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Abstract. Ohkawa showed that the collection of Bousfield classes of the sta-
ble homotopy category of spectra is a set ([8]). Let C be an algebraic stable

homotopy category in a sense of Hovey, Palmieri and Strickland [6]. We here

show that Bousfield classes of C form a set by introducing a homology theory
based on the generators of C, in a similar manner as Dwyer and Palmieri did

in [3]. We also consider a relation between Bousfield classes of finite objects
and supports of them on a collection of objects.

1. Introduction

In the stable homotopy category S of spectra, the Bousfield class 〈E〉 of a spec-
trum E is the collection of spectra X with E ∧ X = 0. Ohkawa [8] showed that
the Bousfield classes of S form a set (cf. [3]). Then, several authors generalized it
to categories with some structure ([2], [4], [7], [9]). In this paper, we consider an
algebraic stable homotopy category C in the sense of [6], which is a triangulated
closed symmetric monoidal category (C,∧, S, F (−,−),Σ) with a set G of small ob-
jects of C such that loc〈G〉 = C, satisfying that C admits arbitrary coproducts
and that every cohomology functor on C is representable. Here, loc〈G〉 denotes
the smallest localizing subcategory containing G, and we call an object A small
if [A,

∨
αXα]∗ =

⊕
α[A,Xα]∗, where

∨
αXα denotes the coproduct of {Xα} in

C. For examples of an algebraic stable homotopy category, see [6, 1.2. Examples].
The Bousfield class 〈E〉 of E in an algebraic stable homotopy category C is the
collection {X ∈ C | E ∧ X = 0}. Let a denote the cardinal number of the set⊕

F,F ′∈thick〈G〉[F, F
′]∗. Here, thick〈G〉 denotes the smallest thick subcategory of C

containing G, whose objects we call G-finite. Then, we have an analogous theorem
to Ohkawa’s:

Theorem 1.1. Let C be an algebraic stable homotopy category. Then the Bousfield
classes B(C) of C form a set, whose cardinal number is not greater than 22a

.

This follows from Lemma 2.4 and Corollary 2.6. We note that B(C) is a partially
ordered set by setting 〈E〉 ≥ 〈F 〉 if 〈E〉 ⊂ 〈F 〉. Consider a subset DL(C) of B(C)
consisting of elements x ∈ B(C) satisfying x ∧ x = x. We call a non-zero element
a ∈ DL(C) an atom if for any element x ∈ B(C), a ∧ x = a or a ∧ x = 0. Consider
the set A(C) of atoms of B(C), and let b be the cardinal number of A(C). Then,

Proposition 1.2. The cardinal number of B(C) is not less than 2b.

Here, we show this by use of a surjection supp: B(C)→ 2A(C) defined by

(1.3) supp(b) = {a ∈ A(C) | a ∧ b 6= 0}.
In the stable homotopy category S(p) of p-local spectra, finite spectra are classified
by their types. A finite spectrum X has type n if K(n)∗(X) 6= 0 and K(m)∗(X) = 0
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for m < n. Here, K(n) ∈ S(p) denotes the n-th Morava K-theory. It is well known
that if E and F are finite spectra, then E and F have the same type if and only if
〈E〉 = 〈F 〉. We generalize this to an algebraic stable homotopy category. We say
that A(C) detects ring objects if for any non-zero ring object R, there is an atom
a ∈ A(C) such that 〈R〉 ∧ a 6= 0.

Proposition 1.4. Suppose that A(C) detects ring objects. Let E and F be G-finite
objects. Then, 〈E〉 = 〈F 〉 if and only if supp(〈E〉) = supp(〈F 〉).

We prove this in section three.

2. Ohkawa Theorem

Let C denote an algebraic stable homotopy category with a set G of generators.
We call a subcategory D thick if it is closed under cofibrations and retracts, and
denote by thick〈G〉 the smallest thick subcategory containing G.

For E ∈ C, put

(2.1) EG∗ (X) =
⊕
G∈G

[G,E ∧X]∗.

Since G = {S} in the stable homotopy category of spectra, EG∗ (X) = [S,E ∧X]∗ =
π∗(E ∧X) is the homology theory represented by E in the usual sense. Here, the
homology theory in this paper means the homology functor defined in [6, Def. 1.1.3].

Lemma 2.2. 1) EG∗ (−) is a homology theory.

2) ([6, Lemma 1.4.5 (b)]) If EG∗ (X) = 0, then E ∧X = 0.

For an object X ∈ C, let Λ(X) denote the category whose objects are morphisms
u : Z → X of C for Z ∈ thick〈G〉 and whose morphisms between objects u : Z → X

and u′ : Z ′ → X are morphisms Z
v−→ Z ′ of C such that u′v = u. Then, we read off

the following from [6, Cor. 2.3.11]:

Lemma 2.3. For any objects E and X of C, EG∗ (X) = colim
Λ(X)

EG∗ (Xα), where

{Xα → X} is the set of objects of Λ(X).

Consider the following subset of A(X) =
⊕

F∈thick〈G〉[X,F ]∗:

annEX(x) = {f ∈ [X,F ]∗ | F ∈ thick〈G〉, EG∗ (f)(x) = 0} ⊂ A(X)

for E ∈ C and x ∈ EG∗ (X). Then the Ohkawa class of E ∈ C is the set

〈〈E 〉〉 = {annEF (x) | F ∈ thick〈G〉, x ∈ EG∗ (F )} ⊂ 2
⊕
F∈thick〈G〉 A(F ).

Put
O = { 〈〈E 〉〉 | E ∈ C}.

Lemma 2.4. O is a set whose cardinal number is not greater than 22a

, where a
denotes the cardinal number of

⊕
F∈thick〈G〉A(F ) =

⊕
F,F ′∈thick〈G〉[F, F

′]∗.

For an object E ∈ C, the Bousfield class of E is the collection

〈E〉 = {X ∈ C | E ∧X = 0}.
We denote the collection of all Bousfield classes of C by B: B = {〈E〉 | E ∈ C}. We
define a partial ordering on B and O as follows:

• 〈E〉 ≥ 〈F 〉 if E ∧X = 0 implies that F ∧X = 0, and
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• 〈〈E 〉〉 ≥ 〈〈F 〉〉 if for any annFA(x) ∈ 〈〈F 〉〉 , there exists y ∈ EG∗ (A) such that
annFA(x) = annEA(y).

Then we have a similar lemma as [3, Lemma 1.7]:

Lemma 2.5. If 〈〈E 〉〉 ≥ 〈〈F 〉〉 , then 〈E〉 ≥ 〈F 〉.
Proof. Suppose that 〈〈E 〉〉 ≥ 〈〈F 〉〉 and let X be an object such that E ∧ X = 0.
Note that FG∗ (X) = colim

Λ(X)
FG∗ (Xα) by Lemma 2.3. Take an element x ∈ FG∗ (Xα).

By hypothesis, for annFXα(x) ∈ 〈〈F 〉〉 , there is an element y ∈ EG∗ (Xα) such that

annFXα(x) = annEXα(y). Since E ∧ X = 0, we have 0 = EG∗ (X), which equals

colim
Λ(X)

EG∗ (Xα) by Lemma 2.3. It follows that there is a morphism fαβ : Xα → Xβ ∈

Λ(X) for an object fβ : Xβ → X ∈ Λ(X) such that fαβ ∈ annEXα(y) = annFXα(x).

Therefore, FG∗ (fαβ)(x) = 0, and so FG∗ (fα)(x) = FG∗ (fβ)FG∗ (fαβ)(x) = 0 ∈ FG∗ (X).
Since Xα and x are both arbitrary, we see that FG∗ (X) = 0, and hence F ∧X = 0
by Lemma 2.2. �

Corollary 2.6. The map f : O → B defined by f( 〈〈E 〉〉 ) = 〈E〉 is well-defined.
Furthermore, it is an order-preserving surjection.

Let DL denote the subset of B consisting of elements x such that x ∧ x = x.
Here, the pairing ‘∧’ is inherited from C, that is, if x = 〈X〉 and y = 〈Y 〉 for objects
X and Y ∈ C, then x∧ y = 〈X ∧Y 〉. We notice that ‘∧’ is not always a meet in the
lattice B. The set DL is an ordered set bounded below. We call a non-zero element
x of DL an atom if x ∧ y = x or x ∧ y = 0 for any y ∈ B. Let A denote the subset
of DL consisting of atoms. Note that if both of x and y are atoms, then x ∧ y = x
if x = y and x ∧ y = 0 otherwise. Consider the mapping supp: B→ 2A defined by
(1.3). We also consider the ordering on 2A by inclusion.

Lemma 2.7. The mapping supp is an order-preserving surjection.

Proof. We see that supp is a surjection, since for a subset S ⊂ A, we have s =∨
a∈S a ∈ B satisfying supp(s) = S. Suppose that e = 〈E〉 ≥ 〈F 〉 = f . For an

element a = 〈A〉 /∈ supp(e), A ∧ E = 0, and so A ∧ F = 0. Thus, a /∈ supp(f), and
supp(f) ⊂ supp(e). �

Corollary 2.8. The cardinal number of B is not less than 2b for the cardinal
number b of A.

Remark 2.9. For the stable homotopy category S(p) of p-local spectra, the role of
A is played by {〈K(n)〉 | n ∈ N ∪ {∞}}, whose cardinal number is ℵ0. Here, K(n)
denotes the n-th Morava K-theory if n < ∞, and the mod p Eilenberg-Mac Lane
spectrum if n =∞.

3. Bousfield classes and supports on G-finite objects

In this section, we apply a thick subcategory theorem for the set A of atoms
used in the previous section. Let B denote the set of Bousfield classes of a fixed
algebraic stable homotopy category C.

We call an object R a ring object if R admits an associative multiplication µ : R∧
R→ R and a unit η : S → R. Consider the following condition on the category C:
(3.1) For any ring object R 6= 0, 〈R〉 ∧ A∨ 6= 0 for A∨ =

∨
a∈A a.

In this case, we say that A detects ring objects.
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Remark 3.2. In the stable homotopy category S(p) of p-local spectra, the nilpotence
theorem [5, Th. 3 i)] of Hopkins and Smith says that an element α of a homotopy
group of a ring spectrum R is nilpotent if and only if K(n)∗(α) is nilpotent for all
0 ≤ n ≤ ∞. It follows that the set {〈K(n)〉 | n ∈ N ∪ {∞}} ⊂ A detects ring
objects.

We here call an object F G-finite if F ∈ thick〈G〉, that is, F belongs to the thick
subcategory generated by G, and a thick subcategory D a G-ideal if X ∧G ∈ D for
any X ∈ D and G ∈ G. We see that, under (3.1), the set A of atoms satisfies the
conditions of [6, Th. 5.2.2], and so we have the following:

Proposition 3.3 ([6, Th. 5.2.2]). Suppose that the condition (3.1) holds. Then,
every G-ideal D of small objects (= G-finite objects) is expressed by

D = {X ∈ thick〈G〉 | supp(〈X〉) ⊂ supp(D)}.
Here supp(D) =

⋃
X∈D supp(〈X〉).

Corollary 3.4. Under the condition (3.1), the class of G-ideals of small objects is
a set whose cardinal number is not greater than 2b.

For an object E, consider the subcategories

TE = {X ∈ thick〈G〉 | supp(〈X〉) ⊂ supp(〈E〉)} and
T BE = {X ∈ thick〈G〉 | 〈X〉 ≤ 〈E〉}.

Lemma 3.5. Both of TE and T BE are G-ideals and T BE ⊂ TE.

Proof. The last statement follows from Lemma 2.7. By [6, Th. 2.1.3 (a)], it suffices
to show that both of the categories are thick. If X ∨ Y ∈ TE , then supp(〈X〉) ⊂
supp(〈X ∨ Y 〉) ⊂ supp(〈E〉), and so X ∈ TE . Suppose that X,Y ∈ TE , and
X → Y → Z is a cofiber sequence. If 〈A〉 6∈ supp(〈E〉), then 〈A〉 6∈ supp(〈X〉) and
〈A〉 6∈ supp(〈Y 〉), which implies that A∧X = 0 = A∧Y . It follows that A∧Z = 0.
Therefore, supp(〈Z〉) ⊂ supp(〈E〉). Thus, TE is thick. For T BE , a similar argument
works. �

Corollary 3.6. Let E be a G-finite object. Then, TE = T BE .

Proof. By Proposition 3.3 and Lemma 3.5, T BE = {X ∈ thick〈G〉 | supp(〈X〉) ⊂
supp(T BE )}. For X ∈ T BE , supp(〈X〉) ⊂ supp(〈E〉) by Lemma 2.7. Since E is
G-finite, we see that supp(T BE ) = supp(〈E〉). �

Corollary 3.7. Let X and Y be G-finite objects. Then, 〈X〉 = 〈Y 〉 if and only if
supp(〈X〉) = supp(〈Y 〉).

Proof. The ‘only if’ part follows from Lemma 2.7. Suppose that supp(〈X〉) =
supp(〈Y 〉). Then, TX = TY , and so T BX = T BY by Corollary 3.6. Noticing that
X ∈ T BX , we see the ‘if’ part. �
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