THE FIRST LINE OF THE BOCKSTEIN SPECTRAL SEQUENCE
ON A MONOCHROMATIC SPECTRUM AT AN ODD PRIME

RYO KATO AND KATSUMI SHIMOMURA

ABSTRACT. The chromatic spectral sequence is introduced in [8] to compute
the Eo-term of the Adams-Novikov spectral sequence for computing the stable
homotopy groups of spheres. The Ej-term Ef’t(k) of the spectral sequence
is an Ext group of BP,BP-comodules. There are a sequence of Ext groups
Ef’t(n — s) for non-negative integers n with Ef’t(()) = Ef’t, and Bockstein
spectral sequences computing a module E‘f’*(n — s) from Ef_l’*(n —s+1).
So far, a small number of the E;-terms are determined. Here, we determine
the E%’l (n—1) = Ext'M} | for p > 2 and n > 3 by computing the Bockstein
spectral sequence with Fj-term E?S(n) for s = 1,2. As an application, we
study the non-triviality of the action of a1 and $; in the homotopy groups of
the second Smith-Toda spectrum V(2).

1. INTRODUCTION

Let p be a prime number, S, the stable homotopy category of p-local spectra,
and S the sphere spectrum localized at p. Understanding homotopy groups 7. (S)
of S is one of the principal problems in stable homotopy theory. The main vehicle
for computing . (S) is the Adams-Novikov spectral sequence based on the Brown-
Peterson spectrum BP. BP is the p-typical component of MU, the complex cobor-
dism spectrum, and that it has homotopy groups BP;, = m.(BP) = Z)[v1, vz, -]
where v,, is a canonical generator of degree 2p™ — 2. In order to study the Ea-term
of the Adams-Novikov spectral sequence, H. Miller, D. Ravenel and S. Wilson [§]
introduced the chromatic spectral sequence. It was designed to compute the Fs-
term, but has the following deeper connotation. Let L,: S¢) — S(,) denote the
Bousfield-Ravenel localization functor with respect to v, ' BP (cf. [12]). It gives rise
the chromatic filtration S¢) — -+« — LSy — Ln_lS(p) — e = LOS(p) of the
stable homotopy category of spectra, which is a powerful tool for understanding the
category. The chromatic nth layer of the spectrum S can be determined from the
homotopy groups of Ly (,,)S, the Bousfield localization of S with respect to the nth
Morava K-theory K (n) that it has homotopy groups K (n). = v, 'Z/p[v,] forn > 0
and K (0). = Q. By the chromatic convergence theorem of Hopkins-Ravenel [13], S
is the inverse limit of the L, S. Let E(n) be the nth Johnson-Wilson spectrum E(n)
with E(n). = v, ' Zy)[ve, -+ ;o] for n > 0 and E(0) = K(0). It is Boufield equiv-
alent to v, ' BP and also to K(0) V ---V K(n), i.e. Lgm) = Ln = Lg©)v.vE(@n)-
We notice that E(0) = HQ, the rational Eilenberg-MacLane spectrum, and F(1)
is the p-local Adams summand of periodic complex K-theory. Futhermore, E(2) is
closely related to elliptic cohomology. So far, we have no geometric interpretation
of homology theories K (n) or E(n) when n > 2.
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From now on, we assume that the prime p is odd. We explain the F;-term of the
chromatic spectral sequence. The Brown-Peterson spectrum BP is a ring spectrum
that induces the Hopf algebroid (BP,, BP.(BP)) = (BP., BP,[t1, t2,...]) in the
standard way [14], and we have an induced Hopf algebroid

(B(n)., B(n).(E(n))) = (E(n)., E(n). ®sr. BP.(BP) @5, E(n).)

where E(n), is considered to be a BP,-module by sending vy to zero for k > n.
Then, the Fi-term is given by

Ef’t(n - 8) = EXttE(n)*(E(n))(E(n)*? szs)

Here, M;;_ denotes the E(n).(E(n))-comodule E(n)./(In—s + (U5 5,052 o115 s
v 1)), in which Iy, denotes the ideal of E(n), generated by v; for 0 < i < k (vo = p),
and M/(w®) for w € E(n), and an E(n).,-module M denotes the cokernel of the
localization map M — w~'M. In order to study the stable homotopy groups
T« (LK (n)S), we study here the homotopy groups of the monochromatic component
M,,S of S (see [12]). Then, the Ey-term Ej*(M,S) of the Adams-Novikov spectral
sequence for computing 7, (M,S) is the Ej-term E]"*(0) of the chromatic spectral
sequence. In [8], the authors also introduced the v,,_s-Bockstein spectral sequence
BNy — s+ 1) = EP'(n — s) associated to a short exact sequence
0= MiTh S M:_ =5 M; ,—0

n—s n

of E(n).(E(n))-comodules, where () = x/v,_,. So far, the Ej-term E}*(n — s)
is determined in the following cases (cf. [14]):

(s,t,n) = (0,t,n) for (a) n <2, (b)n=23,p>3, (c)t<2by Ravenel [11],
(Henn [2] for n =2 and p = 3),
= (1,0,n) for n >0 by Miller, Ravenel and Wilson [8],
= (s,t,n) forn <2 by Shimomura and his colaborators: Arita [1],
Tamura [20], Yabe [21] and Wang [22], ([15], [18], [19]),
= (1,1,3) by Shimomura [16], Hirata and Shimomura [3],
= (2,0,n) for n > 3 by Shimomura [17], for n = 3 by Nakai [9], [10].

In this paper, we determine the structure of Eil(n —1) for n > 3. The case n = 3,
which is special, is treated in [16] and [3]. The result is the first step to understand
To(Lg(n)S) for n > 3 as explained above. We proceed to state the result.
In this paper, we consider only the cases s = 0 and s = 1, and, hereafter, put
v=v, and u=uv,_1.

Furthermore, we put

F=17/p,
and consider the coefficient ring K (n), = FlvF!] = Flv*!] = E(n)./I,,
A = En)./I,-1 and B = M}! ; = A/(u®) = Coker (A — u~1A).

Since the ideal I,,_; is invariant, (A,T") = (A, E(n).(E(n))/I,—1) is a Hopf alge-
broid, and we use the abbreviation

Ext’M = Exti(A, M)
for a I'-comodule M. Then, the chromatic E;-terms are

EY'(n) = Ext!K(n), and E}''(n—1)=Ext'B.
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We have the u-Bockstein spectral sequence

(1.1) E, = Ext*K(n), = Ext*B
associated to the short exact sequence
(1.2) 0= K(n), 5B B—0,

where ¢ is a homomorphism defined by ¢(z) = z/u.
Let R be aring, and let R (g) denote the R-module generated by g. The E;-term
of the u-Bockstein spectral sequence was determined by Ravenel [11] as follows:

Theorem 1.3. Ext’K(n), = K(n), and

Ext'K(n), = K(n).(hiC:0<i<n),
Ext?’K(n). = K(n).{(Cuhibiygiki,hjhy :0<i<n, 0<j<k—1<n-—1).
In the theorem, the generators h; and b; are represented by tﬁ’i and Zi: %(z) t’fpi®
t(lp “MP" 6f the cobar complex Qf K (n),, respectively, and g; and k; are given by the
Massey products

(1.4) gi = (hiyhishivr)  and ki = (hi by, higa)
In order to determine the module Ext’ B, Miller, Ravenel and Wilson [8] introduced
elements z; and integers a; in [8, (5.11) and (5.13)], where they denoted them
by z,; and a,;, such that x; = v mod I, with the action of the connecting
homomorphism ¢ given in [8, (5.18)]:
(1.5) S(v*ju) = sv°* th,_y and (x5 /u) = sv(Spfl)piflh[i_l} for i > 1.
Hereafter, we let

[i] € {0,1,...,n—2}
be the principal representative of the integer ¢ module n — 1. The elements x; and
the integers a; are defined inductively by zg = v and ag = 1, and for i > 0,

z? fori=1or [i] #1,
Ty = i i . .
(1.6) zf | —ubnigP P "1 fori>1and [i] = 1, and
. W - JPai- fori=1or [i] #1,

pa;_1+p—1 fori>1and[i]=1.

Here, b, k(n—1)41 = (p" — 1)(p"™~1 —1)/(p"~! — 1). The result (1.5) determines
the differentials of the Bockstein spectral sequence, which implies:

Theorem 1.7. ([8, Th. 5.10]) As a k.-module,
Ext’B=Loo ® @ La, (25).
pls,i>0

Here, k. = k(n — 1), = Flu], L; = ki/(u*) and Lo = k./(u®>®) = lim, L;.

This theorem together with (1.5) implies the following:

Corollary 1.8. The cokernel of §: ExtB — Exth(n)* is the F-module generated
by
vy, VP h,_y, hj for0<j<n-—1, and
vsf’khj for 0 <j<mn—1, where [k] # [j], s Z —1 (p), or s = —1 (p?),
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for integers s and t with pt s.

By Theorem 1.3, the module Ext'K(n), is the direct sum of ¢,Ext’K(n), =
oK (n)s, F (hj) for j € Z/(n — 1) and the modules

Viigs) = F <Us"ihj>

for (i,j,s) € Nx Z/n x 7. Here, N denotes the set of non-negative integers, and
Z =7\ pZ. We partition N x Z/n as follows:

j:h,j
n: ( Im §
1 z:ysl’i
G t2 n=1 n 2n'— 2 :
More precisely,
H = {(0,j):1<j<n-2}
U{(4,4):e>0, [i] #Fn—3,n—2, 2+ [i| <j<n-2}
U{(i,5) 14 >0, [ #0,1, 0 <j <[i] -2},
GB = {(i[1):i=0},
K = {[i]—-1):9>0, [i] #0} and
G = {([i]|—-2):i>1, [{]#0,1}.

We introduce notation

‘/(0,71—2) = @Sei/ ‘/(O,n—Q,s)v
Viom-1 = Drez Viom-14p-1) = Flv*?] <U_1hn—1> )
Cx = @ jex, sez Viijs) forasubset X CNxZ/n,

6GB = @(i,j)eGB ((@Sei V(i,j,s)) @ (@tez V(i,j,th—l)))
= Dy meas Viiis © Diso Fv 1 (v 7' b ) and
Co = F{(0,h;j:j€Z/(n—-1)).
Here, for e(i) = (p' —1)/(p—1), 8 = v"=2h, o,
7 = Z\{e(n—?)}Li: {neZ:pt(s+1)} and
GB = {(i,]i],s):s€Z}.

We also consider the subset T of N x Z/n x Z defined by

T = {(i,j,8) ENXZ/nxZ: pt(s+1)orp?|(s+1)if [i] =7,
pl(s+1)if (i,5) = (0,n—1), and s # e(n — 2) if (i,7) = (0,n — 2)}.
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In this notation, the cokernel of ¢ in Corollary 1.8 is given by

Coker 6 = (K(n).®Co® @(i,j,s)GT Vi gis)

1.9 _
(1.9) = (K (n). ® Co @ Vign-2) ® Vion-1) ®Cr © Cr ©® Cq ®© Cgp

Finally, we consider the k,-modules:

Wiijsy = Lagigs (@ihs),
W(07n_2) = ®8€Z/ W(O,n—2,s)a
W(O,n—l) = @tgz W(O,n—l,tp—l)a
Bx = EB(W.)eX’ scz Wiijs) for asubset X C N x Z/n,
Bap = @(z‘,j)eGB ((@sei W(%’JGS)) ® (@tez W(i,j,tpzfl))) and
Cx = (K(n—1)/k)(0,hj:j€Z/(n—-1)).

Here, a(i, j, s) denotes an integer defined as follows: for (i, 5) = (0,n—2), a(0,n — 2,) =

2ifpts(s—1), and

a pit, 1>0, [] #0,n—2
a(0,n—2,8) = Saj+en—2)+p" 2 ptt, 1>0, [l]=n—-2,
a;+1 ptt, 1>0, [[]=0

if s =tp! +e(n —2); for (i,5) € {(0,n - 1)} UHUK UG UGB,

p—1 (i,5) = (On—l)
i (i,7) €

a(i,j,s) = a; +a;—1 (Z,]) GKUG
2a; (i,5,5) € GB,

(p— Dais1 (%J) €GB, p* | (s+1).

Theorem 1.10. The chromatic Ei-term Ext'B = Ext*M! | is canonically iso-
morphic to the k,-module

GExt’B & Coo ® Wi n—2) ® Wo.n—1) ® By @ Bx ® Ba @ Bap.

Let V(n) be the nth Smith-Toda spectrum defined by BP,.(V(n)) = BP./I,41.
As an application of the theorem, we study the action of oy and 81 on the elements
t (¢t > 0) in the Adams-Novikov Fa-term E3(V(n)) in section 6. In particular,
it leads us an geometric result for n = 4. In [23], Toda constructed the self map
v on V(2) to show the existence of V(3) for the prime p > 5. We notice that
7' € m(V(2)) for the inclusion i: S — V(2) to the bottom cell is detected by
u' = v} € BP,(V(2)) in the Adams-Novikov spectral sequence.

Theorem 1.11. Let p > 5. Then ~Yiay and %y are nontrivial in w.(V (2)) for
t>0.

2. BOCKSTEIN SPECTRAL SEQUENCE

We compute the Bockstein spectral sequence by use of the following lemma.

Lemma 2.1. Let 6: Ext*B — Ext®"'K(n), be the connecting homomorphism
associated to the short exact sequence (1.2). Suppose that Coker § = @, Vi C
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Ext'K(n). and @, U, C Ext’?K(n). for F-modules Vi and Uy, and there eist
u-torsion k,-modules Wy, fitting in a commutative diagram

/

0 —— Vk L) Wk L) Wk —_— Uk

[ N

0 — Coker § —2— Ext'B —“— Ext'B —>— Ext’K(n),
of exact sequences. Then, Ext'B = D, Wi.

This follows immediately from [8, Remark 3.11].
Let 6 be an element of Corollary 5.8. Then, 6/u* and h;/u* for j € Z/(n — 1)
belong to Ext'B, and we define the map f: Coy — Ext'B by f((u=%)8) = 6/u”

and f((u=%)h;) = hj/u* for (u=F) € K(n—l) /k., so that the short exact sequence
(2.2) OHCO Coo 2 Coo =0

yields a summand of Lemma 2.1.
Note that if a cocycle z represents (,, then so does 2P. Therefore, we have
Cn/u’ € Ext! B represented by 2P /u/. The exact sequence (1.2) induces the exact

sequence 0 — Ext’K(n). 25 Ext’B % Ext’B LN Ext'K(n)., and we have an
exact sequence

(2.3) 0= GExt'K(n), £ GExt’B % (,Ext’B % (,Ext'K(n),,

which is a summand of Lemma 2.1. Together with (2.2) and (2.3), Theorem 1.10
follows from Lemma 2.1 if the following sequence is exact for each (i, j,s) € T

o u 5’
(2.4) 0= Viigs) = Weigs) = Weigs) = Utigs)
where U(; ; ) denotes an F-module generated by a single generator as follows: for
(Zv.]) = (O,?’L - 2)7 U(07n—2,s) =F <U872kn—2> lprfS(S - 1)v
F (o g yha) pit 1>0, [ £0,n-2,
U(O,n—2,s) = F US?pl_len—5> pjft, [>0, [l] n—2,
Fo 7™ g, ) pit 1> 0, [ =0;

if s =tp' +e(n —2); for (i,5) € {(O,n— 1)} UHUK UG UGB,

F (v =P+, ) (,5) = O.n =1),

F <v(5p*1)pi_lh[i—1]hj> (i,4) € H,

F (o2, ) (1) = (1,0) € K,

F oGP =p=" g, ) (i) € K, i > 1,
Uti,js) F oGP =p=0" g, 0N (i,§) € G,

F{vs=7=1g, 1) (i,j,s) € GB, i =0,

P20 g ) (js) €GB, i >0,

F v(s+1—p)pibj> (i,j) € GB, p* | (s +1).

Since the mapping T' — {Uy; ; 5 : (i,4,5) € T} assigning (4,7, s) to Uy j 5 is an
injection, we see the following;:
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Lemma 2.5. The direct sum of ¢,Ext'K(n), and Ui,js) for (i,5,8) € T is a
sub-F-module of Ext?K (n),.
The homomorphism f;. in Lemma 2.1 on Wy, ; o for (i,j,s) € T is explicitly
given by
feigs(@) = @ /ut),
It follows that the homomorphism &’ on it is given by the composite &(1/u®(%7)).

Hereafter we denote it by &, ; ., that is, d(, ; .y = §(1/u*®7*)), and consider a
condition:

(2.6)(,5,5) 0(;,5,) () =y for the generators z € W(; ;) and y € Uy j,s)-
Note that ¢ (Z) = u®®3%)~1z for the generators T € Viij,s) and @ € W ; o),
since fr@l(T) = ¢«(T) = x/u. Then,

Lemma 2.7. For each (i, j,s) € T, if the condition (2.6)(; ; s) holds, then (2.4) for
(i,4,8) is exact and yields a summand of Lemma 2.1.

The relations in (1.5) show immediately
(2.8) The condition (2.6)(; ;) holds for (i,j) € H.

Proof of Theorem 1.10. The theorem follows from Lemmas 2.1, 2.5 and 2.7 together
with (2.2), (2.3), (2.8), Lemmas 3.7, 3.8, 4.1 and 5.9, in which the lemmas are proved
below. Indeed, the direct sum of ¢,Ext®K(n),, Co and Viij,s) for (i,4,5) € T is
the cokernel of ¢ by (1.9). O

3. THE SUMMANDS ON V(g ,_1) AND Cgp

We begin with stating some formulae on the Hopf algebroid (A,T):

0 = vtﬁn + utﬁ;l — upk+1tk+1 — tknR(vpk) eIl fork <n,
(3.1) nr(u) = u, nr) = U—|—u7,‘11’n71 — uPty,
Aty) = Zf:() ti@ty_; for k <mn, and
Alty) = Yl oti@th , —uby .

Then the connecting homomorphism &: Ext'!B — Ext?K (n)s is computed by
the differential d: Q1. A — Q2A of the cobar complex modulo an ideal, which is
defined by

(3.2) dz)=10z—Ax)+z®1.

We also use the differential d: Q%A — QLA defined by d(w) = nr(w) — 1 (w). For
w,w’ € QXA and x € QL A, these differentials satisfy

dlww') = dw)nr(w') +wd(w'), dlwz) = d(w) @z + wd(x), and

d(znr(w)) = d(z)nr(w) — 2 @ d(w).

We also use the Steenrod operations P° and BPY on Ext*C(j) for j > 1 and
Ext*B (cf. [6], [14]). Here, C(j) denotes the comodule A/(u/), and we notice
that C(1) = K(n).. Let Q°M = Qg 5,y M for an E(n).(E(n))-comodule
M. Given a cocycle z(j) of Q°C(j), Z(j) denotes a cochain of Q*E(n), such that

m;(z(4)) = «(j) for the projection m;: Q°E(n), — Q=C(j). Since z(j) is a cocycle,

(3.3)
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dF(J)P) = pyj+ 0= Pz i+ P25,y for some elements y; and z;; € Q¥TLE(n),.
Under this situation, the Steenrod operations are defined by
PO([z(5)]) = [z(5)?] and BP°([z(j)]) = [y;] € Ext"C(jp), and
PO[z(j)/u']) = [z(j)? /u??] and BP°([z(j)/uw’]) = ly;/u’?] € Ext*B.
Here, [x] denotes the homology class represented by a cocycle x. In particular, the
operation acts on our elements as follows:

vP h, q JuP~l i=0
3.4 PO(z;/u®) = " " in Ext'B;
( ) ﬁ ( / ) {xpiIlh[i—l]/u(pl)ai P> 0,
PO(xhy jul) = T /W0 k#ER =2 b 0B and
(3.5) ’ a5 ho/uwPTPH k=n—2;
BPO(x5hy) = xi,ibr in Ext®K(n)..
The following is a folklore (cf. [14, Corollary A1.5.5]):
(3.6) P% =6P° and pBP° = —6BP" in Ext*K(n)..

Lemma 3.7. The condition (2.6)(; ;s holds for each (i,j,s) € {(0,n — 1,tp —
1), (i,j,tp* = 1) : t € Z, (i, j) € GB}.

Proof. For k > —1, consider a generator z(k,t) = xfcp2_1h[k] for k > 0 and z(—1) =
x? " h,_1, and (k,t) denotes a triple (k, [k], tp? — 1) if k> 0 and (0,n — 1,tp — 1)
if k= —1. Then, (1/u®®Y)(x(k,t)) = 2} 5BP° (x)s1/u+1) for k > —1 by (3.4).
Now, (5’k t)( z(k,t)) equals

TS EP (s fu ) = —al L (BP ) = ol b

by (3.6), (1.5) and (3.5). Here, (v(t),[k]) = (tp—1, [k]) if & > 0 and = ((t—1)p,n—1)
if k= — O

Lemma 3.8. The condition (2.6); [,s) holds for (i,[i],s) € GB.
Proof. We prove this by induction on i. By (3 1) and (3.2), we compute mod (u?)
d(vs 1P (s + Luv* P ® tp (s u? psP 12" ®tp
d((s+ 1)uvs_pt’2°”71) = s(s+ Du2vs—r= 12" '® " —(s+ Duw P @
to obtain §(v*hg/u?) = s(s + 1)v*"P~1g, ; and so
520,0,5)(7}%0) = s(s+ 1)o* P g,y
Apply PP to it, and we obtain
81,1, (V"7 1) 0(PO(v*ho/u?)) = P%(v®ho/u®) = s(s+1)P°(v* P 1gn_1)
= s(s+ 1P PP, = s(s+ 1)vP2g,.

Here, we notice that g, = vp2+p*2go in Ext>K (n), by (3.1). Suppose inductively
that &, ; o (zih1) = s(s+ 1)oP=22""" g0 for [i] = 1, which is (2.6)(i,1,5)- Note that
aitj = pa;yj—1 if 0 < j < n—2, and we see that P° 5(” 5 = 5Ei+1’j+118)P0 by (3.6).
Therefore, (P°)7 for j < n — 2 yields the equation for ¢/, i+j7j+1’8)(xf+jhj+1). At
i' =i+n—2, fort=(i0,5), 5 (x5ho) = 6P (x5 _ hy_o/utl’~Ln=25)) (by (3.5))

= s(s 4+ 1)oP=27"" o by (3.6) and inductive hypothesis.
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—1

Note that a;4n—1 = p" "a; + p — 1. Consider the connecting homomorphism

§;: Ext' M}_, — Ext®C(j) associated to the short exact sequence 0 — C(5) ﬂ)

M} i> M;_; — 0. Then, /=16 = §;u/~1. Besides, 6;(P%)k = (P%)k§ if p* > j.

Now in Ext?C(p? +p — 1), u”2+p*25£i+n_1,17s)(xf+n71h1) equals
W0l b fu D) = G (PO athy fu)

= (PO)"Y(s(s+ Dulr=2P gg) = (s 4 1l g,

for a = af(i,[i],s), which equals s(s 4+ 1)uP tP=2y(=P=2p"" "o by the relation
uPt2g, 1 = up2+2pg0. This relation follows from (1.4) and wh,_1 = uPhy given
by d(v). O

4. THE SUMMANDS Cg AND Cgk

We study the action of the connecting homomorphism § by use of the Massey
product. We notice that this is also shown by use of P°-operation considered in
the previous section, but we use the Massey product for the sake of simplicity.

Lemma 4.1. The condition (2.6); j s holds for (i,j) € GU K.

Proof. We consider the element (1/u®%7:*))(x5h;) the Massey product <smff;1/u“"*1,
Bigapsh ). Then, 8, (wthy) = 8 (s futs=t gy hy ) = (s0(@f?y " funr),

h[i_l],hj>, which equals — (sv*?~2h,,_1, ho,ho) = —sv®=2Pk,_; if i = 1, and
. —gp(sp®=p=1)p"? . i=[i—1

7<5”(Sp27p71)p' Qh[i—Q]ah[i—l]vhj> =1 o (it ' [l, b other-
—2sv g j=[i—2]

wise. Here, we note that (h;, hit1, hi) = 2¢;. O

5. THE SUMMAND V(g ,_2)

Consider the elements ¢; = uP' hn—14; and ¢; = u”thi of Ext'A. The elements
have internal degrees |c;| = |c}| = p'e(n)q for ¢ = 2p — 2, and satisfy

ci=¢;, Cicix1 =0, hppici=0 and hiici = hiyic; =0,
We consider the cochains Wy = ue(’“*l)ctzn_1 of the cobar complex QL A. Then,
(5.1) W = —wp_ymr(v) + w2 ety g P ey

for k > 1 by (3.1). Let wy be a cochain of the cobar complex QLA defined induc-
tively by:

5.9 w; = t€7l71 — up71t1 = —wi + ’U,pilctl and
( . ) o P _1\k, pe(k—2),p" !
Wy, wy_Mr(v) + (=1)"u v ctr_1
and put
(5 3) m;c = - Zf:ill(_l)iupiilwﬁl—i ® w; ) and
mi = wP w1 pp e,

Lemma 5.4. d(v®®)) = my,. Besides, d(wy) =m), if k < n.
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Proof. We prove the lemma inductively. Since d(v) = ww; = my, we see the case
for k = 1. Indeed, mj = 0.

Suppose that the equalities hold for k£ — 1. Then, we compute by (3.3), (5.1) and
(5.2),

) = Do) ()
_ upk71w£ . + Z ( )1 P Upz+1e(k 1— z),w )nR(v) _ uvpe(k:—l) (W1 _ up—lctl)
— (wk - (-1 kype(k=2)p"~ ctk_l) — yoPe(k=1) (w1 — uP~tety)
+ R () o ek =) (7@“ + (upe(iil)”pi‘fti + UpiH*pe(ifl)thl)) ’
which equals my, and similarly,
i+l
dwy) = =S (D wl_ | @ Tnr(v) + uwl_| ® (@1 — uP~lety)
k— —
+(=1)kype(k=2) (upk 1w11’ @ ctp_1 + P 1d(ctk,1)>
_ Z 21y »a w? *11 . ® (_@Hl 4 upeli=Dyp' op, 4 upi“+pe(i—1)cti+1)
+uwy, | @ (W —uP~ 1Ctkl)
—1 -1 —1
+(—1)kyek=2) (u”k Wl @ty + 0P d(ctk_1)> = mj,

Here, the underlined terms cancel each other if & < n by (5.2) and (3.1) with the
relation A(cx) = T(c ® ¢)A(zx) for the switching map T: T @' - T ®T. O

We also introduce an element

Crk = hptr—1— u(pil)pk hy € ExtlA.

Corollary 5.5. For each 0 < k < n, the Massey products ui = (upk,ék, Ck—1,Ck—2,
.,¢1,¢0) and pf, = (Ck,Ck—1,Ck—2,...,C1,C0) are defined. In fact, the cocycles
mpy1 and m;Hl represent elements of the Massey products pu, and )., respectively.

In particular, we have
Corollary 5.6. The Massey product <upn73,6n_3, Cr—dy e, co> C Ext' A is defined
and contains zero.

Lemma 5.7. The Massey product (Gn_3,Cn—4a,...,Co,hn—2) C Ext?A contains
zero.

Proof. The Massey product (¢,_3,Cn—4,- - -,Co, hp—2) contains

n—2_ n—3
(hon—a,Cn—a,--.,Co,hn_2) — <Up P hn—BaCn—47---a607hn—2>~

It suffices show that the second term contains zero. Indeed, the first term does since
n—2

a defining system cobounds ue(”_?’)ctfkl . Since every Massey product (h;, hj_1,
<y hit1, hy) for j —i < n — 2 contains zero, all lower products contains zero, and

we see that £ = (hp—3,Cn—4,...,C1,Co, hp_2) is defined.

The statement of [4, Th.10] itself is applied to our case and says that there
are elements z € (g, Ch—1,---,C0, An—2,An_3,Cn—a,...,Ckt1) for 0 < k < n —4,
T3 € (hn—3,Cn—a,...,C1,C0, hp_2) and x,,—o € (hp—2, hpn_3,¢n—4,...,c1,co) such

that Zz;g +a = 0. Its proof tells us that we may take the elements ) arbitrary,
and we take xp so that xp = 0 for 0 < k < n —4 and z,,_» = 0, whose relations
follow from d(ct,—_1). Therefore, x,,_3 = 0 and the lemma follows. ]
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Corollary 5.8. The Massey product u = <u1’"73,6n_3,cn_4, ... 7co,hn_2> 18 de-
fined and contain an element whose leading term is v¢" =2 h,_,.
Lemma 5.9. The condition (2.6)(; ;s holds for (i,j) = (0,n —2).
Proof. If pts(s — 1), it follows from the computation
d(vstlfn_g) = suvs_ltfn_l ® t’l’n_2 + (;)u%ﬁpn—l ®t11)"_2 mod (u?)
n—2 n—1 n—2 n—1 n—2
d(suvs=teth ) = s(s—1Du*t] ®@cth —swiH) @ mod (u?).
Suppose s = tp! +e(n—2) with p{ ¢t and [ > 0. Let 0 denote an element of Corollary
5.8. We take a generator corresponding to v®h,_s to be v°~¢("=2)§. We denote a
~ n—2 n—2
representative of 6 by m, which is congruent to v*"= 22" " fypPe(=3)cth " mod-
_ [1—=1] — [t—1]
uloﬁ(qu). Then, d(v*=¢("=2m) = tyaiys—e(n=2)-p' "'y Y om = tusrys p '
t¥ . This shows the case for [I] # 0,n — 2.
— n—2
For [I] = 0, the similar computation shows that d(vs~¢"~2)m) = T GRS
n—2 n—1 n—2 n—2 n—2 n—2 —
B a1 @tk ), which yields o2 g, _,. For
~ n—3
[ =n—2, 0h,_5 € us"=2? <h2r§747 hon—5s- s hn—2, hn_g) = {ucM=2P" "py, 51
in C(p"~2). Indeed, u¢™=3)t2" " yields the equality by (3.1). O

6. ON THE ACTION OF a7 AND (3; ON GREEK LETTER ELEMENTS

In this section, let H*M for a BP,(BP)-comodule M denote an Ext group
Extpp, (pp)(BPs, M). Consider the comodule Ny_1(j) = BP./(I-1 + (vi_,))
(vo = p), and the connecting homomorphism 0Jj, ; associated to the short exact

i
sequence 0 — BP,/I};_1 1’6—71> BP, /I,y — Nig_1(j) — 0. We abbreviate 0x 1 to
Ok. Here we consider the Greek letter elements of H*BP, /I, defined by

a"V = wuteH'BP,/I,_, and
oly)y = On;(') € HBP./I, y for v* € HON, (j)
for t > 0, and
a; = 0O1(v1) =ho € H'BP, and [ = 0,0:(vy) = by € H?BP..

Proposition 6.1. The elements oy and By act on the Greek letter elements as
follows:

a@" Y £0€e H'BP,/I,_1, Bia\" Y +£0e H2BP,/I,_1;
and if the Greek letter elements O‘gz)wi/j) has an internal degree greater than 2(p™ —
1)(e(n—1) —1), then
alo‘g:;i/j) #0€ H?BP, /1,1 if [i] 20, pt (s + 1) or p? | (s + 1); and
Brofl o #0€ H3BP, /I,y ifn#5, [i] #1 orpt (s +1).

In order to prove this, we make a chromatic argument: Let N,g denote the
BP,BP-comodule BP,/I}, and put M} = U,ZINIS. We denote the cokernel of the

inclusion NY — M} by N}, so that 0 — Ny — M? LN N} — 0 is an exact se-

quence. Let 5k+1: HSN,% — HS“N,EJ be the connecting homomorphism associated
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to the short exact sequence. We notice that N} = colim;Ny(j) with inclusion
¢j: Ni(j) = N} given by ¢;(z) = x/u?, and that the connecting homomorphism
On,jt HNy_1(j) = H*TIN?_, factorizes to 0y,¢;.

Lemma 6.2. For an element x5 /u? € HON} | for 0 < j <a; (j <p'ifs=1),
ay and By act on it as follows:

wtanful £0€ HINL, if[i] £0, pt (s+1) or p? | (s +1); and

zif1/ul £A0€ HENY | ifn#5,[i]#1 orpf(s+1).

Proof. A change of rings theorem of Miller and Ravenel [7] shows that the module
H*M] | is isomorphic to Ext®B. By (1.5), we see that 23ho/u # 0 € Ext' B unless
[{] =0, p| (s+1) and p* { (s + 1). This shows the first non-triviality. Similarly,
since we have shown that (2.4) is exact, we see that {81 /u # 0 € Ext?B unless
n=>5[i]=1andp]| (s+1). O

Lemma 6.3. Let & denote ay or 1, and x € H°N}_,, and suppose that &, has
an internal degree greater than 2(p"~' — 1)(e(n — 1) — 1). If x& € H’N}! | # 0,
then 9, (x)€ # 0 € HSTINO_,.

Proof. Tt suffices to show that x¢; is not in the image of ¢.: HSMY_, — H*N}_,.
Again the change of rings theorem shows that the module H*M? _; is isomorphic to
the module of Lemma 1.3 with substituting n — 1 for n. Note that every generator
of it except for ¢, ; belongs to H*N° ,, and also is u*™ V¢, 1 (cf. [14]). It
follows that every element of the image of ¢, has an internal degree no greater
than 2(e(n — 1) — 1)(p"~! — 1). Thus the lemma follows. O

Proof of Proposition 6.1. The module H*M?_; contains a submodule k, (hg) if s =
1 and k, (by) if s = 2. Therefore, the first two relations hold. The other relations

follow from Lemmas 6.2 and 6.3. ]

Proof of Theorem 1.11. Note that 5;3) =7, = v}, and we obtain the theorem from

Proposition 6.1 at n = 4. ([l
REFERENCES

[1] Y. Arita and K. Shimomura, The chromatic E1-term H! M7 at the prime 3. Hiroshima Math.
J. 26 (1996), 415-431.

[2] H.-W. Henn, Centralizers of elementary abelian p-subgroups and mod-p cohomology of profi-
nite groups, Duke Math. J. 91 (1998), 561-585.

[3] H. Hirata and K. Shimomura, The chromatic E;-term H1M21 for an odd prime, in prepara-
tion.

[4] D. Kraines, Massey higher products, Trans. Amer. Math. Soc. 124 (1966), 431-449.

[5] J. P. May, Matric Massey products, J. Alg. 12 (1969), 533—-568.

[6] J. P. May, A general algebraic approach to Steenrod operations, The Steenrod Algebra and
its Applications, Lecture Notes in Mathematics 168 (1970), 153-231.

[7] H. R. Miller and D. C. Ravenel, Morava stabilizer algebras and the localization of Novikov’s
Es-term, Duke Math. J. , 44 (1977), 433-447.

[8] H. R. Miller, D. C. Ravenel, and W. S. Wilson, Periodic phenomena in Adams-Novikov
spectral sequence, Ann. of Math. 106 (1977), 469-516.

[9] H. Nakai, The chromatic Ei-term HOM? for p > 3, New York J. Math. 6 (2000), 21-54
(electronic).

[10] H. Nakai, The structure of ExtOBP*BP(BP*,Mf) for p = 3, Mem. Fac. Sci. Kochi Univ. Ser.
A Math. 23 (2002), 27— 44.
[11] D. C. Ravenel, The cohomology of the Morava stabilizer algebras, Math. Z. 152 (1977),

287-297.



THE FIRST LINE OF THE BOCKSTEIN SPECTRAL SEQUENCE 13

[12] D. C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J.
Math., 106 (1984), 351-414.

[13] D. C. Ravenel, Nilpotence and periodicity in stable homotopy theory, Annals of Mathematics
Studies, vol. 128, Princeton University Press, 1992.

[14] D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, AMS Chelsea
Publishing, Providence, 2004.

[15] K. Shimomura, On the Adams-Novikov spectral sequence and products of S-elements, Hi-
roshima Math. J. 16 (1986), 209-224.

[16] K. Shimomura, The chromatic F1-term H1M21 and its application to the homology of the
Toda-Smith spectrum V' (1), J. Fac. Educ. Tottori Univ. (Nat. Sci.) 39 (1990), 63-83. Correc-
tions to “The chromatic F1-term H1M21 and its application to the homology of the Toda-
Smith spectrum V' (1)”, J. Fac. Educ. Tottori Univ. (Nat. Sci.) 41 (1992), 7-11.

[17] K. Shimomura, The chromatic Fi-term HOM2 for n > 1, J. Fac. Educ. Tottori Univ. (Nat.
Sci.) 39 (1990), 103-121

(18] K. Shimomura, The homotopy groups of La-localized Toda-Smith spectrum V(1) at the prime
3, Trans. Amer. Math. Soc. 349 (1997), 1821-1850.

[19] K. Shimomura, The homotopy groups of the La-localized mod 3 Moore spectrum, J. Math.
Soc. of Japan 51 (2000), 65-90.

[20] K. Shimomura and H. Tamura, Non-triviality of some compositions of (-elements in the
stable homotopy of the Moore spaces, Hiroshima Math. J. 16 (1986), 121-133.

[21] K. Shimomura and A. Yabe, The homotopy groups 7«(L2S°), Topology 34 (1995), 261-289.

[22] K. Shimomura and X. Wang, The homotopy groups 7« (L2S°) at the prime 3 , Topology 41
(2002), 1183-1198.

[23] H. Toda, On spectra realizing exterior parts of the Steenrod algebra, Topology 10 (1971),
53-65.

GRADUATE SHOOL OF MATHEMATICS, NAGOYA UNIVERSITY, AICHI, 464-8601, JAPAN
E-mail address: ryo_kato_1128@yahoo.co.jp

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, KOCHI UNIVERSITY, KOCHI, 780-8520,
JAPAN
E-mail address: katsumi@math.kochi-u.ac. jp



