THE HOMOTOPY GROUPS OF L_2 -LOCALIZATION OF THE RAVENEL SPECTRA $T(m)/v_1$ AT THE PRIME TWO

IPPEI ICHIGI, KATSUMI SHIMOMURA, AND RINKO TAKEDA

ABSTRACT. The Ravenel spectra T(m) for non-negative integers m interpolate between the sphere spectrum and the Brown-Peterson spectrum. It admits an essential self-map $\alpha \colon \Sigma^{2p-2}T(m) \to T(m)$, whose cofiber we denote by $T(m)/v_1$. In this note, we work in the two-local stable homotopy category and study the homotopy groups of the Bousfield localization of $T(m)/v_1$ with respect to the v_2 -inverted Brown-Peterson spectrum.

1. INTRODUCTION

In the stable homotopy category of spectra localized at an odd prime number p, the second author, A. Yabe and X. Wang ([11], [9]) determined the structure of the homotopy groups of the sphere spectrum L_2S^0 localized with respect to the v_2 -localized Brown-Peterson spectrum $v_2^{-1}BP$ by use of the Adams-Novikov spectral sequence

$$E_2^*(X) = \operatorname{Ext}_{BP_*(BP)}^*(BP_*, BP_*(X)) \Longrightarrow \pi_*(X).$$

Here, the E_2 -term is the Ext group of the category of $BP_*(BP)$ -comodules. At the prime two, the second author and X. Wang ([10]) determined only the E_2 term of the Adams-Novikov spectral sequence converging to the homotopy groups $\pi_*(L_2S^0)$, and we are interested in the stable homotopy category of spectra localized at the prime two. In his book [8], Ravenel constructed the spectrum T(m) for each $m \geq 0$ characterized by

(1.1)
$$BP_*(T(m)) = BP_*[t_1, \dots, t_m] \subset BP_*(BP) = BP_*[t_1, t_2, \dots]$$

as a $BP_*(BP)$ -comodule. These spectra admit maps $T(m) \to T(m+1)$ inducing the inclusion on BP_* -homology, and T(0) and $T(\infty)$ are the sphere and the Brown-Peterson spectra, respectively. The homotopy groups of $L_2T(\infty)$ are determined by Ravenel as $BP_* \oplus BP_*/(2^{\infty}, v_1^{\infty}, v_2^{\infty})$ in [7]. We have partial results [2] and [4] on subgroups of the homotopy groups $\pi_*(L_2T(1))$. We use the 2- and the v_1 -Bockstein spectral sequences to determine it for $m \geq 1$ in two different order :

- 1) the v_1 -Bockstein spectral sequence first and then the 2-Bockstein spectral sequence;
- 2) the 2-Bockstein spectral sequence first and then the v_1 -Bockstein spectral sequence.

As the first step in the order 1), the v_1 -Bockstein spectral sequence is computed in [3], and we obtain the homotopy groups of $L_2T(m) \wedge M$ for the modulo two Moore spectrum M. In this paper, we consider the first step of the order 2).

²⁰⁰⁰ Mathematics Subject Classification. Primary 55Q99; Secondary 55Q51, 20J06.

Key words and phrases. homotopy group, Bousfield-Ravenel localization, Ravenel spectrum.

Let $T(m)/v_1$ denote the cofiber of $\alpha: \Sigma^2 T(m) \to T(m)$ for m > 0 such that $BP_*(\alpha) = v_1 - 2t_1$, whose existence is shown in section two. We then define a spectrum C by the cofiber sequence

(1.2)
$$T(m)/v_1 \xrightarrow{\eta} 2^{-1}T(m)/v_1 \longrightarrow C \longrightarrow \Sigma T(m)/v_1$$

for the localization map $\eta: T(m)/v_1 \to 2^{-1}T(m)/v_1$. We first determine the Adams-Novikov E_2 -term of L_2C in Proposition 3.8 by use of the 2-Bockstein spectral sequence associated to the cofiber sequence

$$(1.3) D \xrightarrow{\iota} C \xrightarrow{2} C \xrightarrow{\kappa} \Sigma D,$$

where D denotes the spectrum $T(m)/v_1 \wedge M$ for the mod 2 Moore spectrum M. The E_2 -term of the Adams-Novikov spectral sequence for $\pi_*(L_2D)$ is determined by Ravenel (cf. [8]) as follows:

(1.4)
$$E_2^*(L_2D) = K_m(2)_* \otimes \wedge (g_{10}, g_{11}, g_{20}, g_{21})$$

where

(1.5)
$$K_m(2)_* = v_2^{-1} \mathbb{Z}/2[v_2, \dots, v_{m+2}],$$

and g_{ij} denotes the element of bidegree $(1, 2^{j+1}(2^{m+i} - 1))$, which is denoted by $h_{m+i,j}$ in [8]. Next, we show that every element of the Adams-Novikov E_2 -term $E_2^*(L_2C)$ is a permanent cycle in Lemma 3.12, and the extension problem of the spectral sequence is trivial in Lemma 3.13. These show the homotopy groups of L_2C are isomorphic to the E_2 -term.

In order to state our result, we introduce notation: the algebra

$$E_m(2)_* = v_2^{-1} \mathbb{Z}_{(2)}[v_1, v_2, \dots, v_{m+2}]$$

such that $K_m(2)_* = E_m(2)_*/(2, v_1)$, the elements

$$u_i = v_{m+i} \in BP_* \quad \text{for } i \ge 1,$$

the algebras

$$R = E_{m-2}(2)_*/(v_1) = v_2^{-1}\mathbb{Z}_{(2)}[v_2, \dots, v_m],$$

$$R^{(n)} = R\left[u_1^{2^n}, u_2^{2^n}\right] \text{ and }$$

$$R_j^{(n)} = R\left[u_j^{2^n}\right],$$

and the submodules of $E_m(2)_*/(2^\infty, v_1) = R[u_1, u_2] \otimes \mathbb{Q}/\mathbb{Z}_{(2)}$:

$$\begin{split} \overline{M}(i) &= \bigoplus_{j=1}^{2} R_{j}^{(i+1)} / (2^{i+1}) \left\{ u_{j}^{2^{i}} / 2^{i+1} \right\}, \\ M^{0}(i) &= R^{(i+1)} / (2^{i+1}) \left\{ u_{1}^{2^{i}} u_{2}^{2^{i+1}} / 2^{i+1}, u_{2}^{2^{i}} u_{1}^{2^{i+1}} / 2^{i+1}, u_{1}^{2^{i}} u_{2}^{2^{i}} / 2^{i+1} \right\} \quad \text{and} \\ M^{1}(i) &= R^{(i+1)} / (2^{i+1}) \left\{ u_{2}^{2^{i}} u_{1}^{2^{i+1}} \overline{g}_{10} / 2^{i+1}, u_{1}^{2^{i}} u_{2}^{2^{i+1}} \overline{g}_{20} / 2^{i+1}, u_{1}^{2^{i}} u_{2}^{2^{i}} \overline{g}_{20} / 2^{i+1} \right\}. \end{split}$$

Here, \overline{g}_{j0} is an element such that $\overline{g}_{j0}/2 = u_j^{-1}g_{j0}/2$, whose existence is shown in Lemma 3.2.

Theorem (1.6) The homotopy groups $\pi_*(L_2C)$ for m > 1 are isomorphic to the tensor product of $\wedge(g_{11}, g_{21})$ and the direct sum of the modules $R/(2^{\infty})$, $\overline{M}(i)$, $M^0(i)$ and $M^1(i)$ for $i \ge 0$.

Since the E_2 -term $E_2^*(2^{-1}T(m)/v_1)$ is isomorphic to $H\mathbb{Q}_*(L_2T(m)/v_1) = \mathbb{Q}[v_2, v_3, \dots, v_m]$ by [8, Cor 6,5,7], the homotopy groups of $L_2T(m)/v_1$ are obtained by observing the homotopy exact sequence associated to the cofiber sequence (1.2).

Corollary (1.7) The homotopy groups $\pi_*(L_2T(m)/v_1)$ for m > 1 are isomorphic to the direct sum of the modules $\mathbb{Z}_{(2)}[v_2, v_3, \dots, v_m]$, $\Sigma^{-1}R/(2^{\infty}) \{g_{11}, g_{21}, g_{11}g_{21}\}$ and $\bigoplus_{i>0} \Sigma^{-1}(\overline{M}(i) \oplus M^0(i) \oplus M^1(i)) \otimes \wedge (g_{11}, g_{21})$. Here, Σ denotes a shift of dimension.

We note that the homotopy groups of $L_2T(1)/v_1$ are given in [6]. The structure of $\pi_*(L_2T(m)/v_1)$ for m > 1 in Corollary 1.7 is less complicated than that of the case for m = 1. So it seems that it is useful to determine the homotopy groups $\pi_*(L_2T(m))$ for m > 1 completely. For m = 1, we know the structure of subgroups of $\pi_*(L_2T(1))$ (cf. [2], [4]).

2. A CHANGE OF RINGS THEOREM AND STRUCTURE MAPS

We work in the stable homotopy category of spectra localized at the prime two. Let BP denote the Brown-Peterson ring spectrum, and consider the Hopf algebroid (A, Γ) associated with it, where

$$A = \pi_*(BP) = BP_* = \mathbb{Z}_{(2)}[v_1, v_2, \dots],$$

$$\Gamma = BP_*(BP) = BP_*[t_1, t_2, \dots].$$

The Hopf algebroid Γ gives rise to another one

$$(A, \Gamma_m) = (A, \Gamma/(t_1, \dots, t_m)) = (A, BP_*[t_{m+1}, t_{m+2}, \dots]).$$

Recall the Ravenel spectrum T(m) in (1.1) for m > 0, which is a ring spectrum with multiplication $\mu: T(m) \wedge T(m) \to T(m)$. Then, Ravenel showed in [8] the change of rings theorem

$$E_2^*(T(m) \wedge X) = \operatorname{Ext}_{\Gamma_m}^*(A, BP_*(X))$$

for a spectrum X. If X is the sphere spectrum S^0 , then we have an element $v_1 \in \operatorname{Ext}_{\Gamma_m}^{0,2}(A,A)$ for m > 0. This element is represented by $v_1 - 2t_1$ in the cobar complex $\Omega^0_{\Gamma} BP_*(T(m))$ for computing $E_2^*(T(m))$. Since $E_2^{s,1+s}(T(m)) = 0$ by observing the reduced cobar complex, the element v_1 survives to a homotopy element $\alpha' \in \pi_2(T(m))$. We now let $T(m)/v_1$ denote the cofiber of the composite $\alpha \colon \Sigma^2 T(m) = T(m) \land S^{21 \land \alpha'} T(m) \land T(m) \xrightarrow{\mu} T(m)$. Let M and M_{∞} be the modulo two Moore spectrum and the cofiber of the

localization map $S^0 \to S\mathbb{Q}$, respectively. In this paper we consider the spectra

$$D = T(m)/v_1 \wedge M$$
 and $C = T(m)/v_1 \wedge M_{\infty}$.

These fit in the cofiber sequence (1.3). The BP_* -homologies of the L_2 -localizations of these spectra are

$$BP_*(L_2D) = v_2^{-1}BP_*/(2, v_1)[t_1, \dots, t_m] \text{ and } BP_*(L_2C) = v_2^{-1}BP_*/(2^{\infty}, v_1)[t_1, \dots, t_m].$$

Consider a spectrum

 $E_m(2) = v_2^{-1} BP \langle m+2 \rangle$

for the Johnson-Wilson spectrum $BP\langle m+2 \rangle$ such that $\pi_*(BP\langle m+2 \rangle) = \mathbb{Z}_{(2)}[v_1, v_2, \dots, v_{m+2}].$ Since

$$v_2^{-1}BP_*/J \xrightarrow{1 \otimes \eta_R} E_m(2)_*/J \otimes_A \Gamma_m$$

for an invariant regular ideal J of length two is a faithfully flat extension, we have an isomorphism

(2.1)
$$\operatorname{Ext}_{\Gamma_m}^*(A, v_2^{-1}BP_*/J) \cong \operatorname{Ext}_{\Sigma_m(2)}^*(E_m(2)_*, E_m(2)_*/J)$$

shown by the same way as the proofs of the change of rings theorem in [1]. Here,

$$\Sigma_m(2) = E_m(2)_* \otimes_A \Gamma_m \otimes_A E_m(2)_*$$

is the induced Hopf algebroid, and

(2.2)
$$\Sigma_m(2) = E_m(2)_*[t_1, t_2, \dots]/(\eta_R(v_{m+k}): k > 2).$$

Note that m + 2 is the smallest number n such that

$$v_2^{-1}BP_*/J \xrightarrow{1 \otimes \eta_R} v_2^{-1}BP\langle n \rangle_*/J \otimes_A \Gamma_m$$

is a faithfully flat extension.

Proposition (2.3) The Adams-Novikov E_2 -terms for computing $\pi_*(L_2C)$ and $\pi_*(L_2D)$ are isomorphic to

$$\begin{aligned} E_2^*(L_2C) &= \operatorname{Ext}_{\Sigma_m(2)}^*(E_m(2)_*, E_m(2)_*/(2^{\infty}, v_1)) & and \\ E_2^*(L_2D) &= \operatorname{Ext}_{\Sigma_m(2)}^*(E_m(2)_*, E_m(2)_*/(2, v_1)). \end{aligned}$$

Proof. The isomorphism on $E_2^*(L_2D)$ follows from (2.1). Since $L_2C = \text{hocolim}_k$ $L_2T(m) \wedge M_k$ for the mod 2^k Moore spectrum M_k , the change of rings theorem (2.1) also shows the isomorphism on $E_2^*(L_2C)$.

Consider the Hopf algebroid $(E_m(2)_*, \Sigma_m(2))$ (see (2.2)). We read off the behavior of the right unit $\eta_R \colon E_m(2)_* \to \Sigma_m(2)$ and the diagonal $\Delta \colon \Sigma_m(2) \to \Sigma_m(2) \otimes_{E_m(2)_*} \Sigma_m(2)$ from that of Γ_m . Hereafter we set $v_2 = 1$ and use the notation

$$u_i = v_{m+i}$$
 and $s_i = t_{m+i}$

for i = 1, 2. Recall the Hazewinkel and the Quillen formulas:

$$v_n = 2\ell_n - \sum_{k=1}^{n-1} \ell_k v_{n-k}^{2^k} \in \mathbb{Q} \otimes A = \mathbb{Q}[\ell_1, \ell_2, \dots],$$

$$\eta_R(\ell_n) = \sum_{k=0}^n \ell_k t_{n-k}^{2^k} \in \mathbb{Q} \otimes \Gamma = \mathbb{Q} \otimes A[t_1, t_2, \dots] \quad \text{and}$$

$$\sum_{i+j=n} \ell_i \Delta(t_i^{2^i}) = \sum_{i+j+k=n} \ell_i t_j^{2^i} \otimes t_k^{2^{i+j}} \in \mathbb{Q} \otimes \Gamma \otimes_A \Gamma.$$

Then a routine computation shows

Lemma (2.4) The right unit $\eta_R \colon A \to \Gamma_m$ and the diagonal $\Delta \colon \Gamma_m \to \Gamma_m \otimes_A \Gamma_m$ act on generators as follows:

$$\begin{aligned} \eta_R(v_n) &= v_n \quad \text{for } n \leq m, \\ \eta_R(u_1) &= u_1 + 2s_1, \\ \eta_R(u_2) &\equiv u_2 + 2s_2 \mod (v_1), \\ \Delta(s_1) &= s_1 \otimes 1 + 1 \otimes s_1, \\ \Delta(s_2) &\equiv s_2 \otimes 1 + 1 \otimes s_2 \mod (v_1) \end{aligned}$$

3. The Adams-Novikov E_2 -term for $\pi_*(L_2C)$

We begin with introducing the cocycles of cobar complexes that represent generators g_{j1} and \overline{g}_{j0} .

Lemma (3.1) The elements $s_j^2 + u_j s_j$ for j = 1, 2 are cocycles of the cobar complex $\Omega^1_{\Gamma_m} E_m(2)_*/(v_1)$.

Proof. Since $d(u_j) \equiv 2s_j$ and $d(s_j) \equiv 0$,

$$d(s_j^2 + u_j s_j) \equiv -2s_j \otimes s_j + 2s_j \otimes s_j \equiv 0 \mod (v_1).$$

Lemma (3.2) There are elements

$$\begin{split} w_j &= \sum_{n>0} (-1)^{n-1} \tfrac{1}{2n} (2u_j^{-1}s_j)^n \in \Omega^1_{\Gamma_m} E_m(2)/(2^k,v_1) \\ for \ j=1,2 \ and \ any \ k>0 \ such \ that \ d(w_j)=0. \end{split}$$

Proof. Note that $\sum_{n>0} (-1)^{n-1} \frac{1}{2n} (2u_j^{-1}s_j)^n = \log(1 + 2u_j^{-1}s_j) = \log(\eta_R(u_j)) - \log(u_j)$. Since

$$\begin{aligned} \log(\eta_R(u_j)) &= \log(1 - (1 - \eta_R(u_j))) &= -\sum_{n>0} \frac{1}{n} (1 - \eta_R(u_j))^n \\ &= -\sum_{n>0} \eta_R(\frac{1}{n} (1 - u_j)^n) = -\eta_R(\sum_{n>0} \frac{1}{n} (1 - u_j)^n) \\ &= \eta_R(-\sum_{n>0} \frac{1}{n} (1 - u_j)^n) = \eta_R(\log(1 - (1 - u_j))) \\ &= \eta_R(\log(u_j)), \end{aligned}$$

we see that $d(\log(1 + 2u_j^{-1}s_j)) = dd(\log(u_j)) = 0.$

We denote the homology classes of the cocycles of Lemmas 3.1 and 3.2 by

$$g_{j1}$$
 and $\overline{g}_{j0} \in E_2^1(L_2T(m)/v_1 \wedge M_k)$.

respectively, for each k > 0, where M_k denotes the mod 2^k Moore spectrum. Consider the subalgebras

(3.3)
$$F = K_{m-2}(2)_* = R/(2) = v_2^{-1}\mathbb{Z}/2[v_2, \dots, v_m],$$
$$F^{(n)} = F\left[u_1^{2^n}, u_2^{2^n}\right] \text{ and }$$
$$F_j^{(n)} = F\left[u_j^{2^n}\right],$$

and the submodules

$$\overline{N}(i) = \bigoplus_{j=1}^{2} u_{j}^{2^{i}} F_{j}^{(i+1)} \text{ and }$$

$$N^{0}(i) = F^{(i+1)} \left\{ u_{1}^{2^{i}} u_{2}^{2^{i+1}}, u_{2}^{2^{i}} u_{1}^{2^{i+1}}, u_{1}^{2^{i}} u_{2}^{2^{i}} \right\}$$

of the polynomial algebra $K_m(2)_* = F[u_1, u_2]$. Then, as an F-module,

(3.4)

$$\begin{array}{rcl}
K_m(2)_* &=& (F[u_1] + F[u_2]) \oplus \bigoplus_{i \ge 0} N^0(i) \\
&=& F \oplus \bigoplus_{i \ge 0} \left(\overline{N}(i) \oplus N^0(i) \right), \\
u_j K_m(2)_* &=& u_j F[u_j] \oplus \bigoplus_{i \ge 0} N^0(i) \quad \text{and} \\
u_1 u_2 K_m(2)_* &=& \bigoplus_{i \ge 0} N^0(i)
\end{array}$$

for j = 1, 2. Under these notations, we rewrite (1.4) as follows:

(3.5)
$$E_2^*(L_2D) = \wedge (g_{11}, g_{21}) \otimes (K_m(2)_* \otimes \wedge (u_1\overline{g}_{10}, u_2\overline{g}_{20})).$$

The factor $K_m(2)_* \otimes \wedge (u_1 \overline{g}_{10}, u_2 \overline{g}_{20})$ is decomposed into the direct sum

$$(3.6) K_m(2)_* \oplus \overline{g}_{10}(u_1 K_m(2)_*) \oplus \overline{g}_{20}(u_2 K_m(2)_*) \oplus \overline{g}_{10} \overline{g}_{20}(u_1 u_2 K_m(2)_*).$$

We consider the connecting homomorphism $\delta \colon E_2^s(L_2C) \to E_2^{s+1}(L_2D)$ on the factor $K_m(2)_* \otimes \wedge (u_1\overline{g}_{10}, u_2\overline{g}_{20})$. The behavior of δ is read off from the following lemma:

Lemma (3.7) The connecting homomorphism δ acts as an *R*-module map on the elements of $E_2^0(L_2C)$ as follows:

$$\begin{array}{rcl} \delta(1/2^{i}) &=& 0 \quad and \\ \delta(u_{1}^{2^{i}s}u_{2}^{2^{i}t}/2^{i+1}) &=& su_{1}^{2^{i}s}u_{2}^{2^{i}t}\overline{g}_{10} + tu_{1}^{2^{i}s}u_{2}^{2^{i}t}\overline{g}_{20}, \end{array}$$

where s, t and i are non-negative integers.

Proof. Note that $u_j^{a-1}s_j$ represents $u_j^a \overline{g}_{j0}$. Then, the lemma follows immediately from the relations $d(u_j) \equiv 2s_j$ and the binomial coefficient theorem.

Proposition (3.8) The Adams-Novikov E_2 -term $E_2^*(L_2C)$ is isomorphic to the module given in Theorem 1.6.

Proof. Put $E^* = K_m(2)_* \otimes \wedge (u_1 \overline{g}_{10}, u_2 \overline{g}_{20}), B^0 = R/(2^\infty) \oplus \bigoplus_{i \ge 0} (\overline{M}(i) \oplus M^0(i))$ and $B^1 = \bigoplus_{i \ge 0} M^1(i)$. By [5, Remark 3.11], it suffices to show that the sequence

$$(3.9) 0 \longrightarrow E^0 \longrightarrow B^0 \xrightarrow{2} B^0 \xrightarrow{\delta} E^1 \longrightarrow B^1 \xrightarrow{2} B^1 \xrightarrow{\delta} E^2 \longrightarrow 0$$

is exact. In fact, $B^* \otimes \wedge (g_{11}, g_{21}) \subset E_2^*(L_2C)$ by Lemma 3.7, and the exact sequence (3.9) induces a commutative diagram

of exact sequences, where $\Lambda = \wedge (g_{11}, g_{21})$. Then, the middle maps are isomorphisms by [5, Remark 3.11].

By (3.6) and (3.4),

$$\begin{split} E^{0} &= F \oplus \bigoplus_{i \ge 0} \left(\overline{N}(i) \oplus N^{0}(i) \right), \\ E^{1} &= \left(\bigoplus_{j=1}^{2} \overline{g}_{j0} u_{j} F[u_{j}] \right) \oplus \bigoplus_{i \ge 0} \left(E^{1,I}(i) \oplus E^{1,C}(i) \right) \\ &= \bigoplus_{i \ge 0} \left(\overline{N}^{1}(i) \oplus E^{1,I}(i) \oplus E^{1,C}(i) \right), \\ E^{2} &= \bigoplus_{i \ge 0} \overline{g}_{10} \overline{g}_{20} N^{0}(i), \end{split}$$

where

$$\begin{split} E^{1,I}(i) &= F^{(i+1)} \left\{ u_1^{2^i} u_2^{2^{i+1}} \overline{g}_{10}, u_2^{2^i} u_1^{2^{i+1}} \overline{g}_{20}, u_1^{2^i} u_2^{2^i} \overline{g}_{10} \right\}, \\ E^{1,C}(i) &= F^{(i+1)} \left\{ u_1^{2^i} u_2^{2^{i+1}} \overline{g}_{20}, u_2^{2^i} u_1^{2^{i+1}} \overline{g}_{10}, u_1^{2^i} u_2^{2^i} \overline{g}_{20} \right\}, \\ \overline{N}^1(i) &= \bigoplus_{j=1}^2 \overline{g}_{j0} u_j^{2^i} F_j^{(i+1)}. \end{split}$$
 and

Note that $u_j F[u_j] = \bigoplus_{i \ge 0} u_j^{2^i} F_j^{(i+1)}$. Each summand of E^0 fits in one of the exact sequences

$$\begin{array}{c} 0 \longrightarrow F \longrightarrow F/(2^{\infty}) \xrightarrow{2} F/(2^{\infty}) \longrightarrow 0, \\ 0 \longrightarrow \overline{N}(i) \longrightarrow \overline{M}(i) \xrightarrow{2} \overline{M}(i) \xrightarrow{\delta} \overline{N}^{1}(i) \longrightarrow 0 \\ 0 \longrightarrow N^{0}(i) \longrightarrow M^{0}(i) \xrightarrow{2} M^{0}(i) \xrightarrow{\delta} E^{1,I}(i) \longrightarrow 0 \end{array}$$
 and

by Lemma 3.7, and the direct sum of these shows the exact sequence

$$(3.10) 0 \longrightarrow E^0 \longrightarrow B^0 \xrightarrow{2} B^0 \xrightarrow{\delta} E^1 \longrightarrow \bigoplus_{i>0} E^{1,C}(i) \longrightarrow 0.$$

Lemma 3.7 also shows the exact sequence

$$0 \longrightarrow E^{1,C}(i) \longrightarrow M^1(i) \xrightarrow{2} M^1(i) \xrightarrow{\delta} \overline{g}_{10} \overline{g}_{20} N^0(i) \longrightarrow 0,$$

and the direct sum yields the exact sequence

$$(3.11) 0 \longrightarrow \bigoplus_{i \ge 0} E^{1,C}(i) \longrightarrow B^1 \xrightarrow{2} B^1 \xrightarrow{\delta} E^2 \longrightarrow 0.$$

Splice the exact sequences (3.10) and (3.11), and we obtain the desired exact sequence (3.9).

Since the Adams-Novikov E_2 -term $E_2^s(L_2C)$ for s > 3 is trivial by Proposition 3.8, every element of $E_2^s(L_2C)$ for $0 < s \leq 3$ is a permanent cycle in the Adams-Novikov spectral sequence. For s = 0, we have

Lemma (3.12) Every element of $E_2^0(L_2C)$ is a permanent cycle in the Adams-Novikov spectral sequence.

Proof. Let $x/2^i \in E_2^0(L_2C)$. Suppose that $d_3(x/2^i) = y/2^j \neq 0$. If $x/2^{i+1} \in R/(2^{\infty})$, then there exist elements $y_k = d_3(x/2^k)$ for k > i such that $2y_k = y_{k-1}$ and $2y_{i+1} = y/2^j \neq 0$, and so y_k 's generate a module isomorphic to $R/(2^{\infty})$ in $E_2^3(L_2C)$. This contradicts to Proposition 3.8. So we may assume that $x/2^{i+1}$ belongs to $\overline{M}(i)$ or $M^0(i)$. Then, $d_3(x/2^l) = y/2 \neq 0$ for l = i - j + 1. Since $x \in E_2^0(L_2D)$ is a permanent cycle by Ravenel [8], the integer l is greater than one. Then, the element $x/2^{l-1}$ is a permanent cycle and survives to a homotopy element $[x/2^{l-1}]$ such that $\kappa_*([x/2^{l-1}]) = [y] \in \pi_*(L_2D)$, where κ is the map in (1.3), and [z] denotes the homotopy element detected by an element z in the E_2 -term. Since $y \in E_2^3(L_2D)$, there is an element $h \in \{g_{ji} : j = 1, 2, i = 0, 1\}$ such that $yh \neq 0 \in E_2^4(L_2D)$. Note that it detects $[yh] \neq 0 \in \pi_*(L_2D)$. By Proposition 3.8, we see that $xh/2^l \in E_2^1(L_2C)$, which is a permanent cycle since $E_2^s(L_2C) = 0$ for s > 3. It implies a contradiction: $0 \neq [yh] = \kappa_*([xh/2^{l-1}]) = \kappa_*2_*([xh/2^l]) = 0$. We notice here that $xg_{j0}/2^{i+1} \in E_2^1(L_2C)$ since the cochain $xs_j/2^{i+1}$ is a cocycle.

Lemma (3.13) In the Adams-Novikov spectral sequence, the extension problem is trivial.

Proof. Let $\xi \in \pi_*(L_2C)$ be elements detected by $x/2^j \in E_\infty^0(L_2C) = E_2^0(L_2C)$. It suffices to show that $2^j\xi = 0$. Since $x \in E_2^0(L_2D)$ is a permanent cycle (cf. [8]) and $2^{j-1}\xi$ is detected by $x/2, 2^{j-1}\xi$ is in the image of the induced map $\iota_* : \pi_*(L_2D) \to \pi_*(L_2C)$ from the map in (1.3). It follows that $2^j(\iota_*([x])) = \iota_*([2x]) = 0$ as desired.

Department of Mathematics, Faculty of Science, Kochi University, Kochi, 780-8520, Japan

email: 95sm004@math.kochi-u.ac.jp

Department of Mathematics, Faculty of Science, Kochi University, Kochi, 780-8520, Japan

email: katsumi@math.kochi-u.ac.jp

Tama-ku, Kawasaki, Kanagawa, 214-0014, Japan email: kikisml@bell.ocn.ne.jp

References

- [1] M. Hovey and H. Sadofsky, Invertible spectra in the E(n)-local stable homotopy category, J. London Math. Soc. **60** (1999) 284–302.
- [2] I. Ichigi and K. Shimomura, Subgroups of $\pi_*(L_2T(1))$ at the prime two, Hiroshima Math. J. **33** (2003), 359–369.
- [3] I. Ichigi and K. Shimomura, The modulo two homotopy groups of the L₂-localization of the Ravenel spectrum, Cubo Math. J. 10 (2008) 43–55.
- [4] I. Ichigi, K. Shimomura and X. Wang, On subgroups of $\pi_*(L_2T(1) \wedge M(2))$ at the prime two, Bol. Soc. Mexicana. **13**, (2007), 207–230.
- [5] H. R. Miller, D. C. Ravenel, and W. S. Wilson, Periodic phenomena in the Adams-Novikov spectral sequence, Ann. of Math. 106 (1977), 469–516.
- [6] H. Nakai and K. Shimomura, On the homotopy groups of E(n)-local spectra with unusual invariant ideals, Geometry & Topology Monographs **10** (2007), 319–332.
- [7] D. C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math., 106 (1984), 351-414.
- [8] D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, AMS Chelsea Publishing, Providence, 2004.
- [9] K. Shimomura and X. Wang, The homotopy groups $\pi_*(L_2S^0)$ at the prime 3 , Topology 41 (2002), 1183–1198.
- [10] K. Shimomura and X. Wang, The Adams-Novikov E_2 -term for $\pi_*(L_2S^0)$ at the prime 2 , Math. Z. 241 (2002), 271–311.
- [11] K. Shimomura and A. Yabe, The homotopy groups $\pi_*(L_2S^0)$, Topology 34 (1995), 261–289.