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Abstract. The Ravenel spectra T (m) for non-negative integers m interpolate
between the sphere spectrum and the Brown-Peterson spectrum. It admits
an essential self-map α : Σ2p−2T (m) → T (m), whose cofiber we denote by
T (m)/v1. In this note, we work in the two-local stable homotopy category
and study the homotopy groups of the Bousfield localization of T (m)/v1 with
respect to the v2-inverted Brown-Peterson spectrum.

1. Introduction

In the stable homotopy category of spectra localized at an odd prime number
p, the second author, A. Yabe and X. Wang ([11], [9]) determined the structure of
the homotopy groups of the sphere spectrum L2S

0 localized with respect to the v2-
localized Brown-Peterson spectrum v−1

2 BP by use of the Adams-Novikov spectral
sequence

E∗
2 (X) = Ext∗BP∗(BP )(BP∗, BP∗(X)) =⇒ π∗(X).

Here, the E2-term is the Ext group of the category of BP∗(BP )-comodules. At
the prime two, the second author and X. Wang ([10]) determined only the E2-
term of the Adams-Novikov spectral sequence converging to the homotopy groups
π∗(L2S

0), and we are interested in the stable homotopy category of spectra localized
at the prime two. In his book [8], Ravenel constructed the spectrum T (m) for each
m ≥ 0 characterized by

(1.1) BP∗(T (m)) = BP∗[t1, . . . , tm] ⊂ BP∗(BP ) = BP∗[t1, t2, . . . ]

as a BP∗(BP )-comodule. These spectra admit maps T (m) → T (m + 1) inducing
the inclusion on BP∗-homology, and T (0) and T (∞) are the sphere and the Brown-
Peterson spectra, respectively. The homotopy groups of L2T (∞) are determined
by Ravenel as BP∗ ⊕ BP∗/(2∞, v∞1 , v∞2 ) in [7]. We have partial results [2] and
[4] on subgroups of the homotopy groups π∗(L2T (1)). We use the 2- and the v1-
Bockstein spectral sequences to determine it for m ≥ 1 in two different order :

1) the v1-Bockstein spectral sequence first and then the 2-Bockstein spectral
sequence;

2) the 2-Bockstein spectral sequence first and then the v1-Bockstein spectral
sequence.

As the first step in the order 1), the v1-Bockstein spectral sequence is computed in
[3], and we obtain the homotopy groups of L2T (m)∧M for the modulo two Moore
spectrum M . In this paper, we consider the first step of the order 2).
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Let T (m)/v1 denote the cofiber of α : Σ2T (m) → T (m) for m > 0 such that
BP∗(α) = v1 − 2t1, whose existence is shown in section two. We then define a
spectrum C by the cofiber sequence

(1.2) T (m)/v1 wη
2−1T (m)/v1 w C w ΣT (m)/v1

for the localization map η : T (m)/v1 → 2−1T (m)/v1. We first determine the
Adams-Novikov E2-term of L2C in Proposition 3.8 by use of the 2-Bockstein spec-
tral sequence associated to the cofiber sequence

(1.3) D wι
C w2

C wκ ΣD,

where D denotes the spectrum T (m)/v1 ∧M for the mod 2 Moore spectrum M .
The E2-term of the Adams-Novikov spectral sequence for π∗(L2D) is determined
by Ravenel (cf. [8]) as follows:

(1.4) E∗
2 (L2D) = Km(2)∗ ⊗ ∧(g10, g11, g20, g21),

where

(1.5) Km(2)∗ = v−1
2 Z/2[v2, . . . , vm+2],

and gij denotes the element of bidegree (1, 2j+1(2m+i − 1)), which is denoted by
hm+i,j in [8]. Next, we show that every element of the Adams-Novikov E2-term
E∗

2 (L2C) is a permanent cycle in Lemma 3.12, and the extension problem of the
spectral sequence is trivial in Lemma 3.13. These show the homotopy groups of
L2C are isomorphic to the E2-term.

In order to state our result, we introduce notation: the algebra

Em(2)∗ = v−1
2 Z(2)[v1, v2, . . . , vm+2]

such that Km(2)∗ = Em(2)∗/(2, v1), the elements

ui = vm+i ∈ BP∗ for i ≥ 1,

the algebras

R = Em−2(2)∗/(v1) = v−1
2 Z(2)[v2, . . . , vm],

R(n) = R
[
u2n

1 , u2n

2

]
and

R
(n)
j = R

[
u2n

j

]
,

and the submodules of Em(2)∗/(2∞, v1) = R[u1, u2]⊗Q/Z(2):

M(i) =
⊕2

j=1 R
(i+1)
j /(2i+1)

{
u2i

j /2i+1
}

,

M0(i) = R(i+1)/(2i+1)
{

u2i

1 u2i+1

2 /2i+1, u2i

2 u2i+1

1 /2i+1, u2i

1 u2i

2 /2i+1
}

and

M1(i) = R(i+1)/(2i+1)
{

u2i

2 u2i+1

1 g10/2i+1, u2i

1 u2i+1

2 g20/2i+1,

u2i

1 u2i

2 g10/2i+1 = u2i

1 u2i

2 g20/2i+1
}

.

Here, gj0 is an element such that gj0/2 = u−1
j gj0/2, whose existence is shown in

Lemma 3.2.

Theorem (1.6) The homotopy groups π∗(L2C) for m > 1 are isomorphic to
the tensor product of ∧(g11, g21) and the direct sum of the modules R/(2∞), M(i),
M0(i) and M1(i) for i ≥ 0.
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Since the E2-term E∗
2 (2−1T (m)/v1) is isomorphic to HQ∗(L2T (m)/v1) = Q[v2, v3, . . . , vm]

by [8, Cor 6,5,7], the homotopy groups of L2T (m)/v1 are obtained by observing
the homotopy exact sequence associated to the cofiber sequence (1.2).

Corollary (1.7) The homotopy groups π∗(L2T (m)/v1) for m > 1 are isomorphic
to the direct sum of the modules Z(2)[v2, v3, . . . , vm], Σ−1R/(2∞) {g11, g21, g11g21}
and

⊕
i≥0 Σ−1(M(i) ⊕ M0(i) ⊕ M1(i)) ⊗ ∧(g11, g21). Here, Σ denotes a shift of

dimension.

We note that the homotopy groups of L2T (1)/v1 are given in [6]. The structure
of π∗(L2T (m)/v1) for m > 1 in Corollary 1.7 is less complicated than that of the
case for m = 1. So it seems that it is useful to determine the homotopy groups
π∗(L2T (m)) for m > 1 completely. For m = 1, we know the structure of subgroups
of π∗(L2T (1)) (cf. [2], [4]).

2. A change of rings theorem and structure maps

We work in the stable homotopy category of spectra localized at the prime two.
Let BP denote the Brown-Peterson ring spectrum, and consider the Hopf algebroid
(A, Γ) associated with it, where

A = π∗(BP ) = BP∗ = Z(2)[v1, v2, . . . ],
Γ = BP∗(BP ) = BP∗[t1, t2, . . . ].

The Hopf algebroid Γ gives rise to another one

(A,Γm) = (A, Γ/(t1, . . . , tm)) = (A, BP∗[tm+1, tm+2, . . . ]).

Recall the Ravenel spectrum T (m) in (1.1) for m ≥ 0, which is a ring spectrum
with multiplication µ : T (m) ∧ T (m) → T (m). Then, Ravenel showed in [8] the
change of rings theorem

E∗
2 (T (m) ∧X) = Ext∗Γm

(A,BP∗(X))

for a spectrum X. If X is the sphere spectrum S0, then we have an element
v1 ∈ Ext0,2

Γm
(A, A) for m > 0. This element is represented by v1 − 2t1 in the

cobar complex Ω0
ΓBP∗(T (m)) for computing E∗

2 (T (m)). Since Es,1+s
2 (T (m)) = 0

by observing the reduced cobar complex, the element v1 survives to a homotopy
element α′ ∈ π2(T (m)). We now let T (m)/v1 denote the cofiber of the composite
α : Σ2T (m) = T (m) ∧ S2 w1∧α′

T (m) ∧ T (m) wµ
T (m).

Let M and M∞ be the modulo two Moore spectrum and the cofiber of the
localization map S0 → SQ, respectively. In this paper we consider the spectra

D = T (m)/v1 ∧M and C = T (m)/v1 ∧M∞.

These fit in the cofiber sequence (1.3). The BP∗-homologies of the L2-localizations
of these spectra are

BP∗(L2D) = v−1
2 BP∗/(2, v1)[t1, . . . , tm] and

BP∗(L2C) = v−1
2 BP∗/(2∞, v1)[t1, . . . , tm].

Consider a spectrum
Em(2) = v−1

2 BP 〈m + 2〉
for the Johnson-Wilson spectrum BP 〈m+2〉 such that π∗(BP 〈m+2〉) = Z(2)[v1, v2, . . . , vm+2].
Since

v−1
2 BP∗/J

1⊗ηR−→ Em(2)∗/J ⊗A Γm
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for an invariant regular ideal J of length two is a faithfully flat extension, we have
an isomorphism

(2.1) Ext∗Γm
(A, v−1

2 BP∗/J) ∼= Ext∗Σm(2)(Em(2)∗, Em(2)∗/J)

shown by the same way as the proofs of the change of rings theorem in [1]. Here,

Σm(2) = Em(2)∗ ⊗A Γm ⊗A Em(2)∗

is the induced Hopf algebroid, and

(2.2) Σm(2) = Em(2)∗[t1, t2, . . . ]/(ηR(vm+k) : k > 2).

Note that m + 2 is the smallest number n such that

v−1
2 BP∗/J

1⊗ηR−→ v−1
2 BP 〈n〉∗/J ⊗A Γm

is a faithfully flat extension.

Proposition (2.3) The Adams-Novikov E2-terms for computing π∗(L2C) and
π∗(L2D) are isomorphic to

E∗
2 (L2C) = Ext∗Σm(2)(Em(2)∗, Em(2)∗/(2∞, v1)) and

E∗
2 (L2D) = Ext∗Σm(2)(Em(2)∗, Em(2)∗/(2, v1)).

Proof. The isomorphism on E∗
2 (L2D) follows from (2.1). Since L2C = hocolimk

L2T (m) ∧ Mk for the mod 2k Moore spectrum Mk, the change of rings theorem
(2.1) also shows the isomorphism on E∗

2 (L2C). ¤

Consider the Hopf algebroid (Em(2)∗, Σm(2)) (see (2.2)). We read off the be-
havior of the right unit ηR : Em(2)∗ → Σm(2) and the diagonal ∆: Σm(2) →
Σm(2) ⊗Em(2)∗ Σm(2) from that of Γm. Hereafter we set v2 = 1 and use the
notation

ui = vm+i and si = tm+i

for i = 1, 2. Recall the Hazewinkel and the Quillen formulas:

vn = 2`n −
∑n−1

k=1 `kv2k

n−k ∈ Q⊗A = Q[`1, `2, . . . ],
ηR(`n) =

∑n
k=0 `kt2

k

n−k ∈ Q⊗ Γ = Q⊗A[t1, t2, . . . ] and∑
i+j=n `i∆(t2

i

j ) =
∑

i+j+k=n `it
2i

j ⊗ t2
i+j

k ∈ Q⊗ Γ⊗A Γ.

Then a routine computation shows

Lemma (2.4) The right unit ηR : A → Γm and the diagonal ∆: Γm → Γm ⊗A Γm

act on generators as follows:

ηR(vn) = vn for n ≤ m,
ηR(u1) = u1 + 2s1,
ηR(u2) ≡ u2 + 2s2 mod (v1),
∆(s1) = s1 ⊗ 1 + 1⊗ s1,
∆(s2) ≡ s2 ⊗ 1 + 1⊗ s2 mod (v1).
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3. The Adams-Novikov E2-term for π∗(L2C)

We begin with introducing the cocycles of cobar complexes that represent gen-
erators gj1 and gj0.

Lemma (3.1) The elements s2
j +ujsj for j = 1, 2 are cocycles of the cobar complex

Ω1
Γm

Em(2)∗/(v1).

Proof. Since d(uj) ≡ 2sj and d(sj) ≡ 0,

d(s2
j + ujsj) ≡ −2sj ⊗ sj + 2sj ⊗ sj ≡ 0 mod (v1). ¤

Lemma (3.2) There are elements
wj =

∑
n>0(−1)n−1 1

2n (2u−1
j sj)n ∈ Ω1

Γm
Em(2)/(2k, v1)

for j = 1, 2 and any k > 0 such that d(wj) = 0.

Proof. Note that
∑

n>0(−1)n−1 1
2n (2u−1

j sj)n = log(1 + 2u−1
j sj) = log(ηR(uj))

− log(uj). Since

log(ηR(uj)) = log(1− (1− ηR(uj))) = −∑
n>0

1
n (1− ηR(uj))n

= −∑
n>0 ηR( 1

n (1− uj)n) = −ηR(
∑

n>0
1
n (1− uj)n)

= ηR(−∑
n>0

1
n (1− uj)n) = ηR(log(1− (1− uj)))

= ηR(log(uj)),

we see that d(log(1 + 2u−1
j sj)) = dd(log(uj)) = 0. ¤

We denote the homology classes of the cocycles of Lemmas 3.1 and 3.2 by

gj1 and gj0 ∈ E1
2(L2T (m)/v1 ∧Mk),

respectively, for each k > 0, where Mk denotes the mod 2k Moore spectrum.
Consider the subalgebras

(3.3)
F = Km−2(2)∗ = R/(2) = v−1

2 Z/2[v2, . . . , vm],
F (n) = F

[
u2n

1 , u2n

2

]
and

F
(n)
j = F

[
u2n

j

]
,

and the submodules

N(i) =
⊕2

j=1 u2i

j F
(i+1)
j and

N0(i) = F (i+1)
{

u2i

1 u2i+1

2 , u2i

2 u2i+1

1 , u2i

1 u2i

2

}

of the polynomial algebra Km(2)∗ = F [u1, u2]. Then, as an F -module,

(3.4)

Km(2)∗ = (F [u1] + F [u2])⊕
⊕

i≥0 N0(i)
= F ⊕⊕

i≥0

(
N(i)⊕N0(i)

)
,

ujKm(2)∗ = ujF [uj ]⊕
⊕

i≥0 N0(i) and
u1u2Km(2)∗ =

⊕
i≥0 N0(i)

for j = 1, 2. Under these notations, we rewrite (1.4) as follows:

(3.5) E∗
2 (L2D) = ∧(g11, g21)⊗ (Km(2)∗ ⊗ ∧(u1g10, u2g20)) .

The factor Km(2)∗ ⊗ ∧(u1g10, u2g20) is decomposed into the direct sum

(3.6) Km(2)∗ ⊕ g10(u1Km(2)∗)⊕ g20(u2Km(2)∗)⊕ g10g20(u1u2Km(2)∗).
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We consider the connecting homomorphism δ : Es
2(L2C) → Es+1

2 (L2D) on the fac-
tor Km(2)∗ ⊗ ∧(u1g10, u2g20). The behavior of δ is read off from the following
lemma:

Lemma (3.7) The connecting homomorphism δ acts as an R-module map on the
elements of E0

2(L2C) as follows:

δ(1/2i) = 0 and
δ(u2is

1 u2it
2 /2i+1) = su2is

1 u2it
2 g10 + tu2is

1 u2it
2 g20,

where s, t and i are non-negative integers.

Proof. Note that ua−1
j sj represents ua

j gj0. Then, the lemma follows immediately
from the relations d(uj) ≡ 2sj and the binomial coefficient theorem. ¤

Proposition (3.8) The Adams-Novikov E2-term E∗
2 (L2C) is isomorphic to the

module given in Theorem 1.6.

Proof. Put E∗ = Km(2)∗⊗∧(u1g10, u2g20), B0 = R/(2∞)⊕⊕
i≥0

(
M(i)⊕M0(i)

)

and B1 =
⊕

i≥0 M1(i). By [5, Remark 3.11], it suffices to show that the sequence

(3.9) 0 w E0 w B0 w2
B0 wδ

E1 w B1 w2
B1 wδ

E2 w 0
is exact. In fact, B∗⊗∧(g11, g21) ⊂ E∗

2 (L2C) by Lemma 3.7, and the exact sequence
(3.9) induces a commutative diagram

(E∗ ⊗ Λ)s (B∗ ⊗ Λ)s (B∗ ⊗ Λ)s (E∗ ⊗ Λ)s+1

Es
2(L2D) Es

2(L2C) Es
2(L2C) Es+1

2 (L2D)

w w
u

wδ

u
wι∗ w2 wδ

of exact sequences, where Λ = ∧(g11, g21). Then, the middle maps are isomorphisms
by [5, Remark 3.11].

By (3.6) and (3.4),

E0 = F ⊕⊕
i≥0

(
N(i)⊕N0(i)

)
,

E1 =
(⊕2

j=1 gj0ujF [uj ]
)
⊕⊕

i≥0

(
E1,I(i)⊕ E1,C(i)

)

=
⊕

i≥0

(
N

1
(i)⊕ E1,I(i)⊕ E1,C(i)

)
,

E2 =
⊕

i≥0 g10g20N
0(i),

where

E1,I(i) = F (i+1)
{

u2i

1 u2i+1

2 g10, u
2i

2 u2i+1

1 g20, u
2i

1 u2i

2 g10

}
,

E1,C(i) = F (i+1)
{

u2i

1 u2i+1

2 g20, u
2i

2 u2i+1

1 g10, u
2i

1 u2i

2 g20

}
and

N
1
(i) =

⊕2
j=1 gj0u

2i

j F
(i+1)
j .

Note that ujF [uj ] =
⊕

i≥0 u2i

j F
(i+1)
j . Each summand of E0 fits in one of the exact

sequences
0 w F w F/(2∞) w2

F/(2∞) w 0,

0 w N(i) wM(i) w2
M(i) wδ

N
1
(i) w 0 and

0 w N0(i) wM0(i) w2
M0(i) wδ

E1,I(i) w 0
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by Lemma 3.7, and the direct sum of these shows the exact sequence

(3.10) 0 w E0 w B0 w2
B0 wδ

E1 w⊕i≥0 E1,C(i) w 0.

Lemma 3.7 also shows the exact sequence

0 w E1,C(i) wM1(i) w2
M1(i) wδ

g10g20N
0(i) w 0,

and the direct sum yields the exact sequence

(3.11) 0 w⊕i≥0 E1,C(i) w B1 w2
B1 wδ

E2 w 0.

Splice the exact sequences (3.10) and (3.11), and we obtain the desired exact se-
quence (3.9). ¤

Since the Adams-Novikov E2-term Es
2(L2C) for s > 3 is trivial by Proposition

3.8, every element of Es
2(L2C) for 0 < s ≤ 3 is a permanent cycle in the Adams-

Novikov spectral sequence. For s = 0, we have

Lemma (3.12) Every element of E0
2(L2C) is a permanent cycle in the Adams-

Novikov spectral sequence.

Proof. Let x/2i ∈ E0
2(L2C). Suppose that d3(x/2i) = y/2j 6= 0. If x/2i+1 ∈

R/(2∞), then there exist elements yk = d3(x/2k) for k > i such that 2yk = yk−1

and 2yi+1 = y/2j 6= 0, and so yk’s generate a module isomorphic to R/(2∞) in
E3

2(L2C). This contradicts to Proposition 3.8. So we may assume that x/2i+1

belongs to M(i) or M0(i). Then, d3(x/2l) = y/2 6= 0 for l = i − j + 1. Since
x ∈ E0

2(L2D) is a permanent cycle by Ravenel [8], the integer l is greater than one.
Then, the element x/2l−1 is a permanent cycle and survives to a homotopy element
[x/2l−1] such that κ∗([x/2l−1]) = [y] ∈ π∗(L2D), where κ is the map in (1.3), and
[z] denotes the homotopy element detected by an element z in the E2-term. Since
y ∈ E3

2(L2D), there is an element h ∈ {gji : j = 1, 2, i = 0, 1} such that yh 6= 0 ∈
E4

2(L2D). Note that it detects [yh] 6= 0 ∈ π∗(L2D). By Proposition 3.8, we see
that xh/2l ∈ E1

2(L2C), which is a permanent cycle since Es
2(L2C) = 0 for s > 3. It

implies a contradiction: 0 6= [yh] = κ∗([xh/2l−1]) = κ∗2∗([xh/2l]) = 0. We notice
here that xgj0/2i+1 ∈ E1

2(L2C) since the cochain xsj/2i+1 is a cocycle. ¤

Lemma (3.13) In the Adams-Novikov spectral sequence, the extension problem is
trivial.

Proof. Let ξ ∈ π∗(L2C) be elements detected by x/2j ∈ E0
∞(L2C) = E0

2(L2C). It
suffices to show that 2jξ = 0. Since x ∈ E0

2(L2D) is a permanent cycle (cf. [8]) and
2j−1ξ is detected by x/2, 2j−1ξ is in the image of the induced map ι∗ : π∗(L2D) →
π∗(L2C) from the map in (1.3). It follows that 2j(ι∗([x])) = ι∗([2x]) = 0 as desired.
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