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Abstract. The Ravenel spectra T (m) for non-negative integers m interpolate between the sphere spectrum

and the Brown-Peterson spectrum. Let L2 denote the Bousfield-Ravenel localization functor with respect to

v−1
2 BP . In this paper, we determine the homotopy groups π∗(L2T (m) : Z/2) = [M2, L2T (m)]∗ for m > 1,

where M2 denotes the modulo two Moore spectrum.

1. Introduction

Let S(2) denote the stable homotopy category of 2-local spectra, and BP ∈ S(2) denote the Brown-Peterson
ring spectrum. Then, BP∗ = π∗(BP ) = Z(2)[v1, v2, . . . ] and BP∗(BP ) = π∗(BP ∧BP ) = BP∗[t1, t2, . . . ], which
form a Hopf algebroid. The Adams-Novikov spectral sequence for computing the homotopy groups π∗(X) of
a spectrum X has the E2-term E∗

2 (X) = Ext∗BP∗(BP )(BP∗, BP∗(X)). Let L2 : S(2) → S(2) be the Bousfield-
Ravenel localization functor with respect to v−1

2 BP . Then, the E2-term E∗
2 (L2S

0) for the sphere spectrum S0

is determined in [12], but the homotopy groups π∗(L2S
0) stay undetermined. The Ravenel spectrum T (m) for

m > 0 is a ring spectrum characterized by BP∗(T (m)) = BP∗[t1, t2, . . . ] ⊂ BP∗(BP ) as a BP∗(BP )-comodule.
The spectrum T (m) interpolates between the sphere spectrum and the Brown-Peterson spectrum, and so the
homotopy groups π∗(L2T (m)) seem accessible if m is sufficiently large. Indeed, π∗(L2T (∞)) = π∗(L2BP ) is
determined by Ravenel [8]. Let Mk denote the mod k Moore spectrum defined by the cofiber sequence

(1.1) S0 w2
S0 wi

Mk wj
S1.

For m = 1, T (1) ∧M2 is the Mahowald spectrum X〈1〉 and the homotopy groups of L2X〈1〉 are determined in
[11]. But even the homotopy groups of L2T (1) ∧M4 are too complicated to be determined completely (cf. [2],
[3]). Consider a spectrum T (m)/(va

1 ) defined as a cofiber of the self-map va
1 : Σ2aT (m) → T (m) defined by the

generator v1 ∈ π2(T (m)). We use the notation:

(1.2) Vm(0) = T (m) ∧M2 and Vm(1)a = T (m)/(va
1 ) ∧M2,

and abbreviate Vm(1)1 to Vm(1). In this paper, we consider the case where m > 1, and determine π∗(L2Vm(1))
and π∗(L2Vm(0)). The Adams-Novikov E2-term E∗

2 (L2Vm(1)) for m > 1 is determined by Ravenel [10] as
follows:

(1.3) E∗
2 (L2Vm(1)) = Km(2)∗ ⊗ ∧(h1,0, h1,1, h2,0, h2,1)

for generators hi,j ∈ E1,2m+i+j+1−2j+1

2 (L2Vm(1)) and Km(2)∗ = v−1
2 Z/2[v2, v3, . . . , vm+2]. We show that Vm(1)

is a T (m)-module spectrum with M2-action, and then that all additive generators of the E2-term are permanent
cycles and the extension problem of the spectral sequence is trivial.

Theorem 1.4. π∗(L2Vm(1)) = Km(2)∗ ⊗ ∧(h1,0, h1,1, h2,0, h2,1) as a Z/2-module.

Let α : Σ8M2 → M2 denote the Adams map such that BP∗(α) = v4
1 , and Ka

2 denote a cofiber of αa. Then,
we show that Vm(1)4a = T (m) ∧ Ka

2 in Lemma 2.4 and denote the telescope of Vm(1)4
α→ · · · α→ Vm(1)4a

α→
Vm(1)4a+4

α→ · · · by Vm(1)∞. By the v1-Bockstein spectral sequence, we determine the Adams-Novikov E2-term
E∗

2 (L2Vm(1)∞), whose structure is given in [4] without proof. Here we give a proof of it. Consider the integers
en and an defined by

(1.5) en =
8n − 1

7
and an =





1 n = 0,

3ek+1 − 1 n = 3k + 1,

6ek+1 n = 3k + 2,

12ek+1 n = 3k + 3.

We introduce modules
Em(2)∗ = v−1

2 Z(2)[v1, v2, . . . , vm+2],
Q(k) = Em−1(2)∗/(2, vak

1 )[xk+1]〈xk/vak
1 〉,

2000 Mathematics Subject Classification. Primary 55Q99; Secondary 55Q51, 20J06.

1



2 Ippei Ichigi and Katsumi Shimomura

where xn ∈ Em(2)∗ is an element defined in (4.1) such that xn ≡ v2n

m+2 modulo (2, v1), and xn/van
1 ∈

E0
2(L2Vm(1)∞) by Proposition 4.3. We also introduce homology classes ζ and ζn of E1

2(Vm(0)), which cor-
respond to elements vm+2h1,1 and v2lek

m+2ζl ∈ E1
2(L2Vm(1)) for n = 3k + l with l ∈ {1, 2, 3}, respectively, where

ζl corresponds to h1,0 if l = 1, and h2,l−2 if l = 2, 3.

Proposition 1.6. (cf. [4]) The E2-term of Adams-Novikov spectral sequence for computing π∗(L2Vm(1)∞) is
isomorphic to the direct sum of Q(0)⊗ ∧(h1,0, h2,0, h2,1) and the tensor product of ∧(ζ) and

Em−1(2)∗/(2, v∞1 )⊕
⊕

k>0

Q(k)⊗ ∧(ζk+1, ζk+2)

as a Z/2[v1]-module.

By noticing that xn ∈ E0
2(L2Vm(1)an

) survives to π∗(L2Vm(1)an
) in Lemma 5.1, we see that all additive

generators of Proposition 1.6 are permanent cycles.

Theorem 1.7. The homotopy groups π∗(L2Vm(1)∞) are isomorphic to the Adams-Novikov E2-term given in
Proposition 1.6.

Consider the cofiber sequence

(1.8) Vm(0) wη
v−1
1 Vm(0) wp

Vm(1)∞ w ΣVm(0)

for the localization map η. Here, we introduce algebras

km(1)∗ = Z/2[v1, v2, . . . , vm+1] and Km(1)∗ = v−1
1 km(1)∗.

Ravenel showed the following

Proposition 1.9. (cf. [10]) The homotopy groups π∗(v−1
1 Vm(0)) are isomorphic to Km(1)∗ ⊗ ∧(h1,0).

There is a relation between h1,0 and ζ, which is shown in section four:

Lemma 1.10. The induced homomorphism p∗ from p in (1.8) assigns h1,0/vj
1 ∈ E1

2(v−1
1 Vm(0)) to ζ/vj−2

1 ∈
E1

2(L2Vm(1)∞).

Observing the correspondence in the Adams-Novikov E2-terms, we obtain

Corollary 1.11. The homotopy groups π∗(L2Vm(0)) are isomorphic to the direct sum of Σ−1Q(0)⊗∧(h1,0, h2,0, h2,1)
and the tensor product of ∧(ζ) and

km(1)∗ ⊕ Σ−1km(1)∗/(2, v∞1 , v∞2 )⊕
⊕

k>0

Σ−1Q(k)⊗ ∧(ζk+1, ζk+2)

as a Z/2[v1]-module.

In the next section, we observe about an action of the Moore spectrum M2 on Vm(1)t and a ring structure of
Vm(1)4t, in order to study the Adams-Novikov differential and the extension problem of the spectral sequence
in the following sections. We prove Theorem 1.4 in section three. Section four is devoted to show Proposition
1.6. We end by proving Theorem 1.7 in the last section.

2. The spectrum T (m) ∧Kt
k

We work in the stable homotopy category of spectra localized at the prime two. Let BP denote the Brown-
Peterson spectrum. Then, we have the Adams-Novikov spectral sequence

Es,t
2 (X) = Exts,t

Γ (A,BP∗(X)) =⇒ π∗(X).

Here (A,Γ) is the associated Hopf algebroid such that

(A,Γ) = (BP∗, BP∗(BP )) = (Z(2)[v1, v2, . . . ], BP∗[t1, t2, . . . ])

for the Hazewinkel generators vk ∈ BP2k+1−2 and the generators tk ∈ BP2k+1−2(BP ).
Let Mk and Kt

k for k = 2, 4 and t > 0 denote spectra defined by the cofiber sequences

S0 w2
S0 wi

Mk wj
S1 and Σ8tMk wαt

Mk wit
k

Kt
k wjt

k Σ8t+1Mk.

Here α denotes the Adams map such that BP∗(α) = v4
1 . Note that M4 and Kt

4 are ring spectra (cf. [5]). The
Ravenel spectrum T (m) is characterized by BP∗(T (m)) = A[t1, . . . , tm] ⊂ Γ as Γ-comodules, and is a ring
spectrum, whose multiplication and unit map we denote by µ and ι, respectively. Throughout the paper, we
fix a positive integer m. Let (A,Γm) = (A,Γ/(t1, t2, . . . , tm)) be the Hopf algebroid associated with (A,Γ),
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and consider a spectrum X such that BP∗(X) = M ⊗A A[t1, . . . , tm] for a Γ-comodule M . Then, we have an
isomorphism

(2.1) E∗
2 (X) = Ext∗Γm

(A,M)

by the change of rings theorem (cf. [10]). By observing the reduced cobar complex for the Ext group, we have

(2.2) The E2-term has the vanishing line of the slope 1/(qm − 1) if M is (−1)-connected.

Hereafter, we put

(2.3) qm = 2m+2 − 2

which is the degree of u1 = vm+1 and s1 = tm+1. This shows π2(T (m)) = BP2 = Z(2){v1} if m > 0. Let
T (m)/(va

1 ) for an integer a > 0 denote the cofiber of ṽa
1 : Σ8aT (m) → T (m), where ṽ1 : Σ8T (m) → T (m) is the

composite

ṽ1 : Σ8T (m) = S8 ∧ T (m) T (m) ∧ T (m)wv1∧T (m) wµ
T (m).

Lemma 2.4. For k = 2, 4 and a > 0, T (m)/(v4a
1 ) ∧ Mk = T (m) ∧ Ka

k . In particular, T (m) ∧ Ka
2 ∧ M4 =

T (m)/(v4a
1 ) ∧M2 ∧M4 = T (m) ∧M2 ∧Ka

4 .

Proof. Since π8(T (m)∧Mk) = BP8/(k) = Z/k{v4
1 , v1v2} by (2.2), we see that v4

1∧Mk = ι∧αi ∈ π8(T (m)∧Mk).
Indeed, both of these elements are assigned to v4

1 ∈ BP8(T (m)∧Mi) under the homomorphism induced from the
unit map of BP . It extends to v4

1 ∧Mk = ι∧α : Mk → T (m)∧Mk, since [Mk, T (m)∧Mk]8 = π8(T (m)∧Mk).
Indeed, π9(T (m) ∧ Mk) = BP9/(k) = 0. We further extend it to a self-map A = ṽ4

1 ∧ Mk = T (m) ∧ α :
T (m)∧Mk → T (m)∧Mk by the ring structure of T (m). Now the cofiber of Aa is T (m)/(v4a

1 )∧Mk = T (m)∧Ka
k .
¤

This lemma implies

(2.5) Vm(1)4a = T (m) ∧Ka
2

for the spectrum Vm(1)4a in (1.2).

Lemma 2.6. Let F denote one of the spectra Mk and Ka
k for k = 2, 4 and a > 0. Then, there is a pairing

νF : F ∧ F → T (m) ∧ F such that νF ◦ (F ∧ iF ) = ι ∧ F : F → T (m) ∧ F for m > 0. Here iF : S0 → F denotes
the inclusion to the bottom cell.

Proof. The pairing for F = M4 or Ka
4 is the composite (ι ∧ F ∧ F )(T (m) ∧ µF ) for the multiplication µF of

the ring spectrum of F (see [5]).
For F = M2, we see that π0(T (m)∧M2) = BP0/(2) = Z/2 and π1(T (m)∧M2) = BP1/(2) = 0 by (2.2), and

so [M2, T (m) ∧M2]0 = Z/2.
Note that M2 ∧M4 = M2 ∨ ΣM2. Then, by Lemma 2.4,

T (m) ∧M2 ∧Ka
4 = T (m)/(v4a

1 ) ∧M2 ∧M4 = T (m)/(v4a
1 ) ∧ (M2 ∨ ΣM2)

= T (m)/(v4a
1 ) ∧M2 ∨ ΣT (m)/(v4a

1 ) ∧M2 = T (m) ∧Ka
2 ∨ ΣT (m) ∧Ka

2 .

We also see that T (m)∧Ka
2 ∧Ka

4 = T (m)/(v4a
1 )∧Ka

2 ∧M4 = T (m)/(v4a
1 )∧ (Ka

2 ∨ΣKa
2 ), and so T (m)∧Ka

2 ∧
Ka

4 ∧M2 = T (m) ∧Ka
2 ∧Ka

2 ∨ ΣT (m) ∧Ka
2 ∧Ka

2 . Then,

T (m) ∧M2 ∧Ka
4 ∧Ka

4 ∧M2 = T (m) ∧Ka
2 ∧Ka

4 ∧M2 ∨ ΣT (m) ∧Ka
2 ∧Ka

4 ∧M2

= T (m) ∧Ka
2 ∧Ka

2 ∨ ΣT (m) ∧Ka
2 ∧Ka

2 ∨ ΣT (m) ∧Ka
2 ∧Ka

2 ∧M2.

Let µK : Ka
4 ∧ Ka

4 → Ka
4 denote the multiplication of the ring spectrum Ka

4 , and ν̃ be the composite

T (m) ∧M2 ∧M2 T (m) ∧ T (m) ∧M2wT (m)∧νM2 wµ∧M2
T (m) ∧M2. Then the desired pairing is a composite

Ka
2 ∧Ka

2 wι∧K∧K
T (m) ∧Ka

2 ∧Ka
2 winc∧Ka

2
T (m) ∧M2 ∧Ka

4 ∧Ka
4 ∧M2 wswitch

T (m) ∧M2 ∧M2 ∧Ka
4 ∧Ka

4 weν T (m) ∧M2 ∧Ka
4 ∧Ka

4 wT (m)∧M2∧µK
T (m) ∧M2 ∧Ka

4 wprj
T (m) ∧Ka

2 .

¤

Corollary 2.7. The spectra Vm(0) and Vm(1)4a for a > 0 are ring spectra.

We say that a spectrum X has M2-action, if there is a pairing ϕX : X ∧M2 → X such that ϕX(X ∧ i) = idX .
Here i : S0 → M2 is the inclusion of (1.1) and idX : X → X denotes the identity map.
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Lemma 2.8. Vm(1)t has M2-action.

Proof. Since T (m) is an associative ring spectrum, T (m)/(vt
1) is a T (m)-module spectrum. The action ϕVm(1)t

is defined by the composite Vm(1)t ∧M2 = T (m)/(vt
1) ∧M2 ∧M2 T (m)/(vt

1) ∧ T (m) ∧M2wT (m)/(vt
1)∧νM2 w

T (m)/(vt
1) ∧M2 = Vm(1)t. ¤

Since Vm(1)t is a T (m)-module spectrum, it implies the following

Corollary 2.9. Vm(1)t is a Vm(0)-module spectrum.

3. The homotopy groups of L2Vm(1)

Note that if BP∗(X) is (2, v1)-nil, then BP∗(L2X) = v−1
2 BP∗(X), since L2 is smashing (cf. [8], [9]). Therefore,

the Adams-Novikov E2-term E∗
2 (L2Vm(1)t) is Ext∗Γ(A, v−1

2 BP∗/(2, vt
1)[t1, . . . , tm]), which is isomorphic to

E∗
2 (L2Vm(1)t) = Ext∗Γm

(A, v−1
2 BP∗/(2, vt

1))

by (2.1). Consider a spectrum
Em(2) = v−1

2 BP 〈m + 2〉
for the Johnson-Wilson spectrum BP 〈m + 2〉. Then we obtain a Hopf algebroid

(Em(2)∗,Σm(2)) = (v−1
2 Z(2)[v1, v2, . . . , vm+2], Em(2)∗ ⊗A Γm ⊗A Em(2)∗).

Since
v−1
2 BP∗/J w1⊗ηR

Em(2)∗/J ⊗A Γm

for an invariant regular ideal J = (2b, va
1 ) is a faithfully flat extension, we have an isomorphism

Ext∗Γm
(A,BP∗/J) ∼= Ext∗Σm(2)(Em(2)∗, Em(2)∗/J)

by a theorem of Hopkins’ (cf. [1, Th. 3.3]). Note that m + 2 is the smallest number n, for which v−1
2 BP∗/J w1⊗ηR

v−1
2 BP 〈n〉∗/J ⊗A Γm is a faithfully flat extension. We use the abbreviation

(3.1) H∗M = Ext∗Σm(2)(Em(2)∗,M)

for a Σm(2)-comodule M . We compute the Ext group H∗M by the reduced cobar complex Ω̃∗Σm(2)M (cf. [10]).
Since the differentials of the cobar complex are defined by the right unit ηR : Em(2)∗ → Σm(2) and the diagonal
∆ : Σm(2) → Σm(2)⊗Em(2)∗ Σm(2), we write down here some formulas on them based on the Hazewinkel and
the Quillen formulas:

(3.2)
vn = 2`n −

∑n−1
k=1 `kv2k

n−k ∈ Q⊗A = Q[`1, `2, . . . ],
ηR(`n) =

∑n
k=0 `kt2

k

n−k ∈ Q⊗ Γ = Q⊗A[t1, t2, . . . ] and∑
i+j=n `i∆(t2

i

j ) =
∑

i+j+k=n `it
2i

j ⊗ t2
i+j

m ∈ Q⊗ Γ⊗A Γ.

Hereafter, we put v2 = 1 and use the following notation:

ui = vm+i and si = tm+i.

Since the structure maps preserve degrees, we may recover v2’s from its degrees. Then, we obtain the following
two lemmas immediately from (3.2) by a routine computation:

Lemma 3.3. The right unit ηR : A → Γm/(2) acts as follows:

ηR(vn) = vn for n ≤ m + 1,
ηR(u2) = u2 + v1s

2
1 + v2m+1

1 s1,

ηR(u3) ≡ u3 + s4
1 + s1 + v1r1 mod (2, v2m+2

1 ),
ηR(u4) ≡ u4 + s4

2 + s2 + v3s
8
1 + v2m+1

3 s1 mod (2, v1)

for r1 = s2
2 + v1u2s

2
1.

This yields the relations in Σm(2):

(3.4) s4
1 + s1 ≡ v1r1 mod (2, v2m+2

1 ) and s4
2 + s2 + v3s

8
1 + v2m+1

3 s1 ≡ 0 mod (2, v1).

Lemma 3.5. The diagonal ∆ behaves on the generators si as follows:

∆(s1) = s1 ⊗ 1 + 1⊗ s1,
∆(s2) = s2 ⊗ 1 + 1⊗ s2 + v1s1 ⊗ s1,
∆(s3) ≡ s3 ⊗ 1 + 1⊗ s3 + v2s

2
1 ⊗ s2

1 mod (2, v1).
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Lemma 3.6. Let z denote an element defined by r4
1 + r1 + v2

3s4
1 + v2m+2

3 s2
1 = v1z. Then the cochains r1, z ∈

Ω̃1
Σm(2)Em(2)∗/(2) are cocycles. Besides, z ≡ u2s

2
1 modulo (v2

1).

Proof. Since v1 ∈ Ω̃0
Σm(2)Em(2)∗/(2) and s1 ∈ Ω̃1

Σm(2)Em(2)∗/(2) are both cocycles, so is r1 by the relation

v1r1 = s4
1 + s1 ∈ Σm(2) in (3.4). Furthermore, v3 ∈ Ω̃0

Σm(2)Em(2)∗/(2) is a cocycle. It follows similarly from its

definition that z is a cocycle. By the definition of r1, r4
1 + r1 ≡ s8

2 + s2
2 + v1u2s

2
1 ≡ v1u2s

2
1 + v2

3s16
1 + v2m+2

3 s2
1

modulo (2, v2
1) by (3.4). ¤

We now work as [6].

Lemma 3.7. ut
2 ∈ E0

2(Vm(1)) and ut
2h2,0 ∈ E1

2(Vm(1)) for each t > 0 are permanent cycles.

Proof. For t = 1, the lemma is seen by (2.2). Consider the cofiber sequence Σ2Vm(0) v1→ Vm(0) i1→ Vm(1)
j1→

Σ3Vm(0). Put d(ut
2) = v1k

′
t ∈ Ω̃1

Σm(2)Em(2)∗/(2) by virtue of Lemma 3.3, and let kt ∈ E1
2(Vm(0)) be the

homology class of the cocycle k′t. Then, k1 = h1,1, v1kt = 0 and kt+1 = 〈k1, v1, kt〉. Indeed, 〈k1, v1, kt〉 is
the class of k′1ηR(ut

2) + u2k
′
t = d(ut+1

2 )/v1 = k′t+1. Besides, δ(ut
2) = kt for the connecting homomorphism

associated to the cofiber sequence. Let ξ1 ∈ πqm−1(Vm(0)) denote the homotopy element detected by k1. Then,
v1ξ1 = ξ1v1 = 0.

Suppose now that ut
2 ∈ E0

2(Vm(1)) is a permanent cycle. Then, kt is a permanent cycle that detects the
element ξt = j1u

t
2 by the Geometric Boundary Theorem. Since v1ξt = 0, the Toda bracket {ξ1, v1, ξk} is defined,

which is detected by the Massey product 〈k1, v1, kt〉. Note here that the Toda bracket is defined since Vm(0) is
a ring spectrum. It follows that kt+1 is a permanent cycle and detects a homotopy element, which we denote by
ξt+1. Since the Massey product 〈v1, k1, v1〉 is zero in the E2-term E0,qm+4

2 (Vm(0)), we see that {v1, ξ1, v1} = 0
by (2.2). Now we compute v1{ξ1, v1, ξk} = {v1, ξ1, v1}ξk = 0, and ξt+1 is pulled back to ut+1

2 under the map j1.
Turn to ut

2h2,0. In this case a similar argument works. For the connecting homomorphism δ, δ(ut
2h2,0) =

〈h2
1,0, v1, kt〉, which detects a homotopy element {η2

0 , v1, ξt}, where η0 denotes an element detected by h1,0.
Applying v1 shows {v1, η

2
0 , v1}ξt = 0. Indeed, {v1, η

2
0 , v1} is detected by Es,2qm+4+s

2 (Vm(0)) for s > 2. ¤

Lemma 3.8. The elements h1,0, h1,1 ∈ E1
2(Vm(0)) and h2,1 ∈ E1

2(L2Vm(0)) are permanent cycles.

Proof. h1,0, h1,1 are seen immediately by (2.2).
The cobar module Ω̃4,4qm+6

Γm
BP∗/(2) is generated by v3

1s⊗4
1 and v2s

⊗4
1 by degree reason. The first gener-

ator cobounds v2
1s2 ⊗ s1 ⊗ s1, and we obtain E4,4qm+6

2 (Vm(0)) = Z/2{v2h
4
1,0}. Put d3(h2,1) = av2h

4
1,0 ∈

E4,4qm+6
2 (Vm(0)) for a ∈ Z/2. Let w be an element fit in d(s3) = v2s

2
1⊗s2

1 +v1w by virtue of Lemma 3.5. Then,
d(w) = 0 in the cobar complex Ω̃3

Σm(2)Em(2)∗/(2), and we see that s⊗4
1 cobounds s2

3⊗s1⊗s1 +v1w
2⊗s2 +(r1⊗

s1 + s1⊗ r1 + v1r1⊗ r1)⊗ s2 (in which we set v2 = 1). It follows that d3(h2,1) = av2h
4
1,0 = 0 ∈ E4

2(L2Vm(0)) as
desired. Indeed, v2h

4
1,0 = v1gh2

10 = 0, since v2h
2
10 = v1g for an element g and v1h

2
10 = 0 by d(s2) = v1s1 ⊗ s1.

¤

Proof of Theorem 1.4. Every element x ∈ Es
2(L2Vm(1)) is decomposed as x = x′x′′ for x′ ∈ Z/2[u2]⊗∧(h2,0)

and x′′ ∈ Km−1(2)∗ ⊗ ∧(h1,0, h1,1, h2,1). Note that Km−1(2)∗ ⊗ ∧(h1,0, h1,1, h2,1) ⊂ E∗
2 (L2Vm(0)). Since x′

(resp. x′′) is a permanent cycle of the Adams-Novikov spectral sequence for computing π∗(L2Vm(1)) (resp.
π∗(L2Vm(0))) by Lemma 3.7 (resp. 3.8), we obtain that the element x is a permanent cycle from Corollary 2.9.
We see that the extension problem is trivial by Lemma 2.8. Indeed, Z/2 = π0(M2) acts on π∗(L2Vm(1)). ¤

4. The elements xn

We introduce the integer bn for n ≥ 0 by

bn =





an − 8 n ≡ 1 (3)
an − 3 n ≡ 2 (3)
0 n ≡ 0 (3),
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and the elements xn ∈ Em(2)∗ defined by

(4.1) xn = x2
n−1 + vbn

1 yn−1, where yn =





0 n ≤ 0 or n ≡ 2 (3)
x0 n = 1
x2 + v2

1v4
3x2

1 + v4
1v2m+3

3 x1 n = 3
xn−2yn−3 n ≡ 0, 1 (3) and n ≥ 4.

We also consider cocycles zn ∈ Σm(2):

(4.2) zn =





s2n+1

1 n = 0, 1
r2n−1

1 n = 2, 3
xn−3zn−3 n > 3.

Proposition 4.3. For the differential d : Ω0
Σm(2)Em(2)∗/(2) → Ω1

Σm(2)Em(2)∗/(2) of the cobar complex,

d(xn) = van
1 zn.

Proof. For n = 0 and 1, it is immediate from Lemma 3.3, and the cases for n = 2 and 3 follow from the
computation d(x2) = d(u4

2 + v3
1u2) = v4

1s8
1 + v4

1s2
1 = v6

1r2
1 by (3.4). For n = 4,

d(x4) ≡ d(x4
2 + v18

1 x2 + v20
1 v4

3x2
1 + v22

1 v2m+3

3 x1)
≡ v24

1 r8
1 + v24

1 r2
1 + v24

1 v4
3s8

1 + v24
1 v2m+3

3 s4
1 ≡ v26

1 z2 ≡ v26
1 x1z1 mod (2, v28

1 )

by the definition of z.
Suppose inductively that d(x3k+1) = v

a3k+1
1 x3k−2z3k−2 mod (2, v

a3k+1+2
1 ) for k > 0.

d(x2
3k+1) ≡ v

2a3k+1
1 x2

3k−2z
2
3k−2 mod (2, v

2a3k+1+4
1 )

d(va3k+2−3
1 y3k+1) ≡ d(va3k+2−3

1 x3k−1y3k−2)
≡ v

a3k+2−3
1 x3k−1(v1z

2
3k−2 + v3

1z3k−1) mod (2, v
a3k+2−3+a3k−1
1 )

and the sum shows d(x3k+2) ≡ v
a3k+2
1 x3k−1z3k−1 mod (2, v

a3k+2+2
1 ). Similarly,

d(x4
3k+2) ≡ v

4a3k+2
1 x4

3k−1z
4
3k−1 mod (2, v

4a3k+2+8
1 )

d(va3k+4−8
1 y3k+3) ≡ d(va3k+4−8

1 x3k+1y3k)
≡ v

a3k+4−8
1 x3k+1(v6

1z2
3k + v8

1z3k+1) mod (2, v
a3k+4−8+a3k+1
1 )

and we have d(x3k+4) = v
a3k+4
1 x3k+1z3k+1 mod (2, v

a3k+4+2
1 ), which completes the induction. ¤

Proof of Lemma 1.10. It suffices to show that h1,0/vj
1 ∈ E1

2(L2Vm(1)∞) equals ζ/vj−2
1 . The element h1,0/vj

1

is represented by s1/vj
1. We make a computation in the cobar complex

d(u2
2/vj+2

1 ) = s4
1/vj

1 = s1/vj
1 + r1/vj−1

1

d(v2
3u2

2/vj+1
1 ) = v2

3s4
1/vj−1

1

d(v2m+2

3 u2/vj
1) = v2m+2

3 s2
1/vj−1

1

d(x2
2/vj+11

1 ) = r4
1/vj−1

1 .

by Lemma 3.3 and Proposition 4.3. The sum yields the homologous relation s1/vj
1 ∼ z/vj−2

1 by Lemma 3.6,
and so h1,0/vj

1 = ζ/vj−2
1 in E1

2(L2Vm(1)∞). ¤

Proof of Proposition 1.6. We consider the v1-Bockstein spectral sequence given by the short exact sequence
0 → Em(2)∗(Vm(1))

ϕ→ Em(2)∗(Vm(1)∞) v1→ Em(2)∗(Vm(1)∞) → 0 for ϕ given by ϕ(x) = x/v1. Let B∗ denote
the Z/2[v1]-module of the proposition. Then, it is easy to see that Bs contains the image of ϕ∗ : Es

2(L2Vm(1)) →
Es

2(L2Vm(1)∞) and that Proposition 4.3 defines a homomorphism f : Bs → Es
2(L2Vm(1)∞). We also consider

the composite ∂ = δ ◦ f : Bs → Es+1
2 (L2Vm(1)), where δ : Es

2(L2Vm(1)∞) → Es+1
2 (L2Vm(1)) denotes the

connecting homomorphism associated to the short exact sequence. By [7, Remark 3.11], it suffices to show the
sequence

(4.4) 0 w Coker ∂ wϕ∗
B∗ wv1

B∗ w∂ Im ∂ w 0
is exact.
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We decompose E∗
2 (L2Vm(1)) into the direct sum of MC = Km−1(2)∗[u2

2]{u2} ⊗ ∧(h10, h20, h21), MI =
Km−1(2)∗[u2

2]{h11}⊗∧(h10, h20, h21) and N⊗∧(ζ) = Km−1(2)∗[u2
2]⊗∧(h10, h20, h21, ζ). We notice that for non-

negative integers n and r with r < 8, there exist uniquely non-negative integers t and q such that n = 8qt+ req.
By this fact, we decompose summands of N as follows:

Km−1(2)∗[u2
2]

= Km−1(2)∗ ⊕
⊕

k≥1 xkKm−1(2)∗[xk+1]A,

Km−1(2)∗[u2
2]h10

=
⊕

q≥0

((
x3q+2Km−1(2)∗[x3q+3]

a
⊕ x3q+3Km−1(2)∗[x3q+4]

b

)
ζ3q+4 ⊕Km−1(2)∗[x3q+2]ζ3q+1

A

)
,

Km−1(2)∗[u2
2]h20

=
⊕

q≥0

(
x3q+3Km−1(2)∗[x3q+4]ζ3q+5

c
⊕

(
x3q+1Km−1(2)∗[x3q+2]

d
⊕Km−1(2)∗[x3q+3]

A

)
ζ3q+2

)
,

Km−1(2)∗[u2
2]h21

=
⊕

q≥0

(
x3q+1Km−1(2)∗[x3q+2]

e
⊕ x3q+2Km−1(2)∗[x3q+3]

f
⊕Km−1(2)∗[x3q+4]

A

)
ζ3q+3,

Km−1(2)∗[u2
2]h10h20

=
⊕

q≥0

(
Km−1(2)∗[x3q+3]ζ3q+4ζ3q+2

a

⊕ x3q+3Km−1(2)∗[x3q+4]ζ3q+4ζ3q+5
B
⊕Km−1(2)∗[x3q+2]ζ3q+1ζ3q+2

d

)
,

Km−1(2)∗[u2
2]h20h21

=
⊕

q≥0

(
Km−1(2)∗[x3q+4]ζ3q+3ζ3q+5

c

⊕
(

x3q+1Km−1(2)∗[x3q+2]
B
⊕Km−1(2)∗[x3q+3]

f

)
ζ3q+2ζ3q+3

)
,

Km−1(2)∗[u2
2]h10h21

=
⊕

q≥0

( (
Km−1(2)∗[x3q+3]x3q+2

B
⊕Km−1(2)∗[x3q+4]

b

)
ζ3q+4ζ3q+3 ⊕Km−1(2)∗[x3q+2]ζ3q+1ζ3q+3

e

)
,

Km−1(2)∗[u2
2]h10h20h21

=
⊕

k≥1 Km−1(2)∗[xk+1]ζkζk+1ζk+2
B

.

Here, MX and M ′
X

for modules M and M ′ mean that M and M ′ are isomorphic under a Bockstein differential

dr for some r so that dr(M) = M ′, which is seen by Proposition 4.3. Let NC (resp. NI) be the direct sum of
single (resp. double) underlined submodules of N , and put M̃ = Q(0) ⊗ ∧(h1,0, h2,0, h2,1), Ñ =

⊕
k>0 Q(k) ⊗

∧(ζk+1, ζk+2). Then we have the three exact sequences

0 → MC
ϕ∗→ M̃

v1→ M̃ → MI → 0, 0 → NC
ϕ∗→ Ñ

v1→ Ñ → NI → 0 and
0 → Km−1(2)∗ → Em−1(2)∗/(2, v∞1 ) → Em−1(2)∗/(2, v∞1 ) → 0,

the direct sum of which yields the sequence (4.4). ¤

5. The Adams-Novikov E∞-term for π∗(L2T (m) ∧M2)

We first show that all elements of the Adams-Novikov E2-term for π∗(L2Vm(1)∞) are permanent cycles. Take
an element x/vt

1 ∈ E0
2(L2Vm(1)∞). Then x ∈ E0

2(L2Vm(1)t). Thus, if x = y2/vt
1 for some y ∈ E0

2(L2Vm(1)4t),
then x is a permanent cycle. So it is sufficient to show that d3(xn) = 0 ∈ E3

2(L2Vm(1)an
) for each n ≥ 0. We

consider the integer

εn =

{
2 n 6≡ 0 (3)
0 n ≡ 0 (3)

so that Vm(1)an+εn is a ring spectrum by Corollary 2.7.

Lemma 5.1. d3(xn) = 0 ∈ E3
2(L2Vm(1)an

) for n ≥ 0.

Proof. For n = 0, it is shown in Lemma 3.7.
Suppose that d3(xn) = ξ ∈ E3

2(L2Vm(1)an
) for n > 0. Send this to E3

2(L2Vm(1)an−1), and we see that
ξ = d3(xn) = d3(x2

n−1) ∈ E3
2(L2Vm(1)an−1). Then, the map v

εn−1
1 : E3

2(L2Vm(1)an−1) → E3
2(L2Vm(1)an−1+εn−1)

assigns v
εn−1
1 ξ to v

2εn−1
1 ξ = d3((v

εn−1
1 xn−1)2), which is zero, since v

εn−1
1 xn−1 ∈ E0

2(L2Vm(1)an−1+εn−1) and
Vm(1)an−1+εn−1 is a ring spectrum. It follows that ξ = v

an−1−εn−1
1 ξ′ for some ξ′ ∈ E3

2(L2Vm(1)an−an−1+εn−1).
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Note that this works even if n = 1, though Vm(1) is not a ring spectrum. Consider the commutative diagram

Vm(1) Vm(1) ∗ Vm(1)

Vm(1)an−an−1+εn−1+1 Vm(1)an+1 Vm(1)an−1−εn−1 Vm(1)an−an−1+εn−1+1

Vm(1)an−an−1+εn−1 Vm(1)an
Vm(1)an−1−εn−1 Vm(1)an−an−1+εn−1 ,

u
v

an−an−1+εn−1
1

u
van
1

w

u

w

u
v

an−an−1+εn−1
1

u

wv
an−1−εn−1
1

u

wiv wjv

u
p

wv
an−1−εn−1
1 wi′v wj′v

in which rows and columns are cofiber sequences. Let 〈x〉 ∈ π∗(X) denote a homotopy element detected
by x ∈ E∗

2 (X). Noticing that xn ∈ E0
2(L2Vm(1)an−1−εn−1) is a permanent cycle, we see that jv∗(〈xn〉) =

〈van−an−1+εn−1
1 ζn〉 and j′v∗(〈xn〉) = 〈ξ′〉, and so p∗(〈van−an−1+εn−1

1 ζn〉) = 〈ξ′〉. Since 〈ζn〉 ∈ π∗(L2Vm(1)) by
Theorem 1.4, we obtain 〈ξ′〉 = 0, and 〈xn〉 is in the image under the map i′v∗. It follows that there is a permanent
cycle x′n ∈ E0

2(L2Vm(1)an
), whose leading term is xn, such that iv∗(〈x′n〉) = 〈xn〉 ∈ π∗(L2Vm(1)an−1−εn−1). The

lemma now follows by replacing xn by x′n. ¤
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