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Abstract. Let M1
n−1 denote the cokernel of the localization map BP∗/I →

v−1
n−1BP∗/I, where I denotes the ideal of BP∗ generated by vi’s for 0 ≤ i ≤

n − 2. The chromatic Ext0(M1
n−1) on Γ(m + 1), which we denote Ex0(m, n),

is isomorphic to the 0-th line of the E2-term of the Adams-Novikov spectral se-
quence for computing the homotopy groups of a spectrum, whose BP∗-homology
is M1

n−1 ⊗BP∗ BP∗[t1, t2, . . . , tm] for the generators ti of BP∗BP . In [9], the

homotopy groups of such a spectrum are determined for m + 1 ≥ n(n − 1) by
computing Ex∗(m, n). The 0-th line Ex0(m, 3) is determined by Ichigi, Nakai
and Ravenel [1]. Here, we determine the 0-th line Ex0(m, n) under the condition:
(n− 1)2 ≤ m + 1 < n(n− 1) and n ≥ 4.

1. Introduction

Let BP be the Brown-Peterson spectrum at an odd prime p, and the
pair (BP∗, BP∗BP ) = (Z(p)[v1, v2, . . . ], BP∗[t1, t2, . . . ]) the associated Hopf al-
gebroid. Ravenel [5] constructed the spectra T (m) for m ≥ 0 as well as a
map T (m) → BP that induces the inclusion BP∗(T (m)) = BP∗[t1, . . . , tm] ⊂
BP∗BP of BP∗BP -comodules. The Smith-Toda spectrum V (k) is characterized
by the BP∗-homology: BP∗(V (k)) = BP∗/(p, v1, . . . , vk). We consider a spec-
trum Vm(k) such that BP∗(Vm(k)) = BP∗/(p, v1, . . . , vk)[t1, . . . , tm]. Further-
more, we consider the Bousfield localization functor Ln : S → S with respect
to v−1

n BP on the stable homotopy category S of p-local spectra (see [4]). If
LnV (k) exists, then LnVm(k) = T (m) ∧ LnV (k). We notice that LnV (n − 1)
exists if n2 + n < 2p (see [10]). We are interested in the homotopy groups
of LnT (m). The homotopy groups are determined from those of LnVm(k) by
virtue of the Bockstein spectral sequences. We study the homotopy groups by
the Adams-Novikov spectral sequence converging to the homotopy groups π∗(X)
of a spectrum X with E2-term E∗

2 (X) = Ext∗BP∗BP (BP∗, BP∗(X)). Our input
is a result of Ravenel’s:

(1.1)(cf. [5, Cor. 6.5.6]) If n < m + 2 and n < 2(p− 1)(m + 1)/p, then

E∗
2 (LnVm(n− 1)) = Em(n)∗ ⊗ E(hk,j : m + 1 ≤ k ≤ m + n, j ∈ Z/n),

where
Em(n)∗ = v−1

n Z/p[vn, vn+1, . . . , vn+m].
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In order to study the Adams-Novikov E2-term E∗
2 (LnVm(n− 2)), we consider a

spectrum Vm(n− 2)∞ defined as a cofiber of the localization map Vm(n− 2) wη

Ln−1Vm(n− 2). Put

Ex∗(m,n) = Ext∗BP∗BP (BP∗, BP∗(Vm(n− 2)∞))
= Ext∗BP∗BP (BP∗,M1

n−1 ⊗BP∗ BP∗[t1, t2, . . . , tm]),

for
M1

n−1 = v−1
n BP∗/(p, v1, . . . , vn−2, v

p∞
n−1).

Then the Adams-Novikov E2-term E∗
2 (LnVm(n−2)) is obtained from Ex∗(m, n)

and E∗
2 (Ln−1Vm(n − 2)). Note that for n = 1, Ex∗(0, 1) is the Adams-Novikov

E2-term for π∗(L1S
0), whose structure is found in [4, Th.8.10] (see also [3]).

Ex∗(0, 2) is the E2-term for π∗(L2V (0)), which is determined by the second au-
thor ([6],[7],[8]), and Ex∗(m, 2) is determined by Kamiya and the second author
in [2]. For m+1 ≥ n(n−1), the second author also determined Ex∗(m,n) in [9].
In [1], Ichigi, Nakai and Ravenel determined Ex0(m, 3) for m > 1. In this paper,
we determine the Ext group Ex0(m,n) for (m,n) with (n−1)2 ≤ m+1 < n(n−1)
and n ≥ 4.

One of our tool is the change of rings theorem (cf. [5]):

Ex∗(m,n) = Ext∗Γ(m+1)

(
BP∗, v−1

n BP∗/(p, v1, . . . , vn−2, v
p∞
n−1)

)

for the associated Hopf algebroid

(BP∗,Γ(m+1)) = (BP∗, BP∗BP/(t1, . . . , tm)) = (BP∗, BP∗[tm+1, tm+2, . . . ]).

Let Dm(n)∗ denote the algebra

(1.2) Dm(n)∗ = Em−1(n)∗[vn−1] = v−1
n Z/p[vn−1, vn, . . . , vm+n−1].

Then, our main theorem is obtained from the following proposition which is
proved in the next section.

Proposition 1.3. Suppose that
1) For each integer k ≥ 0, there is an element xk ∈ v−1

n BP∗ such that
xk ≡ vpk

m+n mod I(1) and

d(xk) ≡ vak
n−1v

a′k
n v

a′′k
m+ngk mod I(ak + 1)

for nonnegative integers ak, a′k and a′′k and gk ∈ {tp
j

m+i : 0 < i ≤ n, j ∈
Z/n}. Here d(x) = ηR(x) − x ∈ v−1

n Γ(m + 1), and I(k) denotes the
ideal of v−1

n BP∗ generated by p, v1, . . . , vn−2 and vk
n−1.

2) The elements v
(s−1)pk+a′′k
m+n gk for nonnegative integers s and k represent

linearly independent generators over Em−1(n)∗ in E1
2(LnVm(n− 1)).

Then, Ex0(m, n) is the direct sum of (v−1
n−1Dm(n)∗)/Dm(n)∗ and Dm(n)∗-modules

generated by xs
k/vak

n−1 isomorphic to Dm(n)∗/(vak
n−1) for each integers k, s with

k ≥ 0 and p - s > 0.



On the chromatic Ext0(M1
n−1) on Γ(m + 1) for an odd prime 3

Consider the integers

akn+j =





pk(n−1)+j pk+1 − 1
p− 1

k < n

pj

(
pn(k+2−n) − 1

p2n − 1
A + an2−2n

)
k − n is even ≥ 0

pj

(
pn pn(k+1−n) − 1

p2n − 1
A + an2−n

)
k − n is odd ≥ 1

for A = pnan2−n + pm+1 − p(n−1)2 . Then, there exist elements xk satisfying
the assumptions of Proposition 1.3 for the integers ak, which we show in section
three for (n − 1)2 ≤ m + 1 < n(n − 1) and n ≥ 3. Thus, we obtain our main
theorem:

Theorem 1.4. Let (n− 1)2 ≤ m + 1 ≤ n(n− 1) and n ≥ 3. Then,

E0
2(m,n) = (v−1

n−1Dm(n)∗)/Dm(n)∗ ⊕
⊕

k ≥ 0
p - s > 0

(
Dm(n)∗/(vak

n−1)
) 〈xs

k/vak
n−1〉.

Note that if n = 3, then the result is the same as that in [1].

Remark. The computation on section three shows that the structure of
Ex0(m,n) depends on k such that k(n − 1) ≤ m + 1 < (k + 1)(n − 1). In [9],
it is shown that Ex∗(m, n) has the same structure for k ≥ n. In this paper, we
consider the case k = n− 1.

2. Preliminaries

Throughout the paper, we fix the positive integers m and n ≥ 4 satisfying
the condition

(n− 1)2 ≤ m + 1 < n(n− 1).

2.1. The structure map ηR. In Γ(m + 1) = BP∗[tm+1, tm+2, . . . ], we com-
pute the action of ηR on vi’s. We have the formulas of Hazewinkel’s and Quillen’s:

vn = p`n −
∑n−1

i=1 `iv
pi

n−i ∈ BP∗ ⊗Q = Q[`1, `2, . . . ],
ηR(`n) = `n +

∑n−m
i=1 `n−m−it

pn−m−i

m+i ∈ Γ(m + 1)⊗Q.

In particular, mod (`1, `2, . . . , `n−2),

vi ≡ p`i (i < 2n− 2) and vk = p`k −
∑k−n+1

i=n−1 `iv
pi

k−i (k > 2n− 2).

Lemma 2.1. The right unit ηR : : BP∗ → Γ(m + 1) acts on generators vi

as follows :

ηR(vi) = vi ∈ Γ(m + 1) for i ≤ m,
ηR(vm+k) = vm+k + ptm+k (0 < k < n)
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ηR(vm+n+k) ≡ vm+n+k +
k∑

j=0

(
vn−1+jt

pn−1+j

m+1+k−j − vpm+1+k−j

n−1+j tm+1+k−j

)

−ωk mod In−1 (0 ≤ k ≤ n)
where Ik denotes the ideal generated by p, v1, . . . , vk−1, and

(2.2) ωk =





0 k < n− 1,

vn−1wm+n,n−2 k = n− 1,

vn−1wm+n+1,n−2 + vnwm+n,n−1 k = n

for the elements wm+n,i and wm+n+1,i defined by

d(vpi+1

m+n) ≡ vpi+1

n−1 tp
n+i

m+1 − tp
i+1

m+1v
pm+i+2

n−1 + pwm+n,i

mod (p2, v1, . . . , vn−2), and
d(vpi+1

m+n+1) ≡ vpi+1

n−1 tp
n+i

m+2 + vpi+1

n tp
n+i+1

m+1 − tp
i+1

m+1v
pm+i+2

n − tp
i+1

m+2v
pm+i+3

n−1

+pwm+n+1,i mod (p2, v1, . . . , vn−2).

Proof. This follows from routine computation:

ηR(vm+k) = p(`m+k + tm+k)−∑m+k−n+1
i=n−1 `iv

pi

m+k−i

= vm+k + ptm+k (0 < k < n)
ηR(vm+n+k) ≡ p(`m+n+k +

∑k
j=0 `n−1+jt

pn−1+j

m+1+k−j + tm+n+k)

−∑m
i=n−1 `iv

pi

m+n+k−i −
∑k+1

i=1 (`m+i + tm+i)v
pm+i

n+k−i

≡ vm+n+k +
∑k

j=0 vn−1+jt
pn−1+j

m+1+k−j −
∑k+1

i=1 tm+iv
pm+i

n+k−i

mod In−1 (0 ≤ k < n− 1)
ηR(vm+2n−1) ≡ p(`m+2n−1 +

∑n−1
j=0 `n−1+jt

pn−1+j

m+n−j + tm+2n−1)

−`n−1(v
pn−1

m+n + vpn−1

n−1 tp
2n−2

m+1 − vpm+n

n−1 tp
n−1

m+1 + pwm+n,n−2)
−∑m

i=n `iv
pi

m+2n−1−i −
∑n−1

i=1 (`m+i + tm+i)v
pm+i

2n−1−i

−(lm+n + `n−1t
pn−1

m+1 + tm+n)vpm+n

n−1

≡ vm+2n−1 +
∑n−1

j=0 vn−1+jt
pn−1+j

m+n−j −
∑n

i=1 tm+iv
pm+i

2n−1−i

−vn−1wm+n,n−2 mod In−1

ηR(vm+2n) ≡ p(mm+2n +
∑n

j=0 `n−1+jt
pn−1+j

m+1+n−j + tm+2n−1)

−`n−1(v
pn−1

m+n+1 + vpn−1

n−1 tp
2n−2

m+2 + vpn−1

n tp
2n−1

m+1 − vpm+n+1

n−1 tp
n−1

m+2

−vpm+n

n tp
n−1

m+1 + pwm+n+1,n−2)
−`n(vpn

m+n + vpn

n−1t
p2n−1

m+1 − vpm+n+1

n−1 tp
n

m+1 + pwm+n,n−1)
−∑m

i=n `iv
pi

m+2n−i −
∑n−1

i=1 (lm+i + tm+i)v
pm+i

2n−i

−(lm+n + ln−1t
pn−1

m+1 + tm+n)vpm+n

n

−(lm+n+1 + ln−1t
pn−1

m+2 + lntp
n

m+1 + tm+n+1)v
pm+n+1

n−1

≡ vm+2n +
∑n

j=0 vn−1+jt
pn−1+j

m+1+n−j −
∑n+1

i=1 tm+iv
pm+i

2n−i

−vn−1wm+n+1,n−2 − vnwm+n,n−1 mod In−1

¤
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2.2. Proof of Proposition 1.3. The proof is based on [3, Remark 3.11],
which states, in our case, that if the commutative diagram of two exact sequences

0 E0 D0 D0 E1

0 E0 Ex0(m,n) Ex0(m,n) E1

w w1/u

u f
wu

u f
wδ

w w1/u wu wδ

commutes, then f is an isomorphism. Hereafter, we set u = vn−1.
Let D0 be the module of the proposition, that is, the Dm(n)∗-modules

generated by 1/uj for j > 0 and xs
k/uak for each integers k, s with k ≥ 0 and

p - s > 0. Then, D0 ⊂ M1
n−1 = v−1

n BP∗/(p, v1, . . . , vn−2, v
∞
n−1). Note that

Ex0(m,n) is the kernel of the map d : M1
n−1 → M1

n−1 ⊗BP∗ Γ(m + 1) given by
d(x/uj) = (ηR(x) − x)/uj . Thus, the first supposition shows that the every
element xs

k/uak belongs to Ex0(m,n). We also see that 1/uj ∈ Ex0(m,n) by
Lemma 2.1. Now we define the map f to be the inclusion. Then, the map
1/u : Ex0 → D0 is well defined, since the elements vs

m+n/u belong to D0. Since
D0 is a Dm(n)∗-module, D0 admits the self map u. The map δ : D0 → E0

is defined by the composite δf . These show the existence of the commutative
diagram.

We will show that the upper sequence is exact. Since the diagram com-
mutes and the lower sequence is exact, the sequence 0 → E0 w1/u

D0 wu
D0

is exact and the composite δu is trivial. Suppose that δ(x) = 0 for x =∑
k≥0,p-s>0 ak,sx

s
k/uak +

∑
j aj/uj for ak,s, aj ∈ Dm(n)∗. Then, by the first

supposition,

0 = δ(x) =
∑

k≥0,p-s>0 ak,sδ(xs
k/uak)

=
∑

k≥0,p-s>0 sϕ(ak,s)v
a′k
n v

(s−1)pk+a′′k
m+n gk.

for the map ϕ in the exact sequence Dm(n)∗ wu
Dm(n)∗ wϕ

Em−1(n)∗. Then
the second assumption shows that sϕ(ak,s) = 0 ∈ Em−1(n)∗ for every k, s, and
hence ak,s = ubk,s for an element bk,s ∈ Dm(n)∗. It follows that x = uy for
y =

∑
k≥0,p-s>0 bk,sx

s
k/uak +

∑
j aj/uj+1, as desired.

3. The elements xn

In the sequel, we put vn = 1, and use the notation

u = vn−1, wk = vm+n+k, sk = tm+k,
I = In−1 = (p, v1, . . . , vn−2) and I(k) = (p, v1, . . . , vn−2, v

k
n−1)

for the sake of simplicity. We also introduce integers:

P = pn−1, Q = pm+1

eP (k) =
P k − 1
P − 1

, e(k) =
pk − 1
p− 1

, and

Ak = P ke(k + 1)
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Now we introduce elements Xk and X ′
k for k ≤ n, which correspond to the

elements xkn and xkn+1.

(3.1)

Xk =





w0 k = 0
(X ′

k−1)
P − u(pP−1)Ak−1Xk−1

−up(P−1)Ak−1+Q−P k−1
X ′

k−1 0 < k ≤ n

X ′
k = Xp

k − (−1)kWk+1

Wk = upAk−1

(
wP k−1

k +
k−1∑

i=1

(−1)k+i
(
u−pi+1P iAk−1−ivP k−1

n+i Xpi+1P i

k−1−i

−u−P i−1Ak−1−ivpk−i−1P k−1Q
n+i XP i−1

k−1−i

))
.

The element ωk of (2.2) is a multiple of u, and we put:

(3.2)
σk ≡ u−P k−1

ωP k−1

k and
σ = σn−1 = wP n−2

m+n,n−2

≡ u(pP )n−2
Xp−1

n−2s
(pP )n−2P
1 mod I(2(pP )n−2).

Note that σk = 0 if k < n− 1, and = σ if k = n− 1.

Lemma 3.3. The differential d : v−1
n BP∗ → v−1

n Γ(m + 1) acts on Xk and
X ′

k for k ≥ 0 as follows:

d(Xk) ≡ (−1)kuAk

((
sP k+1

k+1 − σP
k

)
− uQ−P k

(
sP k

k+1 − σk

))
,

mod I(2Q + Ak − eP (k + 1)) for k ≤ n− 1,
d(X ′

k) ≡ (−1)kupAk

(
sP k

k+1 − uP k
(
sP k+1

k+2 − σk+1

))

mod I(Q + pAk − P k−1) for k ≤ n− 2,
d(X ′

n−1) ≡ (−1)n+1upAn−1sP n−1

n mod I(pAn−1 + Pn−1), and
d(Xn) ≡ (−1)nupPAn−1+Q−P n−1

σ mod I(Q + pPAn−1).

Here, we set P−1 = 0.

Remark. In the case m + 1 ≥ n(n − 1), d(Xn) ≡ (−1)n+1upPAn−1σP
n−1

mod I(pPAn−1 + Q− Pn−1) in our notation.

Proof. Since

d(X0) = d (w0) ≡ uspn−1

1 − upm+1
s1 = usP

1 − uQs1 mod I

by Lemma 2.1, we have the first step of the induction.
Suppose that we have the congruences on d(Xi) for i ≤ k < n − 1. Since

n ≥ 3, we see that k < m and d(vn+i) ≡ 0 mod In−1 for i ≤ k. Then we compute



On the chromatic Ext0(M1
n−1) on Γ(m + 1) for an odd prime 7

by Lemma 2.1 as follows:

d (Xp
k) ≡ (−1)kupAk

(
spP k+1

k+1 − upQ−pP k

spP k

k+1

)

mod I(2pQ + pAk − peP (k + 1))
d (Wk+1) ≡ upAk

(
d

(
wP k

k+1

)

+
k∑

i=1

(−1)k+i+1d
(
u−pi+1P iAk−ivP k

n+iX
pi+1P i

k−i

−u−P i−1Ak−ivpk−iP kQ
n+i XP i−1

k−i

)

≡ upAk

(
uP k

sP k+1

k+2 + spP k+1

k+1 − sP k

k+1

+
k∑

i=1

(
vP k

n+is
pi+1P k+1

k+1−i − vpk−iP kQ
n+i sP k

k+1−i

)
− ωP k

k+1

−
k∑

i=1

(
vP k

n+is
pi+1P k+1

k+1−i − vpk−iP kQ
n+i sP k

k+1−i

) )

≡ upAk

(
uP k

sP k+1

k+2 + spP k+1

k+1 − sP k

k+1 − uP k

σk+1

)

mod I(pAk + Q− P k−1), which yields the congruence on d(X ′
k).

d((X ′
k)P ) ≡ (−1)kupPAk

(
sP k+1

k+1 − uP k+1
(
sP k+2

k+2 − σP
k+1

))

mod I(PQ + pPAk − P k)
d(−u(pP−1)AkXk) ≡ (−1)k+1upPAk

(
sP k+1

k+1 − uQ−P k

sP k

k+1

)

mod I(2Q + pPAk − eP (k + 1))
d

(
−up(P−1)Ak+Q−P k

X ′
k

)
≡ (−1)k+1upPAk+Q−P k

(
sP k

k+1 − uP k
(
sP k+1

k+2 − σk+1

))

mod I(2Q + pPAk − P k − P k−1),

and we have

d (Xk+1) ≡ (−1)k+1upPAk

(
uP k+1

(
sP k+2

k+2 − σP
k+1

)
− uQ

(
sP k+1

k+2 − σk+1

))

mod I(2Q + pPAk − eP (k + 1)). Since Ak+1 = pPAk + P k+1 and

pPAk − eP (k + 1) = Ak+1 − P k+1 − eP (k + 1) = Ak+1 − eP (k + 2),

we obtain d(Xk+1). This completes the induction to obtain the congruences on
d(X ′

n−2) and d(Xn−1).
A similar computation as above shows the congruence on d(X ′

n−1), where
we take the ideal in the congruence so that ωP n−1

n is annihilated. For d(Xn),
using the congruences on d(Xn−1) and d(X ′

n−1), we compute
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d
(
(X ′

n−1)
P

) ≡ (−1)n+1upPAn−1sP n

n mod I(pPAn−1 + Pn)
d

(
−u(pP−1)An−1Xn−1

)

≡ (−1)nupPAn−1

((
sP n

n − σP
)− uQ−P n−1

(
sP n−1

n − σ
))

mod I(2Q + pPAn−1 − eP (n))
d

(
−up(P−1)An−1+Q−P n−1

X ′
n−1

)

≡ (−1)nupPAn−1+Q−P n−1
sP n−1

n mod I(pPAn−1 + Q)

to obtain d(Xn). ¤

Consider an element Y = X
(pP )n−2

0 −Xn−2, and we see that it is congruent
to zero modulo I((pP − 1)(pP )n−3), and

(3.4)
d(Xp−1

n−2Y ) ≡ Xp−1
n−2

(
u(pP )n−2

s
(pP )n−2P
1 − d(Xn−2)

)

≡ σ −Xp−1
n−2d(Xn−2) mod I(2(pP )n−2 − (pP )n−3).

We introduce integers e2(k), A, Ak, ck and Ck defined by

e2(2k) =
(pP )2k − 1
(pP )2 − 1

,

A = pPAn−1 + Q− Pn−1,

Ak =





P ke(k + 1) k < n

e2(k + 2− n)A + An−2 k − n is even ≥ 0
(pP )e2(k + 1− n)A + An−1 k − n is odd ≥ 1

ck =

{
(pP )e2(k − 1)A + (pP − 1)An−2 k is odd ≥ 1,
(pP )2e2(k − 2)A + (pP − 1)An−1 k is even ≥ 2,

We replace Xn by

Xn − (−1)nuAXp−1
n−2Y,

and define inductively the elements Xn+k for k > 0 by

(3.5) Xn+k = XpP
n+k−1 − (−1)nu(pP )kAX

(p−1)pP
n+k−3 Yk.

for
Yk = XpP

n+k−3 −Xn+k−2

Here we notice that pP = pn.

Lemma 3.6. The element Yk is a multiple of uck for k > 0.

Proof. By the definition (3.1), we see that Y1 and Y2 are divisible by
u(pP−1)An−2 and u(pP−1)An−1 , respectively. For k > 2, we see that ck = (pP )k−2A+
ck−2 by (3.5), and verify the lemma by induction. ¤



On the chromatic Ext0(M1
n−1) on Γ(m + 1) for an odd prime 9

We further introduce integers A′′k and elements Gk defined by

A′′k =

{
0 k < n

(pP )k−2(p− 1) + A′′k−2 k ≥ n

Gk =

{
spk+1

k+1 k < n

Gk−2 k ≥ n

Then, we have

Lemma 3.7. For i ≥ 0,

d(Xn+i) ≡ (−1)nu(pP )iAXp−1
n+i−2d(Xn+i−2) mod I(An+i + Pn−ε(i))

≡ (−1)nuAn+iw
A′′n+i

0 Gn+i mod I(An+i + 1).

Here ε(i) = max{0, 1− i}.

Proof. We show the first congruence by induction. The congruence for
i = 0 follows from Lemma 3.3 and (3.4). Inductively suppose that the congruence
holds for i. Then, we compute

d(XpP
n+i) ≡ (−1)nu(pP )i+1AX

(p−1)pP
n+i−2 d(XpP

n+i−2) mod I(pPAn+i + pPn−ε(i))
d((−1)n+1u(pP )i+1AX

(p−1)pP
n+i−2 Yi+1)

≡ (−1)n+1u(pP )i+1AX
(p−1)pP
n+i−2 (d(XpP

n+i−2)− d(Xn+i−1))

mod I((pP )i+1A + ci+1 + pPAn+i−2). Since (pP )i+1A + pPAn+i−2 = pPAn+i,
ci+1 > pPn−ε(i) and pPAn+i + pPn−ε(i) > An+i+1 + Pn−1, we obtain the con-
gruence for i + 1. Thus, the induction completes. ¤

Now we define integers ak and a′′k , and elements xk, g′k and gk as follows:

ain+j = pjAi

a′′in+j = pjA′′i
xin+j = Xpj

i

gin+j = Gpj

i

for i ≥ 0 and 0 ≤ j < n. We notice that the integer ak is the same as the one in
the introduction.

Lemma 3.8. These elements and integers satisfy the assumption of Propo-
sition 1.3.

Proof. The first part of the assumption follows from the definition of
elements and Lemmas 3.3 and 3.7.

We prove the second part by showing the following assertion on ` ≥ 0.

(3.9)(`) The elements v
(s−1)pk+a′′k
m+n gk for non-negative integers s, k with p - s

and k < ` are linearly independent over Em−1(n)∗.
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For ` < n2, it is trivial, since gk 6= gk′ if k 6= k′. Suppose that it holds for `,
and v

(s−1)p`+a′′`
m+n g` =

∑`−1
k=0 λkv

(sk−1)pk+a′′k
m+n gk for λk ∈ Em−1(n)∗, where sk is a

nonnegative integer prime to p such that (s−1)p` +a′′` = (sk−1)pk +a′′k . Then,
since gi’s are generators, ` ≡ k mod n, and (s − 1)p` + a′′` = (sk − 1)pk + a′′k .
Then, a′′` ≡ (sk − 1)pk + a′′k mod p`. If k = in + j, then A′′`′ ≡ (sk − 1)pin + A′′n
mod p`−j for `′ such that ` = `′n + j. The definition of integers A′′i implies
that p divides sk, and there is no integers sk satisfying the congruence. Hence,
(3.7)(`+1) holds, and the induction completes. ¤
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