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ABSTRACT. Let M}k1 denote the cokernel of the localization map BP./I —
vgilBP*/I, where I denotes the ideal of BP,. generated by v;’s for 0 < ¢ <
n — 2. The chromatic Ext®(M!_;) on I'(m + 1), which we denote Ex’(m,n),
is isomorphic to the 0-th line of the Fa-term of the Adams-Novikov spectral se-
quence for computing the homotopy groups of a spectrum, whose BP.-homology
is M} | ®pp, BP:[t1,t2,...,tm] for the generators t; of BP,BP. In [9], the
homotopy groups of such a spectrum are determined for m +1 > n(n — 1) by
computing Ex*(m,n). The 0-th line Ex%(m,3) is determined by Ichigi, Nakai
and Ravenel [1]. Here, we determine the O-th line Ex%(m,n) under the condition:
m—1)2<m+1<n(n—1)andn >4.

1. Introduction

Let BP be the Brown-Peterson spectrum at an odd prime p, and the
pair (BP,, BP,BP) = (Zy)[v1,v2,...], BPt1,ta,...]) the associated Hopf al-
gebroid. Ravenel [5] constructed the spectra T'(m) for m > 0 as well as a
map T(m) — BP that induces the inclusion BP.(T(m)) = BPi[t1,...,tm] C
BP,.BP of BP,BP-comodules. The Smith-Toda spectrum V (k) is characterized
by the BP;-homology: BP,.(V(k)) = BP./(p,v1,...,vr). We consider a spec-
trum V,, (k) such that BP.(V,,(k)) = BP./(p,v1,...,v%)[t1,.--,tm]. Further-
more, we consider the Bousfield localization functor L,,: § — S with respect
to v, 1BP on the stable homotopy category S of p-local spectra (see [4]). If
L,V (k) exists, then L,V,,(k) = T(m) A L,V (k). We notice that L,V(n — 1)
exists if n2 + n < 2p (see [10]). We are interested in the homotopy groups
of L,T(m). The homotopy groups are determined from those of L, V,,(k) by
virtue of the Bockstein spectral sequences. We study the homotopy groups by
the Adams-Novikov spectral sequence converging to the homotopy groups . (X)
of a spectrum X with Ep-term E3(X) = Extpp gp(BP., BP.(X)). Our input
is a result of Ravenel’s:

(L.1)(cf. [5, Cor. 6.5.6]) If n <m+2 andn < 2(p —1)(m + 1)/p, then
E3(L,Viy(n—1)) = Epn),@Ehg,; - m+1<k<m-+mn, j€Z/n),
where
En(n), = v, Z/plvn, vni1,- - Untm)-
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In order to study the Adams-Novikov Es-term E3 (L, Vi, (n — 2)), we consider a
spectrum V,,,(n — 2) defined as a cofiber of the localization map V,,,(n — 2) N
Lo_1Vin(n —2). Put

Ex*(m,n) = Extip pp(BP. BP.(Viu(n - 2)u0)
= Extpp pp(BP., M, | ®pp, BP.[t1,ta,... tm]),

for
Ml = ngP*/(p,’Ul,...,’l}n_27’0fl_1).

n—1 —
Then the Adams-Novikov Ea-term Ej (L, Vy,(n—2)) is obtained from Ex*(m,n)
and E3(L,—1Vy(n — 2)). Note that for n = 1, Ex*(0,1) is the Adams-Novikov
Es-term for ,(L1SY), whose structure is found in [4, Th.8.10] (see also [3]).
Ex*(0,2) is the Fa-term for m.(L2V(0)), which is determined by the second au-
thor ([61,[7],[8]), and Ex*(m, 2) is determined by Kamiya and the second author
in [2]. For m+1 > n(n—1), the second author also determined Ex*(m,n) in [9)].
In [1], Ichigi, Nakai and Ravenel determined Ex"(m, 3) for m > 1. In this paper,
we determine the Ext group Ex”(m, n) for (m, n) with (n—1)? < m+1 < n(n—1)
and n > 4.
One of our tool is the change of rings theorem (cf. [5]):

Ex*(m,n) = Ext] 4 1) (BP*, v, BP,/(p,v1,. .., 05 2, vﬁojl))
for the associated Hopf algebroid

(BP,,T(m+1)) = (BP,, BP,BP/(t1,...,tm)) = (BP,, BP,[tms1,tmi2,.-.])-
Let D,,(n)s« denote the algebra

(1.2) Dp(n)s = Ep_1(n)s[vn_1] = v, 'Z/plvn_1,Vn, - Vmin_1]-

Then, our main theorem is obtained from the following proposition which is
proved in the next section.

PROPOSITION 1.3. Suppose that
1) For each integer k > 0, there is an element x € v, ' BP, such that

Tp = vf,:+n mod I(1) and

d(zy) = vakvnrvpt, g mod I(ay + 1)
for nonnegative integers ay, aj, and a), and gy € {tﬁiﬂ. :0<i<n,je
Z/n}. Here d(x) = nr(z) —x € v;'T'(m + 1), and I(k) denotes the
ideal of v;'BP, generated by p,vi,...,vn_o and vF_,.

_ k 1"
2) The elements v,(;;,ll)p e g for nonnegative integers s and k represent

linearly independent generators over Ep,_1(n). in E3(Ly,Vi,(n —1)).
Then, Ex®(m,n) is the direct sum of (v, ; Dpm(n)x)/ D (n)« and Dy, (n).-modules
generated by xj /v,*  isomorphic to Dy, (n)s /(v ) for each integers k, s with
k>0andpts>0.
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Consider the integers

kbl
pk(n71)+j% k<n
pn(k+2—n) -1

Akntj = 172"7—1/1 + an22n) k—mniseven >0

) pn(k:-‘rl—n) -1

’ (p"zA + anzn> k—nisodd >1
pn =1

for A = ptan2_p, +pm T — p(”*1)2. Then, there exist elements xj, satisfying

the assumptions of Proposition 1.3 for the integers ay, which we show in section

three for (n —1)2 < m+1 < n(n —1) and n > 3. Thus, we obtain our main

theorem:

THEOREM 1.4. Let (n—1)2 <m+1<n(n—1) and n > 3. Then,

E3(m,n) = (0,1, Din(n))/Din(n) & D (Dm(n)s/(v1)) (i} /o5 y).
pisno

Note that if n = 3, then the result is the same as that in [1].

REMARK. The computation on section three shows that the structure of
Ex’(m,n) depends on k such that k(n —1) < m+1 < (k+1)(n —1). In [9],
it is shown that Ex*(m,n) has the same structure for k£ > n. In this paper, we
consider the case k =n — 1.

2. Preliminaries

Throughout the paper, we fix the positive integers m and n > 4 satisfying
the condition
(n—1)*<m+1<n(n-1).

2.1. The structure map ngr. In T'(m + 1) = BPy[tm+1, tmt2, - . -], We com-
pute the action of g on v;’s. We have the formulas of Hazewinkel’s and Quillen’s:
Vy = pén —Z?:_ll E{UZ:I» S BP*®@:Q[€17£2,],
773(671) = {,+ Z?:_lm En,m,itiwﬂ- € F(m + 1) ® Q.

In particular, mod (¢1,43,...,4,—2),

vi=pl; (i<2n—2) and v, = ply — Zkinﬂ éivz; (k> 2n—2).

i=n—1

LEMMA 2.1. The right unit ng: : BP. — T'(m+ 1) acts on generators v;
as follows :
nr(v;)) = wv;el(m+1) fori<m,
NR(Vmsk) = Umgk +Ptmpr (0<k <n)
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_ pr it k=]
NR(Vmgntk) = Um+n+k+§ (Un Litmatthej ~ Un—14 tm+1+k,j>

—wy, mod I..1 (0<k<n)

where Iy, denotes the ideal generated by p,v1,...,vx_1, and
0 k<n-—1,
(2.2) Wk = { Up—1Wmdn,n—2 k=n-—1,

Un—1Wm+n+1,n—2 + UnWm+n,n—1 k=n

for the elements Wytn,i and Wpin11,; defined by

i+1 +1pneti i+l mtit2
P - 0 P P )
d(vm+n) = Uy tm+1 tm+1vn—1 + PWmtn,i
mod (p2,v1,...,v,_2), and
it+1 i+l n+ti i+1 ,ntitl it+1 m4i+2 m—+i+3
— P P _up P L D
d(vm+n+1) - Un—ltm+2 + Un m—+1 9 tm—i—lvn t +2vn 1
+pwm+n+1,i mod (p y U1y 7Un—2)'

PRroOOF. This follows from routine computation:

k—ntl, pi
MR Omsr) = Plmik + tmir) — S Vi
Utk + Dbmtk (0 <k<n) "

[

nR(Um-‘rn-‘rk:) = p(gm—i-n—i-k +Z] =0 n 1+]tﬁl+1+k j +tm+n+k) +‘
k+1 m+i
- Zz*n 1 g'ym+n+k Zz* (E“H’l + thFZ) fL-’rk—l_
pn—1+1 k‘+1 p7n+z
Um+ntk + Z] 0 Un—1+jtm 1 4k—; = 21 iU gy
mod I, _1 (O<k<n—1)
145
nR(Um+2n—1) = p(€m+2n 1 + ZJ 0 n 1+]t£’b+n 7 + tm+2n 1)

pr1 p2n—2 mtn _n—1
P p p
_Z’n 1( m+n + vn 1 tm+1 —Up_1 tm+1 +plfm+n n— 2)
n—1
DS N v 1= = 2imt Gt + b )31

m-+4n

(lern +£n 1tm+1 + thrn) Up—1

= J

m+i
n D
Um+2n—1 +ZJ 0 Un— 1+Jtm+n —j Zi:l tm+iv2n—1—i
—Un—1Wm+4n,n—2 mod In 1
—1+j

_ p"
WR(’Um+2n) = p(mm+2n+2] =0 by 1+Jt7n+1+n ] + tmton— 1)
prl prt —1 p2n1 prtntl et
_g’ﬂ 1( m+n+1 +Un 1 t m-+2 +U tm-{-l —Up_1 tm+2
e p"
_’Uﬁ m+1 +pwm+n+1,n72)
p2nt pmtntl pn
—Ln ( Um+n + vn ltm+1 —Up tm+1 +pwm+n,n*1)
n—1 pw1+z
- Zz— ¢; vm+2n i Zz— (lm‘H + tm+1)v2nfz

m+n
_(lern + ln ltm+1 + tm+n)
m4n41

(lm+n+1 + - 1tm+2 +1n tm+1 + tm+n+1) Up—1

144 m+e

p" n+1 P

Um+2n + Zj =0 Un— 1+Jt7n+1+n -5 Zi:l tm+1v2n—i
“Un—-1Wm4n+1,n—2 — UnWm4n,n—1 mod Infl
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2.2. Proof of Proposition 1.3. The proof is based on [3, Remark 3.11],
which states, in our case, that if the commutative diagram of two exact sequences

1/u u 5

0 E° D° D° E!
b
0 E° Ex’(m,n) = Ex’(m,n) —— E!

commutes, then f is an isomorphism. Hereafter, we set v = v,,_1.

Let D° be the module of the proposition, that is, the D,,(n).-modules
generated by 1/u? for j > 0 and z§ /u® for each integers k, s with k& > 0 and
pts >0 Then, D' C M}! | = v,;'BP./(p,v1,...,vn_2,0 ). Note that
Ex’(m,n) is the kernel of the map d: M} | — M} | ®pp T'(m + 1) given by
d(z/u’) = (nr(x) — z)/u’. Thus, the first supposition shows that the every
element x5 /u® belongs to Ex’(m,n). We also see that 1/u/ € Ex"(m,n) by
Lemma 2.1. Now we define the map f to be the inclusion. Then, the map
1/u: Ex® — DY is well defined, since the elements v3, ,,, /u belong to D°. Since
DY is a D,,(n),-module, D° admits the self map u. The map 6: D° — E°
is defined by the composite d f. These show the existence of the commutative
diagram.

We will show that the upper sequence is exact. Since the diagram com-
mutes and the lower sequence is exact, the sequence 0 — E° -5 D° % DO
is exact and the composite du is trivial. Suppose that 6(z) = 0 for z =
D k>0, pts>0 Uy sTh /U™ + 32, aj/u? for ay s, a; € Dy(n).. Then, by the first
supposition,

0 = 6($) = Zk’ZO,pTS>0 ak755($2/ua‘k)
! —1 k+ "
= Yk0pts>0 59 (ak,s)vn* quij)P %

for the map ¢ in the exact sequence D,,(n). — Dy (n). 2, 'm—1(n)x. Then
the second assumption shows that sp(aks) = 0 € Ey—1(n). for every k, s, and
hence ag,s = uby,s for an element by s € D,,(n).. It follows that x = uy for

Y =D k50.pts>0 Ok, s TR/ U + 305 aj/uitl as desired.
3. The elements z,,

In the sequel, we put v, = 1, and use the notation

U = Up-—1, Wi = Um+n+k Sk = tm+k7
I:In—l = (pavly"'avn—Q) and I(k) = (p,'Ul,..-,’Un_27'U7kl_1)

for the sake of simplicity. We also introduce integers:

P = prl, Q= pmt!
Pk —1 pF—1
ep(k) = H— elk) = pE— and

Ap = Pke(k+1)
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Now we introduce elements X and X for k& < n, which correspond to the
elements xy, and xg,41.

wo k=0
X, = (X,_ )P —u®PP-DA1 x,
_up<P—1)Ak71+Q—P"*1X;C_1 0<k<n

X XP — (=1)"Wips

k—1

_ pAk_1 pk=t _k+if, —p TP Ay, PFTT p' TPt

W, = u (wk +> (=) u Ui X124
=1

7Pi71Ak,_1_‘, pkiiilpkilQ pi-t
—u ‘Upti X124 ) |-

The element wy, of (2.2) is a multiple of u, and we put:

k—1 k—1
o, = ut w,f and
_ o P'n.72
(32) o = Op-1 = wm+n,n72

= WP XPIL PP g 1(2(pP) ).

Note that o, =0if k<n—1,and =c if k=n— 1.

LEMMA 3.3.  The differential d: v,;' BP, — v,,'T\(m+1) acts on X} and
X, for k>0 as follows:

d(X) = (=1)Fu?x skpflrl —of) - uQ@—F"* (sfﬁl — cm)) )
mod I(2Q + Ay —ep(k+1)) fork<n-—1,
axp) = (DR (s = (s — o) )

mod I(Q + pAy — PE=1) for k <n —2,
d(X5_y) = (‘DnHUPA"_lSEWI mod I(pA,—1 + P" '), and
d(X,) (=1)"upPAn—1+Q=P"" 5 1mod I(Q + pPAn_1).

Here, we set P~ = 0.

REMARK. In the case m + 1 > n(n — 1), d(X,,) = (=1)"TlupPAn1gl |
mod I(pPA,_1 + Q — P"~!) in our notation.

PROOF. Since

d(Xo) = d(wg) = us’fm1 —uw?" sy = usP —uQs; mod I

by Lemma 2.1, we have the first step of the induction.
Suppose that we have the congruences on d(X;) for i < k < n — 1. Since
n > 3, we see that k < m and d(vy,4;) = 0 mod I,,_; for i < k. Then we compute
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by Lemma 2.1 as follows:

Ax) = (=D (s —ureert )
mod I(2pQ + pAy, — pep(k + 1))
d(Wiy1) = ubte (d (wlf-tl)

k
k+i4+1 —pittPiA,_; PF yp'tP?
+ E (-1) d(u Vi X oy
=1 k—ipk
—PT A, P T PRQ P
—u Uy X,

Pk Pk+1 pPk+1 Pk

pAk
uw Skt2 T Skp1 T Sk

x> ~
<

Pk pi+1Pk+1 pk—iPkQ Pk Pk
+ § : (vn+i8k+1—i = Un+ti Sk41—i ) — Wrt1
=1
pk p1',+1 pr+1 pk—iPkQ pk
- § , (vn+i5k+1—i = Unti Sk41—i
=1

k+1 k k
_ pA pkpktt pP WP Y
= uber (u S}t2 +sk+1 Sk1 — U Ok41

B

mod I(pAg + Q — P*~1), which yields the congruence on d(X},).

XYY = DR (P = (5P - ol
mod I(PQ + pPAy — PF)
A(-uPPTOAKY) = (P (S - )
mod I(2Q + pPA; —ep(k+1))
4 (~urPDAReP ) = (AP (o P (58— o))

mod 1(2Q + pPA;, — P* — PF1),
and we have
A(Xppr) = (DR (P (P = ol ) @ (s - ok )
mod 1(2Q + pPAy — ep(k +1)). Since Apy1 = pPAy + P*+1 and
pPAy —ep(k+1) = Apy — Pl —ep(k+1) = Appy —ep(k+2),

we obtain d(Xj1). This completes the induction to obtain the congruences on
d(X’I/’L72) and d(Xn—l)'
A similar computation as above shows the congruence on d(X/,_;), where

we take the ideal in the congruence so that w?’ """ is annihilated. For d(Xn),
using the congruences on d(X,,_1) and d(X],_;), we compute
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d((X,_)F) = (-)rttepPAnsl” mod I(pPA,—1 + PT)
d <_u<pP—1)An71X

n—1
= (_1)nuPPAn_1 ((85" _ O'P) _ UQ—P”’1 (55"71 _ O'))

mod I(2Q + pPA,_1 —ep(n))
d (_up(P—l)Ar,L71+Q—Pn71X/

n—1

= (=1)nupPAn—1+Q=P " P nod I(pPAp_q + Q)

to obtain d(X,,). O

n—2
Consider an element Y = X(gp P) — X, 9, and we see that it is congruent

to zero modulo I((pP — 1)(pP)"~3), and

dxr-ly) = xr-l (u@P)"’ng”P)HPfd(xn_z))

(3.4) So1 4 _3
o — X, 5d(Xn—2) mod I(2(pP)" ™= — (pP)" 7).

We introduce integers es(k), A, A, cx and Cy defined by

2%k
e2(2k) = ((2;];))2117
A = pPA, 1 +Q—P",
Pke(k+1) kE<n
A, = ea(k+2—n)A+ A,_o k—mniseven >0
(pPlea(k+1—n)A+ A1 k—misodd >1
o — (pP)ea(k — 1)A+ (pP —1)A,—2 kisodd > 1,

(pP)?eq(k —2)A+ (pP —1)A,_1 ks even > 2,
We replace X,, by

X, — (-1)"uAXP7lY,
and define inductively the elements X, for & > 0 by

(35) Xn+k _ Xﬁik_l _ (71)nu(pp)kAX7(£__kl_)gPYk

for
— yPpP
Yi =X, p 53— Xntr—2
Here we notice that pP = p™.
LEMMA 3.6. The element Yy, is a multiple of u®* for k > 0.
PROOF. By the definition (3.1), we see that Y7 and Y, are divisible by

uPP=DAn—2 and 4 (PP~ An—1 respectively. For k > 2, we see that ¢, = (pP)*~2A+
ck—2 by (3.5), and verify the lemma by induction. O
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We further introduce integers A} and elements Gy, defined by

A - 0 E<n

; ®P) -1+ A, k2n
G, = 5@-1 k<n
Gr_o k>n

Then, we have
LEMMA 3.7. Fori >0,
d(Xnsi) = (~D)"alPPAXITL (d(Xoyime) mod I(Aysg + Prs0))
= (1)) T Gy mod T(Apyi +1).
Here €(i) = max{0,1 —i}.

PrROOF. We show the first congruence by induction. The congruence for
i = 0 follows from Lemma 3.3 and (3.4). Inductively suppose that the congruence
holds for 7. Then, we compute

dXPY) = (—)raeP A PEVRPGXTEL ) mod I(pP A+ pPte0)
A=)l AX Y )

_ n it1 —1)pP P

= (~)mHaeP AR AT ) - d(Xnvio))
mod I((pP)™* A+ ciy1 +pPA, i o). Since (pP) 1A+ pPA, ;i o =pPA,i,
civ1 > pP" @ and pPA, i +pP" ") > A, ;11 + P!, we obtain the con-
gruence for ¢ + 1. Thus, the induction completes. O

Now we define integers aj and a}, and elements zy, gj. and g as follows:

Qin+4j = PJ A;
;= DA
Lintj = szJ
Gint+; = ij

for ¢ > 0 and 0 < j < n. We notice that the integer aj is the same as the one in
the introduction.

LEMMA 3.8. These elements and integers satisfy the assumption of Propo-
sition 1.5.

PROOF. The first part of the assumption follows from the definition of
elements and Lemmas 3.3 and 3.7.
We prove the second part by showing the following assertion on ¢ > 0.

k "
(3.9) 0 The elements v,(i_s__,ll)p o gr for non-negative integers s,k with pt s

and k < ¢ are linearly independent over E,,_1(n)..
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For ¢ < n?, it is trivial, since gx # gis if kK # k’. Suppose that it holds for ¢,
and v,(,::l)p“raygg = Zi;é )\kvfjfﬁll)pk+aggk for Ay € Ey—1(n)«, where s is a
nonnegative integer prime to p such that (s —1)p* +a) = (sx — 1)p* +a}!. Then,
since g;’s are generators, £ = k mod n, and (s — 1)p* + a = (s — 1)p* + af.
Then, a) = (s, — 1)p* + a mod p’. If k = in + j, then A}, = (sp — 1)p"™ + A/
mod p*~J for ¢ such that £ = ¢'n + j. The definition of integers A? implies
that p divides s, and there is no integers sy satisfying the congruence. Hence,

(3.7)(¢+1) holds, and the induction completes. O
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