THE HOMOTOPY GROUPS OF THE L,-LOCALIZATION OF
THE MODULO p MOORE SPECTRUM SMASHING WITH THE
FIRST RAVENEL SPECTRUM

IPPEI ICHIGI AND KATSUMI SHIMOMURA

ABSTRACT. Let BP be the Brown-Peterson spectrum at an odd prime p,
and Lo denote the Bousfield localization functor with respect to ’U;lBP.
The Ravenel spectrum T'(1) is characterized by BP,(T(1)) = BPx[t1] on the
primitive generator ¢1. In this paper, we determine the homotopy groups
s« (Lo M A T(1)) for the mod p Moore spectrum M.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let p be a prime number, and BP denote the Brown-Peterson spectrum at p.
Then we have the Bousfield localization functor Ly: S, — S, on the category S,
of p-local spectra with respect to v, LBP for the generator vy of the homotopy
groups m.(BP) = BP, = Z[vi: i > 0]. Let T'(1) denote the first Ravenel spec-
trum characterized by BP.(T(1)) = BP,[t1] C BP.(BP) = BP,[t;: i > 0] as a
BP,(BP)-comodule. For the prime two, we studied subgroups of the homotopy
groups 7, (L2T(1)) in [1] and [3].

Let M and V denote the mod p Moore spectrum and the first Smith-Toda
spectrum characterized by BP,(M) = BP,/(p) and BP,(V) = BP./(p,v1). The
homotopy groups m.(LaV AT(1)) are determined at every prime by Ravenel in [6].
The second author also determined the homotopy groups 7.(L2M A T(1)) at the
prime two by use of the v1-Bockstein spectral sequence [7], in which M A T'(1) is
replaced by the Mahowald spectrum X (1). For the Ravenel spectrum T'(m) with
m > 1, the structure of m.(LaM AT(m)) is determined by Kamiya and the second
author if p > 2 [4], and by the authors if p = 2 [2].

In this paper, we study the homotopy groups m.(LaM AT(1)) at an odd prime
p. Let v ¥2P72M — M denote the Adams map and consider the cofiber sequence

(1.1) MLa'M—C—3M

for the localization map 7. Then, the Adams map induces a self-map v, : X?P~2C —
C fitting in the cofiber sequence

(1.2) v S ew2c o3y

Apply the functor vy ' BP,(—) to cofiber sequences (1.1) and (1.2), and we have
short exact sequences

(1.3) 0—NO MO — M —0 and 0— M9 5 M2 ML —o0.
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Note that these modules are BP,(BP)-comodules. We consider the Hopf algebroid
I'(2) = BP.(BP)/(t1) over BP, induced from BP,(BP). Let E5(X) for a spec-

trum X denote the Fo-term of the Adams-Novikov spectral sequence converging to
(L2 X), and put

(1.4) H*M = Extj ) (BP., M)
for a T'(2)-comodule M. Then, by a change of rings theorem [6],
E3(X AT(1)) = H*vy'BP.(X)
for X = V and = C, which equals H*MY if X = V, and H*M{} if X = C.

Applying the functor H*— to the second exact sequence of (1.3), we have the long
exact sequence

(1.5) 0— HOMO &5 HOME 25 HOMY 5 oY MY 25 H ML 2%
(1.6) (Ravenel cf. [6]) The Ea-term E3(V AT(1)) = H*MY of the Adams-Novikov
spectral sequence converging to m.(LaV A T(1)) is isomorphic, as a K(2).[vs]-
module, to

K(Q)*[U?)] ®/\(g07gl7g27g3)'
Here K(2). = Z/plva,vy '], and go = [t5], g1 = [t2], g2 = [ts] and g5 = [tB],
in which [x] denotes a homology class represented by an element x of the cobar
complex Q%(Q)BP*/(p, v1).

We decompose the module as follows:

Lemma 1.7.

HOMY) = K(Q)*EBAO@c = K(2).[vs],
H'MS = Aj{vy'go) ®c° < vy 90>@A0@1 @,
H>MS = Aj{vy'go) ® (i' ® ') {vf~ 90>@A(2)@1 @ 2,
H3MY = A3{vy'go) @ (2@ ) (v ' g0) ® K(2).[vs]g1g29s and
H*MY = K(2).[vs]g0919293-
Here,
A = ( )«{v3 i pts >0} ®@A(g1,92,93),
= @l 1@n>0 ‘A, = K(Q) [v ]
it = @z 1 D10 ‘B, @l 1@nzolcn,1@lcn,2,
i = @1:1 @nzo an,l ©® Dn,2a = @?:1 @nzolEn

for the modules defined by
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p3n+l

A, = K(2).{v; K z+)lJ(8>0} (1=1,2,3);
s— n lcn
‘B, = K(2)*{v§ %14):7+l (1l)§ g):pts>0}F (1=1,2,3);
;Cn,l = K(2)*{v§;n (pgg; Cn+1gl):p+8>0} (l:l,?),
Cn1 = K(2).{vs . +3(1)3 "gs3):pts> 0},
Chs = K(2).{0F " (@ g): 0
l n,2 ( ) {Uipiin-%—l—(zjg plcngl) pfS > }7
ny G = KT s> 0p 1=2,9)
Dyy = K@)l P @l g ipts>0)) (1=1,2),
s—1)p?"t3 , ol i—p+l
3Dpa1 = K(2)*{v§ Lp i +l(vg l*t PTgs) ipts >0},
Dup = K@ fog™ " (0 "giy) pts > 00 (1=1,2),
Doy = K@ {57 (05 g5) ipts > 0}
3n41 iy
Hp = K(Z)*{U?S,p3 +2(U§ "gf):pts>0} (1=0,1),
sp=" :’L —p+1 *
B, = K(2).{vs¥ (vg 7P g5):pts >0},
in which
3n
_p-1 _ (2 .
(1.9) €n = p?’i—l’ Cn = (p—l)en, c% = (P —l)en,

9o = 9192, 91 = 9293 and g5 = 9193
Let v(n/j : v) € H*M{ denote an element such that
o] o/ ) = pu(vi)
for v € A(g1, 92, 93), in which @, is the homomorphism in (1.5). Note that
K(2).[n]{v(n/j : 7)} = K (2):[o1]/(v]).
Lemma 1.10. We have submodules of H* Mj :

E K(©2)[vi{v(sp®*t/azpsi: 1) :pts >0} (1=1,2,3);
Cpi = EK@ufoi{o(sp® T + plensr/agniirr - g) :pts > 04 (1=1,2),
Cny = KQ2)u[oi{o(sp® ! + pPenfaznia 1 g3) :pts >0},
'Crp = K(2)oi{v(sp®™* +pent1)/asnss : g1) 1 pfs >0},
lCQ,z = K(2).[vi]{v(sp®™ 1 +plenfasnii—1:q) :pts >0 (1=2,3);
B, = K@) ol{v(sp* ! +pt e Jasn i gf) ipts >0 (1=0,1),
°En K(2)foi{v(sp™ 2 + ¢y —p+ 1/azni2 : g3) :pts > 0}

Here, integers a,, are defined by

1 -1 =3k+1
e A

(1.11) —1 B B
pHp+ e n=3k+1 (1=2,3).

Consider the submodules of H* M
@ = @?:1 @nzo An;

@Z:l @nzo lCZn,l ® lén,%
= D Ganzo "B,

nhg ﬁ)i
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Theorem 1.12. As a K(2).[vi]-module, the Ey-term E3(C AT(1)) = H*M; is
given by:

HOM] = K(2)lon)/(07%) © A3 02,

H'M! = g’eK(2).{v(s/l1:q):pts, =1,2,3} D¢,

H2M{ = g(K@2){v(s/1:q):pts, 1=1,2,3}a¢)
@K(2)*{U(S/1 : glgl/) :p'fsa lvl/ = 13273} 69227

H3M{ = g(K(2){v(s/1:qgr):pts, ,I!=1,2,3} @) and

H*M} = 0 fors>3.

Here, g denotes an element corresponding to v:’;*lgo,

The existence of the element g is certified by Lemma 2.8.

This theorem shows that the Es-term E35(C' A T(1)) has horizontal vanishing
line s = 4. It follows that the Adams-Novikov differentials d, are trivial and no
extension problem arises.

Corollary 1.13. The homotopy groups m.(L2C A T(1)) are isomorphic to the
Adams-Novikov Ey-term E5(C ANT(1)).

(1.14) (Ravenel cf. [6]) The homotopy groups of vy M A T(1) are isomorphic to
Z/plvit, va] ® A(ha0).
Substitute these results to the exact sequence obtained by applying the functor

7« (Lo — AT(1)) to the cofiber sequence (1.1), and we obtain our main result:

Corollary 1.15. As a K(2).[vi]-module, the homotopy groups m.(LaM AT(1)) are
gwen as follows:

Tt (LM AT() = 52 /plon, sl (07, 0F)
O AR © BT @ ho oZ/ploy s va,
Tqa(LaM AT(1)) = S~2H'M,
Trqs(LaM AT(1)) = S3H2M],
Trqea(LaM AT(1)) = S4H3M],
Tag—t(LoM ANT(1)) = 0 ford<t<g and
Teg(LaM AT() = Zfplon, va).

Here ¢ =2p — 2, and X denotes a shift of dimension.
We notice that the last three equalities are replaced by
Taw(LoM AT(1)) = STH3M! @ Z/3[v1, vs),
when p = 3.

2. SOME RELATIONS IN I'(2)

For the Brown-Peterson spectrum BP, we have the associated Hopf algebroid
(A,T') = (BP,, BP.(BP)) = (Zy)[vi: i > 0], Alt;: i > 0]).

Here v; € my(pi_1)(BP), the Hazewinkel generators, and t; € BPy(,i_1)(BP). The
behavior of the structure maps is read off from the Hazewinkel and the Quillen
formulas:

O = pm, — S0 mivﬁi_i, NR(Mn) =354 icn mit;?l and

i

i i+
D jmn MDA =300 pmn Mty @
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A routine computation shows the following two lemmas.

Lemma 2.1. The right unit ng : A — T'(2) =T'/(¢t1) behaves on the generators v;
as follows:

nr(v,) = v, mod (p) for n=0,1,2,
2
nr(vs) = vz +vith — ol o mod (p),
»? 3
77R(’U4) = v4+ U2t2 + "Ultg — ’Ulw;g 1 — ’Ug t2 - ’Uf t3 mod (p)

vg + Uth + vits, 1 v t2 mod (p) and
Vs + ’Ugt2 + ’U2t§ + ’U1t4 — Vw3 2 — V1W4 1

3 4 2
—vh t3 — v}ty — tamr(vh ) mod (p).

=
=

—~
<
ot

~—
|

Here, t3,1 = t§ —ws 1 —va_ltg, and pw; j = nr(v))? — 7" if nr(v;) = 3 v mod
(p) for monomials v.

Lemma 2.2. Consider the operation D: T'(2) — I'(2) ® 4 I'(2) defined by D(x) =
xr®1+1®x— A(x) for the coproduct A. Then we see that

D(t) = 0 and D(t3) = vibap
for by j defined by pbs ; = D(t§j+1),

Note that vy ' BP,(X) is a I'(2)-comodule if BP,(X) is a Z/p-module, since v,
is a primitive element of a I'(2)-comodule BP,/(p) by Lemma 2.1.

The Fs-term of the Adams-Novikov spectral sequence converging to the ho-
motopy groups m,(X) of a spectrum X is Ey'(X) = Exti(A, BP.(X)). Let
T(1) denote the Ravenel ring spectrum characterized by BP,.(T(1)) = A[t1], in
which ¢; is a primitive element of the I'-comodule. Consider the Hopf algebroid
(A, T(2)) = (A,T/(t1)) associated with (A,T'). Then, we have an isomorphism

(2.3) E3 (X AT(1)) = H*vy ' BP,.(X)

(see (1.4) for H*—) by a change of rings theorem (cf. [6]) if BP.(X) is a Z/p-module.

Hereafter, we set v = 1 for the sake of simplicity. In fact, we can recover vy
since every equation appearing here is homogeneous. Consider the cobar complex
Qf )02 'BP,/(p) for computing Extp(g) (BPs, vy ' BP,/(p)).

Lemma 2.4. There are elements x; € BP,/(p) for i < 3 such that xz; = vg mod
(pa Ul) and

2
vith — ol to mod() i=0
d(z;) = t2—1)1+t31—7)1 th mod() i=1
2
—of +pt32—|—v Ty — b i P mod (p) i=2.
Here, t35 =14 ;.
2 4
Proof. Put o = vs, x1 = v§ — vlvy and x5 = 2§ — 0¥ “log 4+ P “PyP. Then, the

lemma follows immediately from Lemma 2.1 with the definition of the differential
d: d(x) = nr(x) — . O

Lemma 2.5. The element t31 is a cocycle.
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Proof. Noticing that d(ve) =0 mod (p), we compute
d(vitsy1) = d(—vgtg2 + v§2t2 +d(vy)) =0

by Lemmas 2.1 and 2.2. Since v, acts on the cobar complex Qf 5 BP. /(p) monomor-
phically, we obtain the lemma. O

By virtue of this lemma, we have cocycles

1

_pT
t3i = 13
for ¢ > 0.
Lemma 2.6. Put
p.p* p p®
wy = vsty +1i33—131 —t2’l73(’l)3 ) and
1 1 2 3_o 5_p2_1 p2 5_q
wy = v lwsq+ b <w472—ti)+v{’ ty — o PR

Then, d(vE) = wy — viwe mod (p), and d(wz) = v{’_ltgz ® tg4 — vf5_1t§’ ® th mod

(p)-

Proof. The first assertion follows immediately from the congruence on ng(vs) in
Lemma 2.1.

By Lemma 2.5 and the relation d(zngr(v)) = d(z) ® v — 2 ® d(v) for v € A and
x € I'(2), we have

d(viwe) = d(wq)
— P o gp? p*.p o 4p* p*.p o 4p? p°.p o 4p°
= oty @ty —v] th@th +ol th @ty —o) th®ty mod (p)

Since v1: Qpg BP./(p) — Qf o) BP:/(p) is a monomorphism, we have the second.
O

Lemma 2.7. The cochain th ® tgs cobounds. In other words, there is a cochain o
3
such that d(o) =th @5 .
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Proof. The desired element o is read off from the following computation, in which
the underlined terms with the same subscript cancel each other out:

a(h) = (8~ oltss,) o tf
d (;t?’S) = B ef
A(@tsonn(])) = —olts® (B, +obtss — 1),
d <—;vfpt§72> = v%pt&g ®t32,;
d ('U:Zl)iltg,Q?]R('U3) = o 3,0 (%4 - @5) ,
d (—vfpild(xg)nR(:El) = U;pild(iﬂg) ® (vftg - vf“tg,’l - Uf3t’2’
= Ul_p_l —Uif2+pt3)25 + U%p2—1t27 . U;f‘*-f-PS—i”th) ® Uiftg
—v; P (*sz%rpts,z + o My - U?4+p3_pt§) ® (Ufﬂtal + Ufgtg) ;
d(waltan +of 7)) = (<ol Phan o M = o) ) @ (b + ) |

6

2p° —p—2,2
d vy t5

2p2—p—2
-] o ® t27,

41,3 o5 o 41,3 on o 2
d ("Uf P P ’Ugtz = ’Uf P P ’Ultg X t28 — Uiln t2 (24 t29 and

4 3 2
p +p°+p°—2p—2,2
d <_U1 t5

4,3, 2
+p°+p°—2p—2
Ui) prp P tg ® t29.

Lemma 2.8. There exists a cocycle T such that T = v§71t§ mod (p,v1).

5
Proof. By Lemmas 2.6 and 2.7, we see that 7 = wy — v~ 'o? + v "' satisfies the
desired condition. O

3. THE ELEMENTS z,,

In this section, we introduce the elements x, and g,, and observe the differential
of them in cobar complex Qf, o BP./(p).

The elements x,, € BP, for n < 2 are those given in Lemma 2.4. We define x,,
for n > 3 inductively by

(31) r = 2y + ()M,
forn=3k+1>1withl=1,2,3, and

fv;p3v§4c’“‘1wp2 + v;pzfpvg%k‘lxg n=3k+1>4
(32) Yn = vflvé’%’“ (vg + v10f) n=3k+2

0 n=1orn=3k+3,

2 1 2
— PP p—1,2 P, P PP 40P .
where w = v§ 7" — VI V3~ UIUy Vs — vyv3vs +or s, and the elements g, € I'(2):

th n=20

(—1)%5”%2’;2 =3kt
(—1)kH1pf ol n =3k +2
(—1)F+1pl er " = 3k + 3.

[

(3'3) gn =



8 IPPEI ICHIGI AND KATSUMI SHIMOMURA

Here, the integers a,, and ¢, are given in (1.11) and (1.9), respectively.

Lemma 3.4. For the differential d : QIQ(Z)BP*/(p) — Q%(z)BP*/(p) of the cobar
2

complez, d(w) = vP(th —t3) mod (p,v? ™).

Proof. This follows from the computation by Lemma 2.1:

2 1 2
— p +p p—1,2 D, P Doy P D
dlw) = d(vi ™ — QUi V3~ UiU3 Vg — viUsy + vivs)
2 2 2 2
P, PP P, 4P p,p° (4P
vivs by | —viusty, — 013 (tz 1 tlg)
3 3 2 2
P P P P P p P
—V1 03 (t2 4 t722) + vy (03t2 4 + t3 —t3 — U3 t23)

2
vy (t5 —t3)

mod (p,v?*). O

Lemma 3.5. In the cobar complex Q%Q)BP*/(p), d(z,) = v{"g, mod (v{"TP).

Proof. For n = 0,1, these follow from Lemma 2.1 immediately, and for n = 2,

2 2 2 2 2 2
— p°+p — p°+p (1P D, P°—P4P P +3py _ az+2p
d(ze) = —v] Plgo = —v] (t3 —vjvy TP ) mod (p, v} ) = (p, v} ),

since wy 1 = v1vh 15 mod (p, v?).
Suppose inductively the congruence on d(zsk42). Then, raising it to the p-th
power shows the congruence on d(zsk+3). By using Lemma 3.4, we compute

2 2 2
Ay = (SR O mod (pof T,
d((—l)kvf agk+2—P v§40kwp2)
2 ., 2 2
(—l)kvf a3k+21}§4(»k (tg‘l _ th) mod (p, Uf a3k+2+P ),
2¢13k+2—(l2 p4ck

vy *xg)

2 4 2 2 2 2
kP ask+2, pci [ 4p D, D —pyp P azk+2+2p
(—=1)%vy U3 (t3 —vjvy Tty ) mod (p, vy )

(-1

[~
S

and obtain the congruence on d(zgr14). We further compute

2 3 2
k+1,P03k+4 D Ckt1,4p Pask+4+p
(=) vy Us ty )

mod (p, vy

)

d($§k+4) =
A((—1) o] T )
= (Do
2
(1) ] o )

2 3 2
— k. PO3k+4 D Ckt1 (4D D Dyp pask+a+p+1
= (=1)Fv Ug <t2 —t5 + e} ) mod (p, v, )

2
mod (p7 Ufa3k+4+p —1)

)

to obtain the congruence on d(zsk+5), and complete the induction. ([l

4. Proof of Theorem 1.12
We begin with
Lemma 4.1. For the modules in (1.8), we have relations

1) @nZO B, ®C,1 ©'Cpa equals K(2).[v5]g forl=1,2,3.
2) @.>0 Dp1 @Dy 2 ®'E, equals K(2).[v8]g;_, forl=1,2,3.
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Proof. The part 1) based on the fact:

(4.2) For each non-negative integer n, we have unique non-negative integers m and
k such that p*t (m + 1 —p) and

n = mp*+e, (o = (p—1)ex).

In fact, for each integer n, there is an integer s such that n— (p—1)e, is divisible by
p3*. Indeed, we may take s = 0. Let k be the largest integer among such integers,
that is the desired one.

Since the condition on m is divided into three conditions

a)pt(m+1), b)p|(m+1), p*f (m+1-p), or ¢)p®|(m+1-p),p*f(m+1-p),

the fact (4.2) divides non-negative integers into three kinds:

a) (s—1)p** +cp, b)) (sp+p—1Dp** +cp =sp** + ¢y and
c) (sp?+p—1)p** +cp = sp® 2 +cpyq
for pts > 0. This shows the desired decomposition.
For the part 2), we consider another expression

n = mp*+dc, (= @+ =(p*—1)ex)

for m with p*> (m+1—p?). By a similar argument, we obtain the decomposition
for [ = 1,2. For [ = 2, just use another expression of a non-negative integer np:

np = mp* 4+, —p+1 (, =@+ 1= (p*—1)ex)

for m with p3{ (m + 1 — p?), excluding the case where k = 0 and p { (m + 1).
]

Proof of Lemma 1.7. Since ¢ is isomorphic to K (2),[v}]/K (2)., we see the isomor-
phism on HOMY.

Decompose H'M = K(2).[05](v go) & K (2).[05]{g1, 92, g5} for K(2)s[vs] =
K(2).[v3]/K(2).. Then the first summand is isomorphic to AJ(vy'ge)®
K(2).[v8](v2 " go). By Lemma 4.1.1), the second summand is isomorphic to A} @
il @ c!'. We decompose

H?MY = A(v3 " go) @ K(2).[v8](v5 " g0){g1, 92, 95} ® K(2):[vs]{g5. 97, 95}

and obtain the desired decomposition by Lemma 4.1.2). Similarly follow the others.
O

Proof of Lemma 1.10. By virtue of Lemma 3.5, we may take v(sp®"*!/ag,;: 1) =
x5,,,/vi°""", and so ‘A, is a submodule of H*M{.
We also put v(sp® T plenrr/agnrirn 2 gi) = v(sp* T azppia 1 Dgsnran

for lle. For the other, it follows similarly. [l

Proof of Theorem 1.12. Let D' denote the module appearing on the right hand
side of the isomorphism on H*M} in the theorem. Since the inclusion D* — H’Mj}
defined by Lemma 1.10 satisfies the condition of [5, Remark 3.11], it suffices to
show that the sequence

0— H'MO 25 D0 25 DO % gy &5 pr 2
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is exact. By Lemma 3.5, we have exact sequences
0— K(2), = K(2).[n]/(07°) = K(2)u[v1]/ (v5°) = 0,

)

P v1 6 .
0—cd 50 =50 5t —0

=1

P
00—t 57¢ o

v 5 .
- 54250 and

0o 252 72 LK(2)*[U3]919293 — 0.

These show that the above sequence is exact. ([l
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