THE HOMOTOPY GROUPS OF L;-LOCALIZATION OF THE
RAVENEL SPECTRA T(m)/v; AT THE PRIME TWO
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ABSTRACT. The Ravenel spectra T'(m) for non-negative integers m interpolate
between the sphere spectrum and the Brown-Peterson spectrum. It admits
an essential self-map a: $2P~2T(m) — T(m), whose cofiber we denote by
T'(m)/v1. In this note, we work in the two-local stable homotopy category
and study the homotopy groups of the Bousfield localization of T'(m)/v1 with
respect to the va-inverted Brown-Peterson spectrum.

1. INTRODUCTION

In the stable homotopy category of spectra localized at an odd prime number
p, the second author, A. Yabe and X. Wang ([11], [9]) determined the structure of
the homotopy groups of the sphere spectrum L»S° localized with respect to the vo-
localized Brown-Peterson spectrum v, LBP by use of the Adams-Novikov spectral
sequence
E3(X) = Extiyp, (5p(BP., BP.(X)) = m.(X).

Here, the Es-term is the Ext group of the category of BP,(BP)-comodules. At
the prime two, the second author and X. Wang ([10]) determined only the Fs-
term of the Adams-Novikov spectral sequence converging to the homotopy groups
7.(L2SY), and we are interested in the stable homotopy category of spectra localized
at the prime two. In his book [8], Ravenel constructed the spectrum 7'(m) for each
m > 0 characterized by

(1.1) BP,(T(m)) = BP,[t, ... ,tm] C BP,(BP) = BP,[t1,ts,...]

as a BP,(BP)-comodule. These spectra admit maps T'(m) — T'(m + 1) inducing
the inclusion on BP,-homology, and T'(0) and T'(co) are the sphere and the Brown-
Peterson spectra, respectively. The homotopy groups of LoT'(c0) are determined
by Ravenel as BP, @ BP,/(2%°,v{°,v5°) in [7]. We have partial results [2] and
[4] on subgroups of the homotopy groups m.(L2T(1)). We use the 2- and the v;-
Bockstein spectral sequences to determine it for m > 1 in two different order :

1) the v;-Bockstein spectral sequence first and then the 2-Bockstein spectral
sequence;

2) the 2-Bockstein spectral sequence first and then the v;-Bockstein spectral
sequence.

As the first step in the order 1), the v;-Bockstein spectral sequence is computed in
[3], and we obtain the homotopy groups of LyT(m) A M for the modulo two Moore
spectrum M. In this paper, we consider the first step of the order 2).
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Let T(m)/v1 denote the cofiber of a: X2T(m) — T(m) for m > 0 such that
BP,.(a) = v1 — 2t;, whose existence is shown in section two. We then define a
spectrum C' by the cofiber sequence

(1.2) T(m) /vy —> 27T (m) /vy — C — ST (m) /vy

for the localization map n: T(m)/v; — 27 'T(m)/v;. We first determine the
Adams-Novikov Fs-term of LoC' in Proposition 3.8 by use of the 2-Bockstein spec-
tral sequence associated to the cofiber sequence

(1.3) D-5%C03C5 9D,

where D denotes the spectrum T'(m)/vy A M for the mod 2 Moore spectrum M.
The Es-term of the Adams-Novikov spectral sequence for 7, (Lo D) is determined
by Ravenel (cf. [8]) as follows:

(1.4) E5(L2D) = K., (2)s @ A(9105 9115 920, G21),
where
(1.5) K (2). = vy 'Z/2[va, ..., Umyal,

and g;; denotes the element of bidegree (1,271(2m%" — 1)), which is denoted by
hm+i,; in [8]. Next, we show that every element of the Adams-Novikov Es-term
E3(LyC) is a permanent cycle in Lemma 3.12, and the extension problem of the
spectral sequence is trivial in Lemma 3.13. These show the homotopy groups of
L5C are isomorphic to the Eo-term.

In order to state our result, we introduce notation: the algebra

Em(2)* = UQ_1Z(2) [Ul7 V2, ...y Um+2]
such that K,,(2), = En(2)+/(2,v1), the elements
U = Uy € BP, fori>1,

the algebras

R = E,_2(2)./(nn) = v;lZ(z) [V2, ...y Um],
R™ = R [u%n,ugn] and
R = R,
and the submodules of E,;,(2)./(2%°,v1) = Rluy, us] ® Q/Z2):
M) = @ BT/ {u e,
MO(i) = RU+D/(2+1) {u%iu%Hl/TH,u%iu%Hl/Q“‘l,u%iugi/Qi“'l} and

S

(
3 i i i i1 i i i1 i
) = RO/ {ugud g0 2 ud g g /2,

2t 2t i+l _ 20 20— i+1
ui uz g19/27 = ui u3 goo/2 }
Here, g, is an element such that g,,/2 = uj_1 gjo/2, whose existence is shown in

Lemma 3.2.

Theorem (1.6) The homotopy groups w«(L2C) for m > 1 are isomorphic to
the tensor product of A(gi1,g21) and the direct sum of the modules R/(2°), M (i),
MPO(i) and M*(i) fori > 0.
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Since the Ea-term E3 (2717 (m)/v1) is isomorphic to HQ. (LT (m)/v1) = Q[va, vs, . . .

by [8, Cor 6,5,7], the homotopy groups of LyT(m)/v, are obtained by observing
the homotopy exact sequence associated to the cofiber sequence (1.2).

Corollary (1.7) The homotopy groups m.(LoT(m)/v1) for m > 1 are isomorphic
to the direct sum of the modules Z)[va,vs, ..., Um], YLIR/(2%°) {911, 921, 911921 }
and @, 1M () @& MO(i) & M*(i)) ® A(g11,921). Here, & denotes a shift of
dimension.

We note that the homotopy groups of LoT'(1)/v; are given in [6]. The structure
of m.(L2T(m)/vy) for m > 1 in Corollary 1.7 is less complicated than that of the
case for m = 1. So it seems that it is useful to determine the homotopy groups
7« (LaT(m)) for m > 1 completely. For m = 1, we know the structure of subgroups

of m (LT (1)) (cf. [2], [4]).
2. A CHANGE OF RINGS THEOREM AND STRUCTURE MAPS

We work in the stable homotopy category of spectra localized at the prime two.
Let BP denote the Brown-Peterson ring spectrum, and consider the Hopf algebroid
(A,T') associated with it, where

A = ’/T*(BP) = B.R,< . Z(g)[vl,vg, .. .],
I' = BP.(BP) = BP.t1,ta,...].

The Hopf algebroid I' gives rise to another one
(A7Fm) = (Aa F/(tla s 7tm)) = (A7 BP*[tm+17tm+27 o ])
Recall the Ravenel spectrum T'(m) in (1.1) for m > 0, which is a ring spectrum

with multiplication p: T'(m) A T(m) — T(m). Then, Ravenel showed in [8] the
change of rings theorem
E3(T(m) A X) = Extr (A, BP.(X))

for a spectrum X. If X is the sphere spectrum S°, then we have an element
v, € Ext%fl (A, A) for m > 0. This element is represented by vy — 2t; in the
cobar complex QABP,(T(m)) for computing E3(T(m)). Since ES'™*(T(m)) = 0
by observing the reduced cobar complex, the element v; survives to a homotopy
element o’ € mo(T'(m)). We now let T'(m)/v1 denote the cofiber of the composite
a: $2T(m) = T(m) A S2ST(m) AT (m) 25T (m).

Let M and M., be the modulo two Moore spectrum and the cofiber of the
localization map S° — SQ, respectively. In this paper we consider the spectra

D=Tm)/vyAM and C=T(m)/vi A M.

These fit in the cofiber sequence (1.3). The BP,-homologies of the La-localizations
of these spectra are

BP,(LyD) = w;'BP./(2,v))[t1,...,tm] and

BP,(L2C) = vy 'BP./(2%°,v))[t1,. ., tm)].

Consider a spectrum
En(2) = vy 'BP(m +2)

for the Johnson-Wilson spectrum B P(m+2) such that 7, (BP(m+2)) = Z)[v1, v, . .

Since
v 'BP, )T 2 B (2), )T @4 T

7,Um

) Um+2]-



4 IPPEI ICHIGI, KATSUMI SHIMOMURA, AND RINKO TAKEDA

for an invariant regular ideal J of length two is a faithfully flat extension, we have
an isomorphism

(2.1) Exty, (A,vy ' BP./J) = Exts; (9)(Em(2)s, Em(2)+/J)

shown by the same way as the proofs of the change of rings theorem in [1]. Here,
Ym(2) = Ep(2)s ®4 Ty @4 En(2).

is the induced Hopf algebroid, and

(2.2) Y (2) = En(2)«[t1,to, - . /(R (Vmk) + k> 2).
Note that m + 2 is the smallest number n such that

v BP, ) 2 0 BP(n), ) J @4 T

is a faithfully flat extension.

Proposition (2.3) The Adams-Novikov Es-terms for computing m.(L2C) and
m«(LaD) are isomorphic to

E3(LoC) = Exty, o)(Em(2)ss Bn(2)./(2%,01)) and

B3(I:D) = Exth (o)(Bm(2)er En(2)e/(2,01)).

Proof. The isomorphism on Ej(LyD) follows from (2.1). Since LoC = hocolimy,
LT (m) A My, for the mod 2% Moore spectrum M, the change of rings theorem
(2.1) also shows the isomorphism on Ej(L2C). O

Consider the Hopf algebroid (E,,(2)«, Xm(2)) (see (2.2)). We read off the be-
havior of the right unit ng: En(2). — %,,(2) and the diagonal A: ¥,,(2) —
Ym(2) ®g,,(2). Zm(2) from that of T';,. Hereafter we set vo = 1 and use the
notation

U = VUpyi  and  s; = gy
for i = 1,2. Recall the Hazewinkel and the Quillen formulas:
U =20 — Y 2 € QO A=Qlly, b, ],
n k
nr(ln) =3 h_ ot €QRT =Q® Alty,t2,...] and
g i ity
Zi+j:n &A(t? ) = Zi+j+k:n git? ® ti €EQeI'®al.

Then a routine computation shows

Lemma (2.4) The right unit ng: A — Ty, and the diagonal A: Ty, = T, @4 Ty
act on generators as follows:

nr(vn) = vn forn<m,

nr(ur) = ui+2si,

Nr(ug) = ug+2sy mod (vq),

A(Sl) = Sl®1+1®81,

A(s2) = s2®14+1®ss mod (v7).
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3. THE ADAMS-NOVIKOV E5-TERM FOR 7, (LoC')

We begin with introducing the cocycles of cobar complexes that represent gen-
erators g;1 and g,.

Lemma (3.1) The elements s?—i—ujsj for j = 1,2 are cocycles of the cobar complex
O, Em(2):/(v1).

Proof. Since d(u;) = 2s; and d(s;) =0,
d(s? +u;sj) =—-2s;®s;+2s; ®s; =0 mod (vy). 0

Lemma (3.2) There are elements
wj =350 (-1)" 5 (205 sy)" € O En(2)/(28,01)
for i =1,2 and any k > 0 such that d(w;) =0.

Proof. Note that ) _(—1)" *li(Quj_lsj)" = log(1 + 2uj_15j) = log(nr(u;))
—log(u;). Since
log(nr(y;)) = log(1—(1—nr(u))) = = 3,00 5 (1 —1r(uy)"
= Yo r(G (L —u)") = —nr(3 50 711(1 uj)")
Mr(= 20 w(1—w;)") = nr(log(l — (1 —u; )
= nr(log(u;)),
we see that d(log(1 + 2u;15j)) = dd(log(u;)) = 0. O

We denote the homology classes of the cocycles of Lemmas 3.1 and 3.2 by
gj1 and §j0 S E;(LQT(m)/’Ul AN Mk),

respectively, for each k > 0, where M), denotes the mod 2* Moore spectrum.
Consider the subalgebras

F = K, 2. = R/(2) = v;'Z/2[va,...,0m),
(3.3) Fm = F[u%n,ug] and
(n) _ n
Y = Flui],

and the submodules

N(i) = @? 1 jle(H_l) and
NO(G) = F(H—l){ %1u%1+17u%iu%i+l7u%iu%i}

of the polynomial algebra K,,(2). = F[uj,us]. Then, as an F-module,

Km(2), = (Flu]+ [UJ) ® @z>o °(i)
B4 e = 1l BN
uup K (2) = ®1>0 ( )
for j = 1,2. Under these notations, we rewrite (1.4) as follows:
(3.5) E3(L2D) = Ng11,921) ® (Km(2)s ® M1, u29s0)) -

The factor K,,(2). ® A(u1g,g, u2dsg) is decomposed into the direct sum
(3.6) K (2)s © G10(u1 K (2)5) © Goo (w2 K (2)4) B G10G20 (uru2 K (2)).
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We consider the connecting homomorphism §: E§(LyC) — E3T(LyD) on the fac-
tor K (2)s ® A(u1Gqg, u2gs9). The behavior of § is read off from the following
lemma:

Lemma (3.7) The connecting homomorphism 0 acts as an R-module map on the
elements of ES(L2C) as follows:

‘ v5(1/2i) 0 and
5(“%15U§Lt/2”1) = SU%S 2t910+tu1 U2 920’

where s,t and i are non-negative integers.

Proof. Note that u?_lsj represents ujg;o. Then, the lemma follows immediately
from the relations d(u;) = 2s; and the binomial coefficient theorem. O

Proposition (3.8) The Adams-Novikov Es-term E3(L2C) is isomorphic to the
module given in Theorem 1.6.

Proof. Put E* = K, (2)« @ A(u1G19, u28a0), B® = R/ (2°)®@;5, (M (i) ® M (1))
and B' = @, , M"'(i). By [5, Remark 3.11], it suffices to show that the sequence
(3.9) 0—F" B2 B S gl Bt 2Bl g2 0

is exact. In fact, B*®A(g11,921) C E5(L2C) by Lemma 3.7, and the exact sequence
(3.9) induces a commutative diagram

| ! ! H

E3(LyD) —" E3(LoC) —2 E3(L2C) — E3*!(LyD)

of exact sequences, where A = A(g11, g21). Then, the middle maps are isomorphisms
by [5, Remark 3.11].
By (3.6) and (3.4),

EY = F@Gapo( ()@NO())
B' = (@500 Fus]) © Byso (B (1) @ BLC ()
= @ (V)0 BV () & BLO0)),
E? = @z’20§10§20N0(i)7
where
El[(l) = FOH) U%qugﬁ glo,ugiu% ?2(»“%1@;?10 )
Elc(l) = FOD w2 ud g, ud v gGyg,u ud Gayp and
N'() = @ Fpu ]F““)

Note that u; Flu;] = @, le(lH) Each summand of E° fits in one of the exact
sequences
0— F — F/(2°) 2 F/(2°°) —0,
0— N (i) — M(i) > M) >N (i) —0 and
0— NO(i) — MO(i) 2 MO(i) > BV (1) — 0
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by Lemma 3.7, and the direct sum of these shows the exact sequence

(3.10) 0—E"—B" 5B LB @, EYC (i) —0.

Lemma 3.7 also shows the exact sequence

0 — EXC(i) — M (i) = M (i) > 10820 N° (i) — 0,
and the direct sum yields the exact sequence
(3.11) 0— @, EVC(i) — B! % B % E2 —0.

Splice the exact sequences (3.10) and (3.11), and we obtain the desired exact se-
quence (3.9). O

Since the Adams-Novikov Es-term Ej(LoC') for s > 3 is trivial by Proposition
3.8, every element of E5(LyC) for 0 < s < 3 is a permanent cycle in the Adams-
Novikov spectral sequence. For s = 0, we have

Lemma (3.12) Every element of EY(L2C) is a permanent cycle in the Adams-
Nowikov spectral sequence.

Proof. Let x/2" € ES(L2C). Suppose that d3(xz/2") = y/27 # 0. If z/2iT! €
R/(2%), then there exist elements yj, = dz(z/2%) for k > i such that 2y, = yx_1
and 2y;41 = y/27 # 0, and so y,’s generate a module isomorphic to R/(2%) in
E3(L2C). This contradicts to Proposition 3.8. So we may assume that z/2'"1
belongs to M (i) or M°(i). Then, d3(x/2") = y/2 # 0 for | = i — j + 1. Since
x € EY(L2D) is a permanent cycle by Ravenel [8], the integer [ is greater than one.
Then, the element z/2'~! is a permanent cycle and survives to a homotopy element
[2/2!71] such that k. ([z/2'71]) = [y] € m.(LaD), where & is the map in (1.3), and
[2] denotes the homotopy element detected by an element z in the Es-term. Since
y € E3(LyD), there is an element h € {gj; : j = 1,2,i = 0,1} such that yh # 0 €
E3(LyD). Note that it detects [yh] # 0 € m.(L2D). By Proposition 3.8, we see
that zh/2! € E3(L2C), which is a permanent cycle since E3(L2C) = 0 for s > 3. It
implies a contradiction: 0 # [yh] = k. ([zh/2'71]) = k.2.([xh/2!]) = 0. We notice
here that xg;0/2""! € E}(L,C) since the cochain zs;/2*! is a cocycle. O

Lemma (3.13) In the Adams-Novikov spectral sequence, the extension problem is
trivial.

Proof. Let ¢ € m.(L2C) be elements detected by 2/27 € E (L2C) = ES(LyC). Tt
suffices to show that 2/¢ = 0. Since x € ES(LyD) is a permanent cycle (cf. [8]) and
27-1¢ is detected by x/2, 2971¢ is in the image of the induced map ¢, : 7.(LaD) —
7. (LoC) from the map in (1.3). It follows that 27 (s, ([z])) = t.([22]) = 0 as desired.
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