemma follows.

q.e.d.

Lemma 2.17. Each element of E5,136
2 (M) is killed by v3

1.

Proof. Consider the spectral sequences (2.11) for k = 1, 2. Then, v3
1 killed elements of E5,136

2 (M) originated
from the summands of E∗

2 (X2∧M) other than the first summand A = Z/3[v1, v2]/(v3
2)⊗Λ(h20, h3, b2). Put K =

{x ∈ E5,136
2 (M) : v3

1x = 0}. Then, E5,136
2 (M)/K ⊂ (A⊗ Λ(h0, h1)⊗Z/3[b0, b1])

5,136 by the spectral sequence
(2.11) for k = 0, 1. We consider the complex A⊗ Λ(h1)⊗Z/3[b1] with differential given by d1(v2) = v1h1 and
d1(v2

2h1) = v2
1b1. Then, the cohomology of it is

(
Z/3[v1]⊕b1Z/3[b1]⊗Λ(v1) ⊕ h1Λ(v2)⊗Z/3[b1]

)⊗Λ(h20, h3, b2).
Similarly, consider the complex Z/3[v1] ⊗ Λ(h0, h20, h3, b2) ⊗ Z/3[b0] with differentials given by d2(v1h20) =
v2
1b0. Then its cohomology is (Z/3[v1]⊕Z/3{h20, b0, v1b0} ⊗Z/3[b0])⊗Λ(h0, h3, b2), and E5,136

2 (M)/K = 0 as
desired. q.e.d.

Lemma 2.18. In the E2-term E3
2(V1), h1b

2
1 = ±v3

2h1b
2
0.

Proof. Consider elements of E2
2(V1) defined by the Massey products: bn = 〈hn, hn, hn〉, gn = 〈hn, hn, hn+1〉,

kn = 〈hn, hn+1, hn+1〉 and an = 〈hn, hn+1, hn+2〉. Then these satisfies bnhn+1 = hngn, hngn+1 = knhn+2 and
gnhn+2 = hnan by the juggling theorem [7, Th. A1.4.6]. Furthermore, the differentials d(b20), d(t3) and d(v2) of
the cobar complex ΩBP∗(BP )BP∗/(3, v1) gives us the relations h1b1 = b0h2 (by (2.2)), a0 = v2b1 (by (2.1)) and
v2h2 = v3

2h0 (by (2.1)), respectively. Now the lemma follows from the computation h1b
2
1 = h2b1b0 = h1g1b0 =

g1h0g0 = k0g0h2 = k0h0a0 = v2g0h1b1 = v2g0h2b0 = v3
2h0g0b0 = v3

2h1b
2
0 in E3

2(V1). q.e.d.

Lemma 2.19. Let x ∈ E4,96
2 (M) be the element that detects ix92 ∈ π92(M). Then, b4

0x 6= 0 ∈ E12,144
2 (M).

Proof. The element b0x ∈ E6,108
2 (M) is essential, since x92β1 is the generator of π102(S0) of order three in [7,

Table A.3.4]. In the spectral sequence (2.11) for k = 0, a killer of b4
0x sits in the direct sum of

E11,144
2 (M ∧X1), E

10,140
2 (M ∧X1), E

9,132
2 (M ∧X1), E

8,128
2 (M ∧X1), E

7,120
2 (M ∧X1) and E6,116

2 (M ∧X1).

Since Es,t
2 (M ∧ X1) ⊂ E∗,∗

2 (M ∧ X2) ⊗ Λ(h1) ⊗ Z/3[b1], we see that the above E2-terms are zero except for
E7,120

2 (M ∧ X1) ⊂ Z/3{h1b
3
1} and E6,116

2 (M ∧ X1) ⊂ Z/3{v2h20h1b
2
1, v

4
1h20h1b

2
1, v

2
1b3

1} by Lemma 2.12 and
Corollary 2.13. We see that d1(v3

1v2h20b
2
1) = v4

1h20h1b
2
1 and d1(v2

2h1b
2
1) = v2

1b3
1 in the spectral sequence (2.11)

for k = 1. We also see that dr(h1b
3
1) = 0 and d1(v2h1h20b

2
1) = v1v2b

3
1h0 in the spectral sequence (2.11) for

k = 0, and nothing kills the element b4
0x in the spectral sequence (2.11) for k = 0. q.e.d.
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3. The Adams-Novikov differential on v3
2

In this section we compute the Adams-Novikov differential on v3
2 ∈ E0,48

2 (V3) by use of some relations in
[M,M ]∗ given in [14, (6.5), Th. 6.8]:

(3.1)

(i) δδ = 0 = αβ(1) = β(1)α

(ii) α2δ = −δα2 − αδα, and so αδαδ = δαδα and α3δ = δα3

(iii) αδβ(1) = β(1)δα
(iv) β(1)β(1) = δαδβ(1)δβ(1)δ
(v) αβ(2) = β(2)α = β(1)δβ(1)δβ(1)

Here, α denotes the Adams map as before, δ = ij, β(1) = j1[βi1] = [j1β]i1 and β(2) = [j1β][βi1], in which
i, j, i1, j1 are maps in (1.1) and [βi1] and [j1β] are the elements introduced in [14] to define the β-elements
βk = jβ(k)i in π∗(S0) for k = 1, 2. For the later use, we also introduce elements:

(3.2) ε = 〈α1, α1, β
3
1〉 = jβ(1)β(2)i ∈ π37(S0) and ε′ = β(1)β(2)i ∈ π38(M).

Note that ε (resp. ε′) is detected by h0b1 ∈ E3,40
2 (S0) (resp. αib1 ∈ TE1

0,38(M ∧X1)). Before computing the
differential, we show the following well known lemma which is shown easily from the above relations:

Lemma 3.3. β(1)iβ
5
1 = 0.

Proof. This follows from the computation: β(1)iβ
5
1 = β(1)δβ(1)δβ(1)δβ(1)δβ(1)δβ(1)i = β(2)αδαβ(2)i = 0, since

β(2)α
2 = 0 = α2β(2). q.e.d.

Since β3 generates π42(S0) and is of order three, we have an element β(3) ∈ [M, M ]43 such that jβ(3)i = β3.
We also consider the operation θ : [X, Y ]∗ → [X, Y ]∗+1 given in [14, p.209]. Toda [14, (2.10), (3.7)] shows that
for any ξ ∈ [M, M ]t,

(3.4) ξα− αξ = αδθ(ξ)− δθ(ξ)α = −θ(ξ)δα + (−1)t+1αθ(ξ)δ.

It is shown in [14, (2.7)] that ξδ− (−1)tδξ + δθ(ξ)δ = (jξi)∧ 1M for ξ ∈ [M, M ]t. By [14, Th. 6.4, Th. 6.8], we
see that β(s)δ + δβ(s) = βs ∧ 1M for s = 1, 2, and so

(3.5) (β(s)δ + δβ(s))ξ = ξ(β(s)δ + δβ(s)) (s = 1, 2) for any ξ ∈ [M,M ]∗ (cf. [14, (3.8)′]).

Proposition 3.6. In [M, M ]47, we have the following relations up to sign:

αβ(3) = β(1)δβ(1)δβ(2) − β(1)δβ(2)δβ(1) + δβ(1)β(2)δβ(1)

= −β(1)β(2)δβ(1)δ + δβ(1)β(2)δβ(1).

Proof. From [7, Table A3.4], we read off the homotopy group [M,M ]47 = Z/3{β(1)δβ(1)δβ(2), δβ(1)β(2)δβ(1),
β(1)β(2)δβ(1)δ} (see (3.2)). By (3.1) and (3.5),

(3.7) β(1)β(2)δβ(1)δ = β(1)(β(2)δ + δβ(2))β(1)δ − β(1)δβ(2)β(1)δ = −β(1)δβ(2)β(1)δ
= −β(1)δβ(2)(β(1)δ + δβ(1)) + β(1)δβ(2)δβ(1) = −β(1)δβ(1)δβ(2) + β(1)δβ(2)δβ(1).

Then, we put

(3.8) αβ(3) = aβ(1)δβ(1)δβ(2) + bβ(1)δβ(2)δβ(1) + cδβ(1)β(2)δβ(1)

for some a, b, c ∈ Z/3. Since θ(β(3)) ∈ [M, M ]44 = Z/3{α11, ix45j}, we put

θ(β(3)) = mα11 + nix45j

for m,n ∈ Z/3, and see that δθ(β(3)) = mδα11. By (3.1), (3.4) and (3.8), αβ(3)α − α2β(3) = α(αδθ(β(3)) −
δθ(β(3))α) = m(α2δα11 − αδα12) = m(−δα13 + α13δ),

αβ(3)α = a(β(1)δ)4β(1) and α2β(3) = c(β(1)δ)4β(1).

Since [M, M ]51 = Z/3{δα13, α13δ, (β(1)δ)4β(1), δβ(2)δβ(2)δ}, we see that a = c and m = 0. On the other hand,

(a + b)α1β
2
1β2

2 = α1β2(aβ2
1β2 + bβ2

1β2)
= α1β2j(aβ(1)δβ(1)δβ(2) + bβ(1)δβ(2)δβ(1) + cδβ(1)β(2)δβ(1))i
= α1β2jαβ(3)i (by (3.8)) = β2α1jαβ(3)i = jβ(2)δαδαβ(3)i

= jβ(2)αδαδβ(3)i (by (3.1)(ii)) = j(β(1)δ)3αδβ(3)i

= β3
1α1β3 = 0 (since α1β

3
1 ∈ π33(S0) = 0)

in π75(S0) = Z/3{α19}⊕Z/9{x75}, where 3x75 = α1β
2
1β2

2 . It follows that b = −a. If a = 0, then β(3)i ∈ π43(M)
is pulled back to v3

2 ∈ π∗(V1) under the map j1∗ and so v3
2 ∈ E0,48

2 (L2V1) is a permanent cycle, which contradicts
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to [9, Prop. 8.4]. Here, L2 denotes the Bousfield-Ravenel localization functor with respect to v−1
2 BP . Therefore,

a 6= 0.
The second equation follows from by (3.7). q.e.d.

Remark. In this proof, we also show that δθ(β(3)) = 0 = θ(β(3))δ, and so β(3)δ + δβ(3) = β3 ∧ 1M .

Note that π∗(S0) is a commutative ring and iε = δβ(1)β(2)i by (3.2).

Corollary 3.9. αβ′3 = iεβ1 ∈ π43(M) up to sign.

Corollary 3.10. In the Adams-Novikov spectral sequence for π∗(V1),

d5(v3
2) = ±i1∗i(α1β3/3β1) ∈ E5,52

5 (V1).

Proof. Since j1∗(v3
2) = β′3 ∈ E1,44

2 (M) is a permanent cycle in the Adams-Novikov spectral sequence,
i1∗α∗(β′3) = i1∗(αβ′3) must be killed by v3

2 , and the corollary follows from Corollary 3.9, since ε ∈ π37(S0)
is detected by α1β3/3 ∈ E3,40

2 (S0). q.e.d.

Lemma 3.11. For the maps δ and δ3 in (2.3), we have δδ3(v2
1v2h0) = h0b0 in E∗

2 (S0).

Proof. Note that v2h0 in E1
2(V2) is represented by v2t1 − v1t2 + v1t

4
1. Then a routine computation with (2.1)

shows δ3(v2
1v2h0) = v1b0, whose δ-image is h0b0, since δ(v1) = h0 and δ(b0) = 0 by (2.1). q.e.d.

Recall [13] the Toda differential

(3.12) d5(β3/3) = ±α1β
3
1 = ±h0b

3
0 ∈ E5,38

2 (S0).

Lemma 3.13. For v3
2 ∈ E0,48

2 (V3) in (2.4), d5(v3
2) = i3∗i∗(α1β3/3β1)± v2

1v2h0β
2
1 ∈ E5,52

2 (V3) up to sign.

Proof. By Lemma 2.16, we put

(3.14) d5(v3
2) = ai3∗(β

′
2β

2
1) + bi3∗i∗(α1β3/3β1) + cv2

1v2h0β
2
1 ∈ E5,52

2 (V3)

for integers a, b, c ∈ Z/3. Consider the cofiber sequence

(3.15) Σ4V2 weα V3 wϕ31
V1 wδ12 Σ5V2

obtained by Verdier’s axiom from the cofiber sequences of (1.2). Send the equation (3.14) to E5
2(V1) under ϕ31,

and we see that a = 0 and b = ±1 by Corollary 3.10.
Next send (3.14) to E∗

2 (S0) under the maps δ3 and δ in (2.3). Then we obtain d5(β3/3) = ch0b
3
0 in E∗

2 (S0)
by Lemma 3.11, and the Toda differential (3.12) shows that c = ±1 as desired. q.e.d.

Lemma 3.16. d5(v9t+3
2 ) = ±β′9t+2b

2
0 ∈ E5,144t+52

2 (V1) for t > 0 and d5(v9t+6
2 ) = ±β′9t+5b

2
0 ∈ E5,144t+100

2 (V1)
for t ≥ 0.

Proof. In this proof, we compute everything up to sign. By Lemma 3.13, d5(v9t+3
2 ) ≡ v9t

2 h0b1b0+v2
1v9t+1

2 h0b
2
0 ∈

E5,144t+52
2 (V3), and so d5(v9t+3

2 ) ≡ v9t
2 h0b1b0 ∈ E5,144t+52

2 (V1). The cochain v9t−3
2 v3b10b11 yields the relation

v9t
2 h0b0b1 = v9t−2

2 h2b0b1 of homology, which equals v9t−2
2 h1b

2
1 by d(v9t−2

2 b20b1) with (2.2). Then the first relation
follows from Lemma 2.18, since β′9t+2 = v9t+1

2 h1.
The second one follows similarly from d5(v9t+6

2 ) ≡ −v9t+3
2 h0b1b0 ∈ E5,144t+100

2 (V1). q.e.d.

Lemma 3.17. d9(v1v
3
2) = ±h1b

4
0 in E9,60

9 (V3), and v2
1v3

2 is a permanent cycle in E0,56
r (V4).

Proof. Consider the cofiber sequence (3.15). Lemma 3.13 shows that d5(v3
2) = ±h0b0b1 in E5,52

2 (V2). Let
g0 be the element defined by the Massey product 〈h0, h0, h1〉, which contains an element represented by the
cochain t1 ⊗ t2 − t21 ⊗ t31. Then, d(t1 ⊗ t2 − t21 ⊗ t31) = v1t1 ⊗ b10 in the cobar complex Ω3BP∗/(3), which shows
that δ12∗(g0) = h0b0 for the connecting homomorphism δ12∗. It follows that d5(v3

2) = δ12∗(g0b1). Furthermore,
d5(g0b1) = g0d5(b1) = ±g0h0b

3
0 = ±h1b

4
0, since b1 belongs to the E2-term E2

2(S0) and g0 ∈ E2
2(V1) is a permanent

cycle. Therefore, d9(v1v
3
2) = d9(α̃∗(v3

2)) = ±h1b
4
0 ∈ E9,60

2 (V3).
Send the relation to V4 under the map α̃ : V3 → V4 obtained in the same manner as the one in (3.15), and

we have d9(v2
1v3

2) = ±v1h1b
4
0 = 0, since v1h1 = v3

1h0 in the E2-term by d(v2) and v3
1h0b

3
0 = 0 in the E9-term

by the Toda differential. The elements α1 = h0 ∈ E1,4
2 (S0) and β1 = b0 ∈ E2,12

2 (S0) gives the vanishing line:
Es,t

2 (X) = 0 if t < 6s− 2 for a connected spectrum X. It follows that Es,s+55
2 (V4) = 0 for s > 9, and v2

1v3
2 is a
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permanent cycle. q.e.d.

In [5, Lemma 3], Oka showed the existence of the element [α̃β6] ∈ π100(V2) detected by v1v
6
2 ∈ E0,100

2 (V2).

Lemma 3.18. The element v1v
6
2 ∈ E0,100

2 (V4) is a permanent cycle, which detects an element [α̃β6] ∈ π100(V4).

Proof. From Ravenel’s table [7, Table A.3.4], we read off the existence of β′6/3 ∈ π83(M). Then α2β′6/3

belongs to π91(M), which is a Z/3-module generated by β′6, iβ1γ2, iβ1x81 and iα23 by the table. We may put
α2β′6/3 = β′6 + aiβ1γ2 + biβ1x81 for some a, b ∈ Z/3, since β′6 and iα23 are detected by elements of E1,92

2 (M),

and α2β′6/3 = β′6 in the E2-term E1,92
2 (M). On the other hand, Oka’s result shows that α2β′6 = α2j2∗(v1v

6
2) = 0.

Besides, α2iβ1 = α2δj1[βi1]i = −(δα2 + αδα)j1[βi1]i = 0 by (3.1). It follows that α4β′6/3 = α2(β′6 + aiβ1γ2 +
biβ1x81) = 0, and β′6/3 is pulled back to v1v

6
2 ∈ π100(V4) under the map j4∗ : π100(V4) w π83(M). q.e.d.

4. On the homotopy group π143(M)

For proving Lemma 4.5 below, we read off the homotopy groups πk(M ∧X1) from Ravenel’s table [7, Table
A.3.4]. Here M and X1 are the mod 3 Moore spectrum and Ravenel’s spectrum considered in section two. Put
X1 = T (0)1, and we have the cofiber sequence

(4.1) S3 wα1
S0 wι1

X1 wκ1
S4.

We read off the homotopy groups π∗(M) from Ravenel’s table [7, Table A.3.4] and we obtain the homotopy
groups π∗(M ∧X1) as in the following tables. In the tables, ξ′ ∈ πs+1(M) for an element ξ ∈ πs(S0) denotes
an element such that j∗(ξ′) = ξ. We further notice the relations

(4.2) α1∗(α3ki) = α3kδαi = iα3k+1, α1∗(α3k+1i) = α3k+1δαi = −α3k(δα2 + α2δ)i = iα3k+2,

by (3.1) and α1∗(α3k−1i) = iα3k/ν+2 by v3k−1
1 h0 = i∗(α3k/ν+2) in the E2-term for ν = max{n : 3n|k}.

dimension k πk−8(M) πk−3(M) πk(M) πk−4(M) πk−1(M) πk(M ∧X1)

106 0
iα26

β′6/3β
2
1

x′92β1

ix106
iβ6/3β

2
1 , ix92β1,

x′81β
2
1 , γ′2β

2
1

γ′2β
2
1α1

ι1ix106, iβ9/9,
h20γ2β1,

〈β(1), β(1), β
′
6/3〉

96 α22i

ix93,
x′92,

β′6/3β1

α24i,
β′6/3β1α1

α23i, ix92,
iβ1β6/3,
γ′2β1,
β′1x81

iα24/2,
iα1β1β6/3,
γ′2β1α1,
β′1x81α1

h20γ2,
ι1α

24i

86 iα1x75

= ix68β1

iα21/2,
β′6/3

β′1x75,
iβ6/2,
β′6/3α1

γ′2,
x′81,
iβ6/3

γ′2α1,
x′81α1,

iα1β6/3,
iβ1x75

ι1β
′
1x75,

ι1iβ6/2

76 α17i,
ix68

β′2β2β
2
1

α19i,
β′2β2β

2
1α1

α18i,
iβ2

1β2
2

iα19,
ix75,
β′5

ι1α
19i,

ι1x′75

Here, we use the relations κ1∗(iβ9/9) = iβ6/3β
2
1 , κ1∗(〈β(1), β(1), β

′
6/3〉) = x′81β

2
1 and κ1∗(h20γ2) = ix92 given in

[7, Th. 7.5.3] in the dimensions 106 and 96. In the dimension 76, ι1x′75 ∈ π76(M ∧ X1) denotes an element
detected by ι1∗(x′75) ∈ E4,80

2 (M ∧ X1) for x′75 ∈ E4,80
2 (M) such that δ(x′75) = x75 ∈ E5,80

2 (S0), where δ is
the connecting homomorphism in (2.3). The element x′75 ∈ E4,80

2 (M) supports the Adams-Novikov differential
d5(x′75) = iα1β

2
1β2

2 , and κ1∗(ι1x′75) = iβ2
1β2

2 .

dimension k πk−8(M) πk−5(M) πk−7(M) πk−4(M) πk−4(M ∧X1) πk(M)

99
iα23, β

′
6,

iγ2β1,
ix81β1

β′6α1,
iα1β1γ2,
iβ5β

2
1

α23i, ix92

iβ1β6/3,
γ′2β1, x

′
81β1,

iα24/2,
iα1β1β6/3,

γ′2β1α1, β
′
5β

2
1

α23
iα25,
ix99

89
iγ2,
ix81

α21i,
iα1γ2,
iα1x81

iβ6/3,
γ′2,
x′81

iα1β6/3

γ′2α1,
x′81α1,
iβ1x75

ι1iβ1x75 0

79 iα18/3 iβ5
α18i,
iβ2

1β2
2

iα19,
ix75,
β′5

ι1ix75,
ι1β

′
5,

α18/3

x′75α1,
iα20
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Here x99 = 〈α1, α1, x92〉 and x81α1 = β5β1, and αs denotes an element such that κ1(αs) = iαs.
Consider the commutative diagram

πk−7(M) πk−7(M)

πk(M) πk(M ∧X1) πk−4(M) πk−1(M)

πk(M) πk(M ∧X1) πk−4(M ∧X1) πk−1(M)

πk−8(M) πk−8(M)

u
λ′

u
α1

wι1 wκ1

u
ι′

wα1

u
ι1

wι wκ

u
κ′

wλ

u
κ1

induced from the cofiber sequences in (2.8) and (4.1), in which ι, ι′, κ and κ′ denote ι0,0, ι′0,0, κ0,0 and κ′0,0 in
(2.8). We notice that λλ′ = β1 ∧M and λ′λ = β1 ∧M ∧ X1. Then we obtain the following lemma from the
above tables:

Lemma 4.3. The homotopy groups πk(M ∧X1) are as follows:
1. π106(M ∧X1) = Z/3{ιix106, ι

′iβ9/9, ι
′〈β(1), β(1), β

′
6/3〉}.

2. π99(M ∧X1) = Z/3{ιix99, α23}. Here, x99 = 〈α1, α1, x92〉.
3. π96(M ∧X1) = Z/3{ια24i, ι′h20γ2}.
4. π89(M ∧X1) = Z/3{ι′η3}. Here, κ1∗(η3) = iβ1x75.
5. π86(M ∧X1) = Z/3{ιβ′1x75, ιiβ6/2}
6. π79(M ∧X1) = Z/3{ι′u′2, α18/3}
7. π76(M ∧X1) = Z/3{ια19i, ιx′75}

Here, αs denotes an element such that κ′∗(αs) = iαs for the projection κ′ : M ∧X1 → M to the top cells, and
ιx′75 ∈ π76(M ∧X1) denotes an element detected by ι∗(x′75) ∈ E4,80

2 (M ∧X1) for x′75 ∈ E4,80
2 (M).

Proof. From [7, Th. 7.5.3], we read off the relations

κ∗(ι′η3) = ι1iβ1x75, κ∗(u2) = β5 and κ′∗(b20β2) = x68.

In dimensions 99, 96, 79 and 76, we use the relation (4.2). Furthermore, in dimension 106, λ′(ix99) = h20γ2β1,
since κ1∗(h20γ2β1) = ix92β1 = iα1x99 = κ1λ

′ix99, and so ι′(h20γ2β1) = ι′λ′(ix99) = 0. The element λ′(i) ∈
π7(M ∧X1) satisfies κ1λ

′(i) = iα1 and λλ′(i) = iβ1. This together with β1x75 6= 0 ∈ π∗(S0), we see that iα1x75

is not pulled back to π86(M) under the map κ′. In dimension 79, note that λ∗(ι1ix75) = ix75α1 = iβ1x68 6= 0.
We also see that ix68 is not pull back to π76(M ∧X1) under κ′, since λ′ix68 6= 0 by λλ′ix68 = iβ1x68 6= 0. q.e.d.

If ξ ∈ π∗(X) for a spectrum X is detected by an element x ∈ Es
2(X), then we write filt ξ = s. Let Hs

t denote
the subgroup of πt(M ∧X1) generated by the elements with filt ξ ≥ s.

Lemma 4.4. The subgroups Hs
t of the homotopy groups πt(M ∧X1) are as follows:

1. H8
140 = 0.

2. H7
133 ⊂ Z/3{b1ιix99}.

3. H6
130 ⊂ Z/3{b1ι

′h20γ2}.
4. H5

123 ⊂ Z/3{v2h20b
2
20, b1ι

′η3}.
5. H4

120 ⊂ Z/3{b1ιβ
′
1x75, b1ιiβ6/2}.

6. H3
113 = π113(M ∧X1) ⊂ Z/3{b1ι

′u′2}.
7. H2

110 = π110(M ∧X1) ⊂ Z/3{v1b2, b1ιx′75}.
Proof. Observe the spectral sequence (2.15) for k = 1, and we have a spectral sequence

πt(M ∧X2)⊕ h1πt−11(M ∧X2)⊕ b1πt−34(M ∧X1) =⇒ πt(M ∧X1).

In particular,
Ks

t ⊕ h1K
s−1
t−11 ⊕ b1H

s−2
t−34 =⇒ Hs

t .

Here, Ks
t denotes the subgroup of πt(M ∧ X2) generated by the elements with filt ξ ≥ s. By Corollary 2.13,

we see that H8
140 ⊂ b1H

6
106, H7

133 ⊂ b1H
5
99 and H6

130 ⊂ b1H
4
96. Since H6

106 = 0, H5
99 = Z/3{ιix99} and
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H4
96 = Z/3{ι′h20γ2} by Lemma 4.3, we obtain the first three inclusions of the lemma. By Lemma 2.12, the

above spectral sequences for the other homotopy groups are:

Z/3{v2h20b
2
20} ⊕ b1H

3
89 =⇒ H5

123, Z/3{v2h1h21b20, v
3
2h1h20b20} ⊕ b1H

2
86 =⇒ H4

120,
Z/3{v1v

3
2h1h2h20} ⊕ b1π79(M ∧X1) =⇒ π113(M ∧X1) and

Z/3{v1b2, v
3
2h20h21, v

4
2b20, v

13
1 v2

2h1h20, v
17
1 v2h1h20, v

21
1 h1h20, v

4
2h1h2} ⊕ b1π76(M ∧X1) =⇒ π110(M ∧X1).

Let g1 denote an element represented by the cocycle t31⊗t32−t61⊗t91+v3
1b20 in the cobar complex. Then v2h1h21b20

is replaced by v2b20g1. Since d3(v2b20 − h1h30) = v2h1b1, d3(v2h1h21b20) = d3(v2b20g1) = v2h1b1g1 ≡ v2h2b
2
1

mod (v3
1). Indeed, g1 = 〈h1, h1, h2〉 mod (v3

1). Thus, the first element of the second spectral sequence dies.
For the second element, we see the essential differential d2(v3

2h1h20b20) = v3
1h2h1h20b20 = −v2

1v2h2h20h1b1,
since v3

1b20 = −h20h2 − v2
1v2b1. In the third spectral sequence, d1(v4

2h2h20) = v1v
3
2h1h2h20, and in the last

spectral sequence, d1(v3
2h20h21) = v3

2h20h1h2, d2(v4
2b20 + v3

2h20h21) = v2
1v2

2h2b1, d1(v13
1 v2

2h1h20) = v15
1 h20b1,

d1(v16
1 v2

2h20) = −v17
1 v2h1h20, d1(v20

1 v2h20) = v21
1 h1h20 and d1(v4

2h21) = v4
2h1h2. Therefore,

H5
123 ⊂ Z/3{v2h20b

2
20} ⊕ b1H

3
89, H4

120 ⊂ b1H
2
86, π113(M ∧X1) ⊂ b1π79(M ∧X1) and

π110(M ∧X1) ⊂ Z/3{v1b2} ⊕ b1π76(M ∧X1).

We observe that ια19ib1 = ια18ε′α1 = ια18β(1)β(2)iα1 = 0 by (3.1) and (3.2). We further see that α18/3b1 =
v15
1 b1ṽ2h0 = 0, since v6

1b1 = v3
1h1h2 = 0. Here, α18/3 = v15

1 ṽ2h0 for an element ṽ2h0 by the definition of α18/3.
The lemma now follows from Lemma 4.3. q.e.d.

Lemma 4.5. Each essential element of π143(M) has the Adams-Novikov filtration less than nine.

Proof. Let Gs
t denotes the subgroup of πt(M) consisting of elements ξ with filt ξ ≥ s. As above, we have

another spectral sequence

β4
1π103(M)⊕

⊕

ε+2s≤7,ε=0,1,s≥0

αε
1β

s
1H

9−2s−ε
143−10s−3ε =⇒ G9

143

arising from the spectral sequence (2.15) for k = 0. Indeed, comparing with (2.11) for k = 0, we see that the
above spectral sequence detects G9

143. From Ravenel’s table [7], we read off the homotopy group π103(M) is
Z/3-module generated by iα26, β(1)iβ1β6/3 and γ(2)β(1)iβ1, where γ(2) denotes an element such that jγ(2)i = γ2.
Note that Ravenel wrote x92 for jγ(2)β(1)i. It is well known that β(1)iβ

5
1 = 0 and so β6

1 = jβ(1)iβ
5
1 = 0 (see

Lemma 3.3). Besides, α26β1 = jα26δβ(1)i = 0 by (3.1). Thus, the first summand of the E1-term is zero.
Next we evaluate π113(M). Similarly consider a part of the above spectral sequence:

β1π103(M)⊕ α1π110(M ∧X1)⊕ π113(M ∧X1) =⇒ π113(M).

Then, the generators v1b2 and b1ιx′75 ∈ π110(M ∧X1) are pulled back to π110(M ∧X1), and we have λ∗(v1b2) =
v1h0b2 and λ∗(b1ι1x′75) = ε′x75 in π113(M), since λ∗(ι1x′75) = αix75. The element h0b2 is represented by
〈α1, α1, β

3
3/3〉, since d5(b2) = h0b

3
1 in the Adams-Novikov spectral sequence [6], and α1 = h0 and β3/3 = b1 in

the E2-term. Turn to the generators of π113(M ∧X1). d1(ι′u′2b1) = ι′κ∗(ι′u′2b1) = ιβ′5b1, which is detected by
v2
1v2

2h2 ∈ π75(M ∧X2) in the spectral sequence (2.15) for k = 2. No generator of π99(M ∧X2) and π110(M ∧X2)
hits any of β′5 and λ0,1∗β

′
5 for the boundary λ0,1∗ : π75(M ∧ X1) → π98(M ∧ X2) induced from the map in

(2.8). Indeed, the relevant generators of π∗(M ∧ X2) are v4
2h2, v1b2, v4

2b20 and v3
2h20h21, and none of the

differentials on them hits v2
1v2h2 ∈ π75(M ∧X2) in (2.15) for k = 2. Therefore, d1(ι′u′2b1) = ιβ′5b1 6= 0. These

argument shows that π113(M) ⊂ Z/3{i〈α2, α1, β
2
1β6/3〉, ε′x75, β(1)iβ

2
1β6/3, γ(2)β(1)iβ

2
1}. Here v1h0b2 represents

αi〈α1, α1, β
3
3/3〉 = i〈α2, α1, β

2
1β6/3〉.

We next consider
β1π113(M)⊕ α1π120(M ∧X1)⊕H5

123 =⇒ G5
123.

In the spectral sequence, d1(v2h20b
2
20) = h0h1h21b20h20 + . . . and v2h20b

2
20 dies in G5

123. The localization
map E∗

2 (M) → E∗
2 (L2M) assigns η3 to β6ζ1 by [7, (7.5.7)], and we have the Adams-Novikov differential

d5(β6b1ζ2) = β6h0b
2
0ζ2 6= 0 by [9, Prop. 9.9, Cor. 10.4]. It follows that b1η3 ∈ π123(M ∧ X1) also dies in

the above spectral sequence. Noticing that b1ιx = ι′ι1b1x and λι1b1x = α1b1x = εx, we obtain

G5
123 ⊂ Z/3{ιβ′1εx75, ιiβ6/2ε, 〈iα2, α1, β

3
1β6/3〉, ε′β1x75, β(1)iβ

3
1β6/3, γ(2)β(1)iβ

3
1}.

Here, 〈iα2, α1, β
3
1β6/3〉 = iαε′β6/3. Since ε′β2

1 = 0 and β(1)δβ
5
1 = 0, we see β2

1G5
123 = 0.

The element ιix99 is detected by 〈h0, h0, x92〉. Since d5(b1) = h0b
3
0 by the Toda differential, d5(ix99b1) =

ix99h0b
3
0 = −ih0〈h0, h0, x92〉b3

0 = ix92b
4
0 6= 0 by Lemma 2.19, and ix99β3/3 dies in the Adams-Novikov spectral

sequence for computing the homotopy group π133(M). Besides, by observing π99(M), we see that λ∗(h20γ2) =
aix99 for some a ∈ Z/3 if h20γ2 is a permanent cycle in (2.15) for k = 0. Indeed, there are two generators
in π99(M) and the other generator has the filtration degree one. Therefore, λ∗(b1h20γ2) = aix99β3/3, which is
shown above to be zero, and we obtain G9

143 = 0 as desired. q.e.d.
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5. The β-elements in stable homotopy

The cofiber sequences in (1.2) that define Vr induce the cofiber sequence that lies in the commutative diagram

M M

V9−r V9 Vr.
u

i9

u
ir

wfαr wϕ9r

Proof of Lemma 1.3. Put ξ = α9x′106 ∈ π143(M). By virtue of Lemma 4.5, we assume that the Adams-
Novikov filtration of ξ is five. If there exists an element χ ∈ π107(M) of filtration degree five such that α9χ = ξ,
then x′106−χ is pulled back to v9

2±v8
1v7

2 . Therefore, we replace x′106 with x′106−χ, and obtain ξ = 0. If no such
element exists, then i9∗(ξ) = d5(v9

2 ± v8
1v7

2) ∈ E5,148
2 (V9). Since i3∗(ξ) = (ϕ93i9)∗(ξ) = ϕ93∗(d5(v9

2 ± v8
1v7

2)) =
d5(ϕ93∗(v9

2 ± v8
1v7

2)) = d5(v9
2) = 3v6

2d5(v3
2) = 0 in E5,148

2 (V3), we have an element χ ∈ E5,136
2 (M) such that

v3
1χ = ξ. By Lemma 2.17, χ is killed by v3

1 , and so ξ = v3
1χ = 0. q.e.d.

Corollary 5.1. The element v9
2±v8

1v7
2 ∈ E0,144

2 (V9) is a permanent cycle in the Adams-Novikov spectral sequence
converging to π∗(V9). Besides, it yields a self-map Σ144V9 → V9 that induces v9

2 ± v8
1v7

2 on BP∗-homology.

Corollary 5.2. d5(v9
2) = ±v8

1v5
2h1b

2
0 ∈ E5,148

2 (V9).

Proof. Suppose that d5(v9
2) = ξ. By Lemma 3.16, d5(v6

2) = ±β′5β
2
1 , and so d5(v8

1v7
2) = v8

1v2d5(v6
2) = ±v8

1v5
2h1b

2
0

in E5
5(V9). Then, d5(v9

2 ± v8
1v7

2) = ξ ± v8
1v5

2h1b
2
0, which is zero. q.e.d.

We define the β-elements in the homotopy groups not in the E2-term. For s = 1, 2, we state the definition
in section three. The β-elements β(s) ∈ [M, M ]∗ for s ≡ 0, 1, 2, 5, 6 mod 9 are given as the composites

β(9t) = j1[β9]i1, β(9t+1) = j1[β9]t[βi1], β(9t+2) = [j1β][β9]t[βi1],
β(9t+5) = j1[β9]t[β5i1] and β(9t+6) = [j1β][β9]t[β5i1]

for the self-map [β9] : Σ144V1 → V1 given in [1]. Here [x] denotes an imaginary element used in [14]. Assuming
the existence of the self-map [β9] : Σ144V2 → V2, Oka also gave another definition:

β(9t+s) = j2[β9]t[α̃βs]i2

by use of the homotopy elements [α̃βs] ∈ [V2, V2]16s+4 for s = 0, 1, 2, 5, 6 in [5, Lemma 3]. Similarly, we define
the β-elements β(9t/r) for 0 < r < 9, β(9t+3/r) for r = 1, 2 and β(9t+6/r) for r = 1, 2, 3 with β(3s/1) = β(3s) as

(5.3) β(9t/r) = jr[β9]tir, β(9t+3/r) = jr+2[β9]t[α̃2β3]ir+2 and β(9t+6/r) = jr+1[β9]t[α̃β6]ir+1.

Here, the elements [α̃2β3] and [α̃β6] in [Vr, Vr]∗ for r = 2, 3, 4 denote the self-maps induced from the homotopy
elements v2

1v3
2 and v1v

6
2 in Lemma 1.6. We also write β′s = β(s)i ∈ π∗(M) and βs = jβ′s ∈ π∗(S0). Note that

β′9/r = α9−rx′106 and β9/r = 〈α9−r, 3, x106〉.

Proof of Corollary 1.7. By the geometric boundary theorem [7], we see that each β-element in (2.5) detects
the corresponding element in (5.3). Let B : Σ144V9 → V9 denote the self-map given in Corollary 5.1. Then, the
latter half follows from defining the β-elements by β̃9t/9 = jj9B

ti9i. q.e.d.

By a diagram chasing on the Adams-Novikov resolutions over the cofiber sequence M
ik→ V1

jk→ Σ4k+1M
αk

→
ΣM in (1.2), we obtain the following lemma:

Lemma 5.4. Suppose that dr(v) = ik∗(x) ∈ Er
r (Vk) for an element v ∈ E0

r (Vk) and an element x ∈ Er
r (M),

which detects an essential homotopy element ξ ∈ π∗(M) and that δ(v) ∈ E1
2(M) detects a homotopy element ζ.

Then, αkζ = ξ.

The basic idea of the proof is described by the chart:

x y w ik∗(x) x

N
NNQ

dr

v w δ(v) �
�
�
��

M w
ik

Vk w
jk

M w
αk

M
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The same argument as [10] using β9t+1β5 = [β9t+5β
′
1]ζ2 ∈ η(G̃Z) instead of β9t+1β2 = [β9t+2β

′
1]ζ2 ∈ η(G̃Z)

in the proof of [10, Th. A, Cor. B] shows the following

Lemma 5.5. β9t+1β5β
j
1 6= 0 ∈ π∗(S0) if j < 2 and β9t+5β

2
1 6= 0 ∈ π∗(S0).

There are some examples:
• d5(v9t+3

2 ) = ±i1∗(β′9t+2β
2
1) ∈ E5

5(V1) for t > 0 by Lemma 3.16, and β′9t+2β
2
1 is an essential homotopy

element by [10, Cor. B].
• d5(v9t+6

2 ) = ±i1∗(β′9t+5β
2
1) ∈ E5

5(V1) for t ≥ 0 by Lemma 3.16, and β′9t+5β
2
1 is an essential homotopy

element by Lemma 5.5.
• d9(v1v

9t+3
2 ) = ±v9t

2 h1b
4
0 = ±β′9t+1β

4
1 in E9

9(V2) by Lemma 3.17, and β′9t+1β
4
1 is an essential permanent

cycle, since so is β9t+1β
4
1 by [10, Th. A].

Corollary 3.9 and these examples with Lemma 5.4 implies

Theorem 5.6. Let t be non-negative integers. Then α2β′3/2 = αβ′3 = iεβ1, α2β′9(t+1)+3/2 = αβ′9(t+1)+3 =
β′9(t+1)+2β

2
1 , α3β′9t+6/3 = α2β′9t+6/2 = αβ′9t+6 = β′9t+5β

2
1 and α3β′9t+3/2 = α2β′9t+3 = β′9t+1β

4
1 . In particular,

αβ′9(t+1)+2β
2
1 = β′9(t+1)+1β

4
1 . Here, every equality is up to sign.

Proof of Proposition 1.8. The relation αkβ′ = ξ ∈ π∗(M) for β′ such that jβ′ = β implies 〈αk, 3, β〉 = jξ ∈
π∗(S0) by the definition of the Toda bracket. Therefore, Lemma 1.3 implies the first relation 〈αr, 3, β9t/r〉 =
0. Furthermore, we read off from Theorem 5.6 that 〈α2, 3, β3/2〉 = 〈α1, 3, β3〉 = 0, and that for t ≥ 0,
〈α2, 3, β9(t+1)+3/2〉 = 〈α1, 3, β9(t+1)+3〉 = β9(t+1)+2β

2
1 , 〈α3, 3, β9t+6/3〉 = 〈α2, 3, β9t+6/2〉 = 〈α1, 3, β9t+6〉 =

β9t+5β
2
1 and 〈α3, 3, β9t+3/2〉 = 〈α2, 3, β9t+3〉 = β9t+1β

4
1 in the homotopy groups π∗(S0) up to sign. q.e.d.
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