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ABSTRACT. Ohkawa showed that the collection of Bousfield classes of the sta-
ble homotopy category of spectra is a set ([8]). Let C be an algebraic stable
homotopy category in a sense of Hovey, Palmieri and Strickland [6]. We here
show that Bousfield classes of C form a set by introducing a homology theory
based on the generators of C, in a similar manner as Dwyer and Palmieri did
in [3]. We also consider a relation between Bousfield classes of finite objects
and supports of them on a collection of objects.

1. INTRODUCTION

In the stable homotopy category S of spectra, the Bousfield class (F) of a spec-
trum F is the collection of spectra X with E A X = 0. Ohkawa [8] showed that
the Bousfield classes of S form a set (¢f. [3]). Then, several authors generalized it
to categories with some structure ([2], [4], [7], [9]). In this paper, we consider an
algebraic stable homotopy category C in the sense of [6], which is a triangulated
closed symmetric monoidal category (C, A, S, F(—,—),X) with a set G of small ob-
jects of C such that loc(G) = C, satisfying that C admits arbitrary coproducts
and that every cohomology functor on C is representable. Here, loc(G) denotes
the smallest localizing subcategory containing G, and we call an object A small
if [A,V, Xals = @D,[A4, Xals, where \/ X, denotes the coproduct of {X,} in
C. For examples of an algebraic stable homotopy category, see [6, 1.2. Examples].
The Bousfield class (E) of E in an algebraic stable homotopy category C is the
collection {X € C | EA X = 0}. Let a denote the cardinal number of the set
D r rrctnicr(gy £ F'l«. Here, thick(G) denotes the smallest thick subcategory of C
containing G, whose objects we call G-finite. Then, we have an analogous theorem
to Ohkawa’s:

Theorem 1.1. Let C be an algebraic stable homotopy category. Then the Bousfield
classes B(C) of C form a set, whose cardinal number is not greater than 22°

This follows from Lemma 2.4 and Corollary 2.6. We note that B(C) is a partially
ordered set by setting (E) > (F) if (E) C (F). Consider a subset DL(C) of B(C)
consisting of elements = € B(C) satisfying A z = 2. We call a non-zero element
a € DL(C) an atom if for any element x € B(C), a Ax = a or a A x = 0. Consider
the set A(C) of atoms of B(C), and let b be the cardinal number of A(C). Then,

Proposition 1.2. The cardinal number of B(C) is not less than 2°.
Here, we show this by use of a surjection supp: B(C) — 24(0) defined by
(1.3) supp(b) = {a € A(C) | a Ab#0}.

In the stable homotopy category S, of p-local spectra, finite spectra are classified
by their types. A finite spectrum X has type n if K(n).(X) # 0 and K(m).(X) =0
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for m < n. Here, K(n) € S, denotes the n-th Morava K-theory. It is well known
that if £ and F are finite spectra, then E and F' have the same type if and only if
(E) = (F). We generalize this to an algebraic stable homotopy category. We say
that A(C) detects ring objects if for any non-zero ring object R, there is an atom
a € A(C) such that (R) Aa # 0.

Proposition 1.4. Suppose that A(C) detects ring objects. Let E and F be G-finite
objects. Then, (E) = (F) if and only if supp((E)) = supp({F)).

‘We prove this in section three.

2. OHKAWA THEOREM

Let C denote an algebraic stable homotopy category with a set G of generators.
We call a subcategory D thick if it is closed under cofibrations and retracts, and
denote by thick(G) the smallest thick subcategory containing G.

For F € C, put

(2.1) EY(X) = PG EAX]..
Geg

Since G = {S} in the stable homotopy category of spectra, EY(X) =[S, EA X], =
7« (F A X) is the homology theory represented by E in the usual sense. Here, the
homology theory in this paper means the homology functor defined in [6, Def. 1.1.3].

Lemma 2.2. 1) EY9(—) is a homology theory.
2) ([6, Lemma 1.4.5 (b)]) If E9(X) =0, then EA X = 0.

For an object X € C, let A(X) denote the category whose objects are morphisms
u: Z — X of C for Z € thick(G) and whose morphisms between objects u: Z — X

and v’ : Z' — X are morphisms Z — Z’ of C such that v'v = u. Then, we read off
the following from [6, Cor. 2.3.11]:

Lemma 2.3. For any objects E and X of C, E9(X) = c[?(l)igl EY9(X,), where
{Xo — X} is the set of objects of A(X).
Consider the following subset of A(X) = €D peinick(g) [X: Fls:
ann% (z) = {f € [X, F]. | F € thick(G), EY(f)(z) =0} C A(X)
for E € C and x € E9(X). Then the Ohkawa class of E € C is the set
(E) = {annE(z) | F € thick(G), = € E(F)} C 2P rethickie) AU,

Put
O={(E) | E€C}.

Lemma 2.4. Q is a set whose cardinal number is not greater than 2%°, where a
denotes the cardinal number of @Fethick(g) A(F) = @F,F/ethick(@ [F, F']..
For an object E € C, the Bousfield class of E is the collection
(Ey={X€eC|EANX=0}.

We denote the collection of all Bousfield classes of C by B: B = {(E) | E € C}. We
define a partial ordering on B and O as follows:

e (E) > (F)if EAX =0 implies that F A X =0, and
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e (E) > (F) if for any annf{(x) € (F)), there exists y € EY(A) such that
ann’j (z) = annf (y).
Then we have a similar lemma as [3, Lemma 1.7]:
Lemma 2.5. If (E) > (F), then (E) > (F).

Proof. Suppose that (E) > (F) and let X be an object such that E A X = 0.
Note that F9(X) = c/?(l)igl FY9(X,) by Lemma 2.3. Take an element z € F9(X,).

By hypothesis, for annk_(z) € (F), there is an element y € EY(X,) such that
annk (z) = ann% (y). Since EA X = 0, we have 0 = EY9(X), which equals

ng(l)igl EY9(X,) by Lemma 2.3. Tt follows that there is a morphism fo5: Xo — X5 €

A(X) for an object fz: Xg — X € A(X) such that f,s € ann¥ (y) = annk (2).
Therefore, FZ(fap)(x) = 0, and so FZ(fa)(x) = FJ(fs)F7 (fap)(x) =0 € FI(X).
Since X, and x are both arbitrary, we see that F¢(X) = 0, and hence FF A X = 0
by Lemma 2.2. O

Corollary 2.6. The map f: O — B defined by f({E)) = (E) is well-defined.
Furthermore, it is an order-preserving surjection.

Let DL denote the subset of B consisting of elements x such that z A x = .
Here, the pairing ‘A’ is inherited from C, that is, if x = (X) and y = (Y) for objects
X andY € C, then z Ay = (X AY). We notice that ‘A’ is not always a meet in the
lattice B. The set DIL is an ordered set bounded below. We call a non-zero element
x of DL an atom if t Ay =z or x Ay =0 for any y € B. Let A denote the subset
of DL consisting of atoms. Note that if both of z and y are atoms, then z Ay =
if £ =y and 2 Ay = 0 otherwise. Consider the mapping supp: B — 24 defined by
(1.3). We also consider the ordering on 2* by inclusion.

Lemma 2.7. The mapping supp is an order-preserving surjection.

Proof. We see that supp is a surjection, since for a subset S C A, we have s =
Vega € B satisfying supp(s) = S. Suppose that e = (E) > (F)) = f. For an
element a = (A) ¢ supp(e), AANE =0, and so AAF = 0. Thus, a ¢ supp(f), and
supp(f) C supp(e). 0

Corollary 2.8. The cardinal number of B is not less than 2° for the cardinal
number b of A.

Remark 2.9. For the stable homotopy category S(,) of p-local spectra, the role of
A is played by {{(K(n)) | n € NU {oco}}, whose cardinal number is Rg. Here, K(n)
denotes the n-th Morava K-theory if n < oo, and the mod p Eilenberg-Mac Lane
spectrum if n = oo.

3. BOUSFIELD CLASSES AND SUPPORTS ON G-FINITE OBJECTS

In this section, we apply a thick subcategory theorem for the set A of atoms
used in the previous section. Let B denote the set of Bousfield classes of a fixed
algebraic stable homotopy category C.

We call an object R a ring object if R admits an associative multiplication pu: RA
R — R and a unit n: S — R. Consider the following condition on the category C:

(3.1) For any ring object R # 0, (R) AAY # 0 for AV =\/ ., a.

In this case, we say that A detects ring objects.
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Remark 3.2. In the stable homotopy category S,y of p-local spectra, the nilpotence
theorem [5, Th. 3 i)] of Hopkins and Smith says that an element « of a homotopy
group of a ring spectrum R is nilpotent if and only if K (n).(«) is nilpotent for all
0 < n < oo. It follows that the set {(K(n)) | n € NU {oco}} C A detects ring
objects.

We here call an object F' G-finite if F' € thick(G), that is, F' belongs to the thick
subcategory generated by G, and a thick subcategory D a G-ideal if X A G € D for
any X € D and G € G. We see that, under (3.1), the set A of atoms satisfies the
conditions of [6, Th. 5.2.2], and so we have the following:

Proposition 3.3 ([6, Th. 5.2.2]). Suppose that the condition (3.1) holds. Then,
every G-ideal D of small objects (= G-finite objects) is expressed by

D = {X € thick(G) | supp({X)) C supp(D)}.
Here supp(D) = Uy cp supp((X)).

Corollary 3.4. Under the condition (3.1), the class of G-ideals of small objects is
a set whose cardinal number is not greater than 2°.

For an object E, consider the subcategories

Te = {X € thick(G) | supp((X)) C supp({F))} and
TE {X € thick(G) | (X) < (E)}.

Lemma 3.5. Both of Tg and T2 are G-ideals and T C Tg.

Proof. The last statement follows from Lemma 2.7. By [6, Th. 2.1.3 (a)], it suffices
to show that both of the categories are thick. If X VY € Tg, then supp((X)) C
supp({X VY)) C supp((E)), and so X € Tg. Suppose that X,Y € Tg, and
X =Y — Z is a cofiber sequence. If (A) & supp((E)), then (A) & supp((X)) and
(A) & supp({Y')), which implies that ANX =0 = AAY. It follows that AANZ = 0.
Therefore, supp((Z)) C supp({E)). Thus, T is thick. For 7,2, a similar argument
works. g

Corollary 3.6. Let E be a G-finite object. Then, Tp =T/ .

Proof. By Proposition 3.3 and Lemma 3.5, T# = {X € thick(G) | supp({X)) C
supp(72F)}. For X € TF, supp({X)) C supp((E)) by Lemma 2.7. Since E is
G-finite, we see that supp(72) = supp((E)). O

Corollary 3.7. Let X and Y be G-finite objects. Then, (X) = (Y) if and only if
supp((X)) = supp((Y)).
Proof. The ‘only if’ part follows from Lemma 2.7. Suppose that supp((X)) =

supp((Y)). Then, Tx = Ty, and so TZ = T, by Corollary 3.6. Noticing that
X € T2, we see the ‘if” part. O
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