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Abstract. We work in the stable homotopy category of p-local spectra for a
fixed prime number p. Let E be a spectrum and LE denote the stable homo-

topy category of localized spectra with respected to E in the sense of Bousfield.

Then, M. Hopkins introduced a Picard group Pic(LE) of the category LE . If
the spectra E and F satisfy the relation ⟨E⟩ ≥ ⟨F ⟩ of the Bousfield classes,

then we have a homomorphism ℓ : Pic(LE) → Pic(LF ). We consider the spec-

tra Kn
m = E(n) ∧ MJm for the n-th Johnson-Wilson spectrum E(n) and a

type m generalized Moore spectrum MJm for 0 ≤ m ≤ n. For E = Kn
m, we

have a subgroup Pic0(LE) of Pic(LE) consisting of exotic elements. In this
paper, we study the homomorphism ℓ : Pic0(LE(n)) → Pic0(LKn

m
), and give

conditions under which it is an isomorphism. This is a generalization of the

result Pic0(L2) ∼= κ2 ([3, Remark. 6.5]) for (p, n,m) = (3, 2, 2).

1. Introduction

Let S(p) denote the stable homotopy category of p-local spectra for a prime
number p. For each spectrum E ∈ S(p), we call a spectrum X ∈ S(p) E-local if
[C,X]∗ = 0 for any C with C ∧ E = 0, and denote by LE the full subcategory
consisting of all E-local spectra. We then have the Bousfield localization functor
LE : S(p) → LE ⊂ S(p) along with a natural transformation η : id → LE . Let ⟨E⟩
for a spectrum E denote the Bousfield class of E. We define an order on Bousfield
classes by setting ⟨E⟩ ≥ ⟨F ⟩ if X ∧ F = 0 whenever X ∧ E = 0. Then,

LE = LF (or LE = LF ) if and only if ⟨E⟩ = ⟨F ⟩.

A spectrum X ∈ LE is called invertible if there is a spectrum Y ∈ LE such that
LE(X ∧ Y ) ≃ LES

0 ∈ LE . M. Hopkins introduced the Picard group Pic(LE) of
a localized category LE , which consists of equivalence classes of invertible spectra
under weak equivalences (cf. [26], [5]). We notice that the Picard group needs not
be a set. The multiplication ∧E of the group is defined by X ∧E Y = LE(X ∧ Y )
for X,Y ∈ LE , and LES

0 is the unit. Hereafter, we abuse notation and write
X ∈ Pic(LE) for the equivalence class of an invertible spectrum X. For spectra E
and F with ⟨E⟩ ≥ ⟨F ⟩, we have a homomorphism

(1.1) ℓF : Pic(LE) → Pic(LF )

defined by ℓF (X) = LFX (cf. [12, Lemma 2.2]). Moreover, we see easily the
following:

(1.2) (cf. [12, Lemma 2.5]) ℓF is a monomorphism if ⟨E⟩ ≥ ⟨F ⟩ and LES0 = LFS
0.

1



2 KATSUMI SHIMOMURA

Let BP , E(n) and K(n) denote the Brown-Peterson spectrum, the Johnson-
Wilson spectrum and the Morava K-theory for each integer n ≥ 0, respectively,
whose coefficient rings are

BP∗ = Z(p)[v1, v2, . . . ],

E(0)∗ = Q = K(0)∗, and for n ≥ 1,

E(n)∗ = Z(p)[v1, v2, . . . , vn, v
−1
n ] and K(n)∗ = Z/p[vn, v−1

n ].

Consider the spectra

Kn
m =

n∨
i=m

K(i) for 0 ≤ m ≤ n.

Then, the Bousfield classes of these spectra satisfy

(1.3) ⟨E(n)⟩ = ⟨Kn
0 ⟩ > · · · > ⟨Kn

m⟩ >
〈
Kn
m+1

〉
> · · · > ⟨Kn

n ⟩ = ⟨K(n)⟩ .

Here, the first equality is shown in [20, 2.1.Th.(d)]. We consider the stable homo-
topy categories localized with respect to these spectra:

Lnm = LKn
m

and Ln = LE(n) = Ln0 ,

and the Bousfield localization functors

Lnm : S(p) → Lnm and Ln(= Ln0 ) : S(p) → Ln
for 0 ≤ m ≤ n. The smash product ∧nm on Lnm is defined by

(1.4) X ∧nm Y = LKn
m
(X ∧ Y ) = Lnm(X ∧ Y )

for X,Y ∈ Lnm.
We say that a finite spectrum V has type m, if K(i)∗(V ) = 0 for i < m and

K(m)∗(V ) ̸= 0. A typical example of a type m finite spectrum is a generalized
Moore spectrum MJ for an invariant ideal J = (pe0 , ve11 , . . . , v

em−1

m−1 ) of BP∗, such
that

BP∗(MJ) = BP∗/J.

For a type m finite spectrum V ,

(1.5) ⟨Kn
m⟩ = ⟨E(n) ∧ V ⟩ .

Furthermore, for a spectrum W ,

(1.6) (cf. [7, Cor. 2.2]) Lnm = LV Ln and W ∧nm V ≃ LnW ∧ V.

Here, the second follows from the first by W ∧nm V = LV LnW ∧ V ≃ LnW ∧ V ,
since V is finite.

Note that Lnm+1S
0 is an LnmS

0-module spectrum, and we have
〈
LnmS

0
〉
≥

〈
Lnm+1S

0
〉
.

Since
〈
LK(n)S

0
〉
= ⟨E(n)⟩ = ⟨E⟩ for

E = v−1
n BP

by [7, Cor. 2.4] and [20, 2.1.Th.(b)], we see the following:

(1.7) ⟨E⟩ =
〈
LnS

0
〉
=

〈
LnmS

0
〉
=

〈
LK(n)S

0
〉
,

where ⟨E(n)⟩ =
〈
LnS

0
〉
since E(n) is smashing (cf. [21]).

Now we consider the Picard groups of the categories Lnm. For Ln = Ln0 and
LK(n) = Lnn, we have the followings:



A RELATION BETWEEN HOPKINS’ PICARD GROUPS 3

(1.8) ([9, Prop. 1.4, Lemma 1.5], [5, Prop. 7.6]) Both Pic(Ln) and Pic(LK(n)) are

sets. Furthermore, there is a summand Pic0(Ln) such that Pic(Ln) ∼= Pic0(Ln)⊕Z.

(1.9) ([9], [5, Th. 1.3, (15)]) For an invertible spectrum X in Ln, E(n)∗(X) ∼=
E(n)∗ as E(n)∗-modules. For an invertible spectrum X in LK(n), E(n)∗(X ∧V ) ∼=
E(n)∗(V ) as E(n)∗-modules for any generalized Moore spectrum V of type n.

The next theorem is a generalization of (1.9).

Theorem A. Let 0 ≤ m ≤ n. For an invertible spectrum X in Lnm, there is
an isomorphism E(n)∗(X ∧ V ) ∼= E(n)∗(V ) of E(n)∗-modules for any generalized
Moore spectrum V of type m.

By the results of Hopkins and Smith [6] and Devinatz [1], we have a sequence

(1.10) Vm = {Vk, τk : Vk+1 → Vk}k≥1

of type m generalized Moore spectra Vk for each m ≥ 0 satisfying the following five
properties:

1) Each Vk ∈ Vm is a generalized Moore spectrumMJm,k for an invariant ideal

Jm,k = (pe0,k , v
e1,k
1 , . . . , v

em−1,k

m−1 ) with ei,k ≥ 0

of BP∗.
2) Jm,k ⊃ Jm,k+1 and

⋂
k≥1 Jm,k = 0.

3) For each k ≥ 1, Vk ∈ Vm is a ring spectrum with multiplication mk : Vk ∧
Vk → Vk and unit ik : S

0 → Vk, in which ik is the inclusion to the bottom
cell.

4) For each k ≥ 1, the map τk satisfies τkik+1 = ik. In particular, it induces
the projection (τk)∗ : BP∗/Jm,k+1 → BP∗/Jm,k.

5) For each k ≥ 1, Vk ∈ Vm is self-dual: D(Vk) = ΣakVk for the Spanier-
Whitehead dual D(X) = F (X,S0) and an integer ak.

We notice that V0 = {S0} and so Vk = S0 ∈ V0 for k ≥ 1.

(1.11) ([7, Th. 2.1, Cor. 2.2]) LnmX = holimVk∈Vm
LnX ∧ Vk for 0 ≤ m ≤ n and for

any spectrum X.

We call an invertible spectrum X in Lnm exotic if the isomorphism E(n)∗(X ∧
V ) → E(n)∗(V ) in Theorem A is the one of E(n)∗(E(n))-comodules for each V ∈
Vm. We have well known subgroups of the Picard groups of Ln and LK(n) consisting
of exotic elements:

Pic0(Ln) ⊂ Pic(Ln) and κn ⊂ Pic(LK(n)).

(1.12) ([9, Th. 2.4]) For Q ∈ Pic0(Ln), we have an isomorphism E(n)∗(Q) ∼= E(n)∗
as an E(n)∗(E(n))-comodule.

For a given sequence Vm in (1.10), we consider a collection

(1.13)
Snm = {X ∈ Lnm | ∀Vk ∈ Vm, ∃hXk : E(n)∗(Vk) ∼=C(n) E(n)∗(X ∧ Vk),

(τk−1)∗h
X
k = hXk−1(τk−1)∗}/ ≃,

in which ∼=C(n) denotes an isomorphism of E(n)∗(E(n))-comodules, and put

(1.14) Pic0(Lnm) = Pic(Lnm) ∩ Snm ⊂ Snm.
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We see that Snm is a semigroup with multiplication given by the smash product ∧nm
(see (3.10)). It looks that Snm depends on the choice of a sequence Vm of (1.10),
and so does Pic0(Lnm).

Proposition B. Let 0 ≤ m ≤ n. Then, Snm is defined independently of the choice
of Vm. Furthermore, Pic0(Lnm) is a subgroup of Pic(Lnm).

We notice that the following:

(1.15) (cf. [9], [5]) Pic0(Ln0 ) = Pic0(Ln) and Pic0(Lnn) = κn.

Consider the homomorphism ℓnm : Pic(Ln) → Pic(Lnm) in (1.1) obtained from the
relation ⟨E(n)⟩ ≥ ⟨Kn

m⟩ in (1.3). It follows from (1.6) and (1.12) that LnmQ ∈ Snm
for Q ∈ Pic0(Ln), and so the homomorphism ℓnm is restricted to a homomorphism

(1.16) ℓnm : Pic0(Ln) → Pic0(Lnm).

We now consider a similar statement to (1.2) on ℓnm : Pic0(Ln) → Pic0(Lnm) with
⟨E(n)⟩ ≥ ⟨Kn

m⟩ and
〈
LnS

0
〉
=

〈
LnmS

0
〉
. Let {Es,tr (X)} for a spectrum X ∈ S(p)

denote the E(n)-based Adams spectral sequence converging to the homotopy groups
π∗(LnX):

(1.17) Es,t2 (X) = Exts,tE(n)∗(E(n))(E(n)∗, E(n)∗(X)) =⇒ πt−s(LnX).

We consider a condition:

(C-I)m There exists a generalized Moore spectrum V of type m such that the inclu-

sion iV : S0 → V to the bottom cell induces a monomorphism (iV )∗ : E
rq+1,rq
rq+1 (S0) →

Erq+1,rq
rq+1 (V ) for every r ≥ 1.

Hereafter, we put

q = 2p− 2.

Theorem C. Let m be an integer with 0 ≤ m ≤ n, and suppose (C-I)m. Then,
ℓnm : Pic0(Ln) → Pic0(Lnm) in (1.16) is a monomorphism.

Next, we consider two conditions, under which ℓnm in (1.16) is an epimorphism:

(C-II) Pic0(Ln) is a finite group.

(C-III)m There exists a generalized Moore spectrum V of typem such that the inclu-

sion iV : S0 → V to the bottom cell induces a monomorphism (iV )∗ : E
rq+2,rq
2 (S0) →

Erq+2,rq
2 (V ) for every r ≥ 1.

Theorem D. Let m be an integer with 0 ≤ m ≤ n, and suppose (C-II) and (C-
III)m. Then, ℓnm : Pic0(Ln) → Pic0(Lnm) in (1.16) is an epimorphism.

Actually, we show the mapping ℓnm : Pic0(Ln) → Snm given by ℓnm(X) = LnmX

surjective in Corollary 5.16. The mapping factors as Pic0(Ln)
ℓnm−−→ Pic0(Lnm) ⊂ Snm.

Corollary D-1. Let m be an integer with 0 ≤ m ≤ n, and suppose (C-II) and
(C-III)m. Then, Pic0(Lnm) = Snm. In particular,

Sn0 = Pic0(Ln) and Snn = κn.

In other words, a spectrum X ∈ Lnm is exotic invertible in Lnm if and only if there
exists an isomorphism hXk : E(n)∗(Vk) ∼= E(n)∗(X ∧Vk) of E(n)∗(E(n))-comodules
for each Vk ∈ Vm such that (τk−1)∗h

X
k = hXk−1(τk−1)∗.
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Corollary D-2. Let ℓni,m : Pic0(Lni ) → Pic0(Lnm) for 0 ≤ i ≤ m ≤ n be the
homomorphism defined by ℓni,m(X) = LnmX. If (C-II) and (C-III)m hold, then the
homomorphism ℓni,m for 0 ≤ i ≤ m ≤ n is an epimorphism.

We note that

(1.18) If (C-I)m (resp. (C-III)m) holds, then so does (C-I)i (resp. (C-III)i) for each
i with 0 ≤ i ≤ m.

Corollary D-3. Let m be an integer with 0 ≤ m ≤ n, and suppose (C-I)m,

(C-II) and (C-III)m. Then, the functor Lnm defines an isomorphism Pic0(Ln)
∼=−→

Pic0(Lnm). Furthermore, Pic0(Ln)
∼=−→ Pic0(Lni ) for i ≤ m.

We also study a generalization of [11] (see Proposition F), and consider a condi-
tion:

(C-IV)m For each spectrum Vk ∈ Vm, the homotopy group π0(LnVk) is finite.

Since V0 = {S0}, we set (C-IV)0 void.

Proposition E. Let m be an integer with 0 ≤ m ≤ n and X ∈ Snm. If (C-IV)m
holds and X ∧ Vk ≃ LnVk for each Vk ∈ Vm, then X ≃ LnmS

0.

We fix a spectrum Vk ∈ Vm with k ≥ kX , in which kX is the integer in Proposition
4.15. For each m with 1 ≤ m ≤ n and s ≥ 0, consider the subsemigroups of Snm:

(1.19) Sn,(s)m = {X ∈ Snm | dr(1XVk
) = 0 ∈ Er,r−1

r (X ∧ Vk) for r < sq + 1}.

Here, 1XVk
∈ E0,0

2 (X ∧ Vk) is the generator in (4.12). We notice the existence of an

integer sm such that Erq+1,rq
rq+1 (Vk) = 0 for r ≥ sm and Vk ∈ Vm (see (4.14)). Then,

Proposition E implies Sn,(sm)
m = 0 (cf. [11, Cor. 2.2]). The same argument as [11,

§2] works to show the following:

Proposition F. Let 0 ≤ m ≤ n. If (C-IV)m holds, Snm has a decreasing finite
filtration

Snm = Sn,(0)m ⊃ Sn,(1)m ⊃ · · · ⊃ Sn,(sm−1)
m ⊃ Sn,(sm)

m = 0

of subgroups with monomorphisms

φs : Sn,(s)m /Sn,(s+1)
m → Esq+1,sq

sq+1 (Vk)

for s ≥ 1. In particular, Snm is an abelian group if (C-IV)m holds, and then Snm =
Pic0(Lnm).

This is a generalization of [11, Th. 1.2, Lemma 2.8], which is the case for m = 0.
The conditions (C-II) and (C-IV)m are replaced by stronger conditions stated

by the E(n)-based Adams spectral sequence:

Remark 1.20. The condition (C-II) (resp. (C-IV)m) holds if the E2-term Es,s−1
2 (S0)

(resp. Es,s2 (Vk)) is finite for each s > 0.

The Picard group Pic0(Ln) is known in the following cases:

• ([9, Th. A, Th. 5.4] (cf. [11, Cor. 1.4.(a)])) Pic0(Ln) = 0 for n2 + n ≤ q
except for (p, n) = (2, 1).

• ([3, Th. 1.2] (cf. [11, Cor. 1.4.(c)])) Pic0(L2) = Z/3⊕ Z/3 for (p, n) = (3, 2)
• ([9, Th. 6.1] (cf. [11, Cor. 1.4.(b)])) Pic0(L1) = Z/2 for (p, n) = (2, 1)
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We notice that the condition n2 + n < q in [11, Cor. 1.4.(a)] and [11, (1.3)(a)]

may be replaced by n2 + n ≤ q with (p, n) ̸= (2, 1), since
⊕

r≥1E
rq+1,rq
rq+1 (S0) = 0 if

n2 + n ≤ q with (p, n) ̸= (2, 1) by [20, (10.10)].

Theorem G. In the above cases, the conditions (C-I)m, (C-II) and (C-III)m hold.
Furthermore, (C-IV)m holds.

Corollary G-1.

1) If n2 + n ≤ q and (p, n) ̸= (2, 1), then Pic0(Lnm) = 0 for 0 ≤ m ≤ n.
2) If (p, n) = (3, 2), then Pic0(L2) ∼= Pic0(L2

1)
∼= κ2.

3) If (p, n) = (2, 1), then Pic0(L1) ∼= κ1.

We notice that Pic0(Lnm) is the kernel of a homomorphism from Pic(Lnm) to an
algebraic Picard group, and so the homomorphism is a monomorphism in the first
case. Pstragowski [18] shows the monomorphism is an isomorphism for Lnn = LK(n)

with q > n2 + n.

This paper is organized as follows: In the next section, we study invertible
spectra and show Theorem A. A converse of Theorem A is also studied under a
stronger condition (see Proposition 2.6). In section three, we study the condition
of Snm and set up Lemma 3.3, by which we show Proposition B, and also construct
a map of geometric resolutions (cf. (4.6)) in Lemma 5.1.

In order to prove Theorem D, we construct an invertible spectrum of Ln by
setting up an infinite tower. For this sake, we recall terminology, notions and results
on invertible spectra and the E-based Adams spectral sequence for E = v−1

n BP
from previous papers in section four. We also prove Theorem C and Proposition E
in this section.

Over a map between geometric resolutions given in Lemma 5.1, we construct an
infinite tower (cf. (4.17)) along with a map of towers, and then show Theorem D
in section five. The last section is devoted to proving Theorem G.

The author wishes to thank the referee for useful comments on the first version
of this paper.

2. Invertible spectra in Lnm
In the following, we fix non-negative integers m and n with 0 ≤ m ≤ n. In

this section, we characterize an invertible spectrum in Lnm(⊂ Ln) by the E(n)∗-
homology. Let thick

〈
LnS

0
〉
denote the thick subcategory of Ln generated by LnS

0.

Lemma 2.1. Let X ∈ Lnm and V be a type m finite spectrum. Then, X is strongly
dualizable in Lnm if and only if X∧V ∈ thick

〈
LnS

0
〉
. In particular, for an invertible

spectrum X of Lnm, X ∧ V ∈ thick
〈
LnS

0
〉
.

Proof. Since an invertible spectrum is strongly dualizable by [8, Prop. A.2.8], the
latter statement follows from the former.

We turn to the former statement. Since Ln is a monogenic stable homotopy
category, a spectrum X ∈ Ln is strongly dualizable if and only if X ∈ thick

〈
LnS

0
〉

(cf. [8, Th. 2.1.3]). Thus, it suffices to show that X is strongly dualizable in Lnm if
and only if X ∧ V is strongly dualizable in Ln.

Suppose X strongly dualizable in Lnm. Then, D(X)∧nmU = F (X,U) for U ∈ Lnm,
where D(X) = F (X,S0). For W ∈ Ln, we compute

D(X ∧ V ) ∧W = D(V ) ∧D(X) ∧nmW = D(V ) ∧ F (X,LnmW ) = F (X ∧ V,W )
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in Ln by (1.6). Thus, X ∧ V is strongly dualizable in Ln.
Conversely, suppose X ∧V strongly dualizable in Ln. Consider the natural map

c : F (X,S0) ∧ W ≃ F (X,S0) ∧ F (S0,W )
◦−→ F (X,W ) for a spectrum W ∈ Ln.

Then, similarly as above, we see c ∧D(V ) to be an equivalence, and so is Lnmc by
(1.6). □

Proof of Theorem A. Let V be a generalized Moore spectrum of type m such that
BP∗(V ) = BP∗/Jm for an invariant ideal Jm = (pe0 , ve11 , . . . , v

em−1

m−1 ). Then, for

m ≤ i ≤ n, we have ideals Ji = (pe0 , ve11 , . . . , v
ei−1

i−1 ) of BP∗ and spectra MJi such
that BP∗(MJi) = BP∗/Ji. By downword induction on i, we show the theorem for
m. For i = n, it follows from (1.9).

In general, we verify easily the following:

(2.2) Let M be a finitely generated E(n)∗-module. If x ∈ M is infinitely divisible
by an element v ∈ Z(p)[v1, · · · , vn−1] ⊂ E(n)∗, then x = 0.

Suppose that the theorem holds true for i + 1 > m. Let X be an invertible
spectrum in Lnm. Then, Lni X is an invertible spectrum in Lni and X ∧ MJi =
Lni X ∧MJi. For MJi,

(2.3) E(n)∗(X ∧MJi) is a finitely generated E(n)∗-module

by Lemma 2.1. Consider the cofiber sequence

(2.4) Σ|vi|MJi
vi−→MJi

ii−→MJi+1
ji−→ Σ|vi|+1MJi

for a map vi with BP∗(vi) = veii . Since Lni+1X is invertible in Lni+1, we have
an isomorphism h : E(n)∗(X ∧ MJi+1) ∼= E(n)∗+a(MJi+1) for an integer a by
the inductive hypothesis. Note that the degree |vi| is a multiple of q. Apply
E(n)t(X ∧ −) to the cofiber sequence (2.4) to obtain the exact sequence

(2.5)
E(n)t−|vi|(X∧MJi)

(vi)∗−−−→ E(n)t(X ∧MJi)

(ii)∗−−−→ E(n)t(X ∧MJi+1)
(ji)∗−−−→ E(n)t−|vi|−1(X ∧MJi).

Since E(n)t(X ∧MJi+1) ∼= E(n)t+a(MJi+1) = 0 unless q | (t+ a), the self map vi
induces an epimorphism (vi)∗ : E(n)t−|vi|(X ∧MJi) → E(n)t(X ∧MJi) for t with
q ∤ (t + a). Then, by (2.2) with (2.3), E(n)t(X ∧MJi) = 0 unless q | (t + a). It
follows that

0 → E(n)∗−|vi|(X ∧MJi)
(vi)∗−−−→ E(n)∗(X ∧MJi)

(ii)∗−−−→ E(n)∗(X ∧MJi+1) → 0

is short exact. Thus, we obtain a generator g ∈ E(n)−a(X ∧ MJi) such that
(ii)∗(g) = h−1(1) ∈ E(n)−a(X ∧ MJi+1) for the generator 1 ∈ E(n)0(MJi+1).
Since E(n)∗(X ∧ MJi) is an E(n)∗(MJi)-module, we define a homomorphism
f : E(n)∗(MJi) → E(n)∗−a(X∧MJi) by f(1) = g. Then it fits in the commutative
diagram

0 // E(n)∗−|vi|(MJi)
(vi)∗ //

f ��

E(n)∗(MJi)
(ii)∗ //

f��

E(n)∗(MJi+1) // 0

0 // E(n)∗−|vi|−a(X ∧MJi)
(vi)∗// E(n)∗−a(X ∧MJi)

(ii)∗// E(n)∗−a(X ∧MJi+1) //
h∼=
OO

0

of short exact sequences. Since E(n)∗ is noetherian, the kernel of f is a finitely
generated E(n)∗-module. Moreover, the cokernel of f is also finitely generated by
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(2.3). Therefore, the snake lemma together with (2.2) shows f to be an isomor-
phism. □

With an additional condition, we obtain a converse of Theorem A:

Proposition 2.6. Suppose that a spectrum X ∈ Lnm is strongly dualizable and there
is a generalized Moore spectrum V of type m such that E(n)∗(X ∧ V ) ∼= E(n)∗(V )
and E(n)∗(D(X) ∧ V ) ∼= E(n)∗(V ) as an E(n)∗-module. Then, X is an invertible
spectrum in Lnm. Its inverse is LnmD(X).

Proof. Consider the cofiber sequence

(2.7) D(X) ∧X ε−→ LnS
0 c−→ C

for the evaluation map ε, and a commutative diagram

[D(X) ∧X,LnS0]0
ad //

c∗
��

[D(X), D(X)]0

F (X,c)∗��

(−∧V )∗ // [D(X) ∧ V,D(X) ∧ V ]0

(1∧c∧1)∗��
[D(X) ∧X,C]0

ad // [D(X), F (X,C)]0
(−∧V )∗// [D(X) ∧ V,D(X) ∧ C ∧ V )]0

in which c is a map of (2.7), and ad denotes an adjunction. Here, D(X)∧C ∧ V =
F (X,C) ∧ V by (1.6), since X is strongly dualizable. We see that D(X) ∧ c ∧ V =
(1 ∧ c ∧ 1)∗(− ∧ V )∗(ad(ε)) = (− ∧ V )∗(ad(c∗(ε))) = 0, since ad(ε) = idD(X)

and cε = 0. It follows that the cofiber sequence D(X)∧(2.7)∧V give rise to a
decomposition

(2.8) D(X) ∧D(X) ∧X ∧ V ≃ (D(X) ∧ V ) ∨
(
Σ−1D(X) ∧ C ∧ V

)
.

By the hypothesis, we have equivalences E(n) ∧ X ∧ V ≃ E(n) ∧ V and E(n) ∧
D(X) ∧ V ≃ E(n) ∧ V up to suspension, and so

E(n)∧D(X)∧D(X)∧X ∧V ≃ E(n)∧D(X)∧X ∧V ≃ E(n)∧X ∧V ≃ E(n)∧V
up to suspension. Apply E(n)∗(−) to (2.8), and we have an epimorphism E(n)∗/J ∼=
E(n)∗(D(X)∧D(X)∧X ∧V ) → E(n)∗(D(X)∧V ) ∼= E(n)∗/J for the ideal J such
that E(n)∗(V ) ∼= E(n)∗/J . By Nakayama’s Lemma (cf. [13, Th. 2.4]), the epimor-
phism is an isomorphism, and so we obtain E(n)∗(C∧V ) = E(n)∗(D(X)∧C∧V ) =
0 by (2.8). Thus, C is E(n) ∧ V -acyclic, and hence LnmC is trivial by (1.5). Thus

the evaluation map ε induces the desired equivalence D(X)∧nmX
Ln

mε−−−→
≃

LnmS
0. □

3. Pic0(Lnm) is a subgroup of Pic(Lnm)

In this section, we give a paraphrase of the condition E(n)∗(V ) ∼=C(n) E(n)∗(X∧
V ) on Snm in Lemma 3.3 by using E = v−1

n BP instead of E(n), and verify that
Snm is depends only on the integers m and n, and that Pic0(Lnm) is a subgroup of
Pic(Lnm), which is the claim of Proposition B. We also use Lemma 3.3 in section
five to construct a map between geometric resolutions (Lemma 5.1).

Let E denote the ring spectrum v−1
n BP for a fixed integer n ≥ 0. Then, we

obtain a Hopf algebroid

(E∗, E∗(E)) = (v−1
n BP∗, E∗ ⊗BP∗ BP∗(BP )⊗BP∗ E∗),

which inherits the Hopf algebroid structure from the well known Hopf algebroid

(BP∗, BP∗(BP )) = (Z(p)[v1, v2, . . . ], BP∗[t1, t2, . . . ]).
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We write the multiplication and the unit of the ring spectrum E as

(3.1) µE : E ∧ E → E and iE : S0 → E.

Since the category of E(n)∗(E(n))-comodules is equivalent to the category of E∗(E)-
comodules by [10, Th. 4.2], the isomorphisms hXk in the definition of Snm is replaced
by the isomorphisms

(3.2) h̃Xk : E∗(Vk) ∼= E∗(X ∧ Vk)

of E∗(E)-comodules satisfying (τk−1)∗h̃
X
k = h̃Xk−1(τk−1)∗. Hereafter, we consider

every X ∈ Snm to be a spectrum satisfying this.

Lemma 3.3. For X ∈ Snm, there exists a map h̃X : S0 → E ∧nm X such that the
induced map

(3.4) ĥX : E
E∧h̃X−−−−→ E ∧ E ∧nm X

ηnm−−→ Lnm(E ∧ E ∧X)
Ln

m(µE∧X)−−−−−−−→ E ∧nm X

for the map µE in (3.1) satisfies

1) π∗(ĥX ∧ Vk) : E∗(Vk) → E∗(X ∧ Vk) for Vk ∈ Vm is the isomorphism h̃Xk of
E∗(E)-comodules in (3.2), and

2) ĥX sits in the commutative diagram

E ∧ Vk
ĥX∧Vk //

E∧iE∧Vk ��

E ∧X ∧ Vk
E∧iE∧X∧Vk��

E ∧ E ∧ Vk
E∧ĥX∧Vk// E ∧ E ∧X ∧ Vk

for Vk ∈ Vm and the map iE in (3.1). Here, note that E ∧nm X ∧ Vk ≃
E ∧X ∧ Vk by (1.6).

Proof. Let X ∈ Snm. The limit of the isomorphisms {h̃Xk }k gives rise to an isomor-
phism

(3.5) h̃X∗ : lim
V ∈Vm

E∗(V ) ∼= lim
V ∈Vm

E∗(X ∧ V ).

We begin with defining a map h̃X : S0 → E ∧nmX such that π∗(ĥX ∧Vk) = h̃Xk . By
(1.4) and (1.11), the Milnor sequence admits an epimorphism

pY : π∗(E ∧nm Y ) → lim
V ∈Vm

E∗(Y ∧ V )

for a spectrum Y , and we obtain a commutative diagram

π∗(E ∧nm X)
pX

// //

(ik)∗ ��

lim
V ∈Vm

E∗(X ∧ V )

(ik)∗��
π∗(E ∧nm X ∧ Vk)

pX∧Vk

=
// lim
V ∈Vm

E∗(X ∧ V ∧ Vk) = E∗(X ∧ Vk)

for the inclusion ik : S
0 → Vk in (1.10) 3). For the generators

1̃k = (iE ∧ ik) ∈ E0(Vk),

we have an element (1̃k)k ∈ limV ∈Vm E∗(V ). Let

h̃X : S0 → E ∧nm X ∈ π∗(E ∧nm X)
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be a map such that pX(h̃X) = h̃X∗ ((1̃k)k) ∈ limV ∈Vm
E∗(X ∧ V ) for h̃X∗ in (3.5).

Note that h̃X∗ ((1̃k)k) = (h̃Xk (1̃k))k by definition. Then,

(3.6) h̃Xk (1̃k) = (ik)∗p
X(h̃X) = pX∧Vk(ik)∗(h̃X) = h̃X ∧ ik ∈ E0(X ∧ Vk).

On the other hand, the induced homomorphism π∗(ĥX∧Vk) : E∗(Vk) → E∗(X∧Vk)
acts on the generator 1̃k ∈ E0(Vk) by

(3.7)
π∗(ĥX ∧ Vk)(1̃k) = (µE ∧X ∧ Vk)(E ∧ h̃X ∧ Vk)(iE ∧ ik)

= (µE ∧X ∧ Vk)(iE ∧ E ∧X ∧ Vk)(h̃X ∧ ik) = h̃X ∧ ik =
(3.6)

h̃Xk (1̃k).

Since E∗(Vk) is a monogenic E∗-module, we see π∗(ĥX ∧ Vk) = h̃Xk , which implies
(3.4) 1).

Next, we turn to show the commutativity of the diagram in (3.4) 2). The
E∗(E)-comodule structure ψW : E∗(W ) → E∗(E)⊗E∗E∗(W ) on E∗(W ) for a spec-
trum W is given by the composite (µE)

−1
∗ E∗(iE ∧ W ), where the isomorphism

(µE)∗ : E∗(E) ⊗E∗E∗(W ) → E∗(E ∧ W ) is given by (µE)∗(x ⊗ y) = (E ∧ µE ∧
W )(x ∧ y). Consider the diagram

E∗(Vk)
h̃X∧Vk //

ψVk��
E∗(iE∧1)

ttjjjj
jjjj

j E∗(X ∧ Vk)
ψX∧Vk��

E∗(iE∧1)∗

++WWWW
WWWWW

W

E∗(E ∧ Vk)

E∗(ĥX∧1)

11E∗(E)⊗E∗E∗(Vk)
1⊗h̃X

k//
µ∗
∼=

oo E∗(E)⊗E∗E∗(X ∧ Vk)
µ∗
∼=
// E∗(E ∧X ∧ Vk).

Here, µ∗ denotes (µE)∗. We begin with showing the diagram to be commutative,
in other words,

(3.8) E∗(iE ∧X ∧ Vk)h̃Xk = E∗(ĥX ∧ Vk)E∗(iE ∧ Vk).

Since h̃Xk is a homomorphism of comodules, the middle rectangle commutes. The
triangles on both sides commute by definition. Thus, it suffices to verify

(3.9) (µE)∗(1⊗ h̃Xk ) = E∗(ĥX ∧ Vk)(µE)∗.

For x⊗ y ∈ E∗(E)⊗E∗E∗(Vk), we compute, by 1) of the lemma,

(µE)∗(1⊗ h̃Xk )(x⊗ y) = (µE)∗(x⊗ h̃Xk (y)) =
1)

(µE)∗(x⊗ (ĥX ∧ Vk)y)

= (E ∧ µE ∧X ∧ Vk)(E ∧ E ∧ ĥX ∧ Vk)(x ∧ y) and

E∗(ĥX ∧ Vk)(µE)∗(x⊗ y) = (E ∧ ĥX ∧ Vk)(E ∧ µE ∧ Vk)(x ∧ y).

Both of the right hand sides of the above equalities agree by the commutative
diagram

S
x∧y // E ∧ E ∧ E ∧ Vk

13∧h̃X∧1

//

1∧µE∧1
��

12∧ĥX∧1
--

E ∧ E ∧ E ∧ E ∧X ∧ Vk
12∧µE∧1∧1

//

1∧µE∧1∧1∧1
��

E ∧ E ∧ E ∧X ∧ Vk
1∧µE∧1∧1
��

E ∧ E ∧ Vk
12∧h̃X∧1 //

1∧ĥX∧1

00E ∧ E ∧ E ∧X ∧ Vk
1∧µE∧1∧1// E ∧ E ∧X ∧ Vk.

Thus, the equality (3.9) holds, and the relation (3.8) follows.
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To see the diagram (3.4) 2) commutative, we verify x = y for x = (E ∧ iE ∧X ∧
Vk)(ĥX ∧Vk) and y = (E ∧ ĥX ∧Vk)(E ∧ iE ∧Vk) in [E ∧Vk, E ∧E ∧X ∧Vk]0. The
homomorphism

(1̃k)
∗ : [E ∧ Vk, E ∧ E ∧X ∧ Vk]0 → π0(E ∧ E ∧X ∧ Vk).

induced from the generator 1̃k ∈ E0(Vk) = π0(E ∧ Vk) acts on the elements by

(1̃k)
∗(x) =

1)
E∗(iE ∧ 1)∗h̃

X
k (1̃k) =

(3.8)
E∗(ĥX ∧ Vk)E∗(iE ∧ Vk)(1̃k) = (1̃k)

∗(y).

We verify easily that x and y are E ∧ Vk-module maps, and obtain x = y from [17,
Lemma 1.3]. □

Proof of Proposition B. Let S(Vm) for a sequence Vm of (1.10) denote the collection
given in (1.13). Let Vm and V ′

m be sequences given in (1.10). For X ∈ S(V ′
m), there

exists ĥX : E → E∧X inducing an isomorphism E∗(V
′) ∼= E∗(X ∧V ′) for V ′ ∈ V ′

m

of E∗(E)-comodules by Lemma 3.3. Therefore, ĥX is a V ′-equivalence. Note that

⟨V ′⟩ = ⟨V ⟩ for any type m finite spectrum V . It follows that ĥX : E → E ∧ X

induces an isomorphism (ĥX ∧ V )∗ : E∗(V ) ∼= E∗(X ∧ V ) for V ∈ Vm. For each
V ∈ Vm, there exist a spectrum V ′ ∈ V ′

m and a map τ : V ′ → V inducing a canonical
projection (E ∧ τ)∗ : E∗(V

′) → E∗(V ) of comodules. Consider the diagram

E∗(V
′)

(E∧τ)∗ // //

(ĥX∧V ′)∗
∼=��

E∗(V )

(ĥX∧V )∗��
E∗(X ∧ V ′)

(E∧X∧τ)∗
// E∗(X ∧ V ).

Since the left vertical arrow is an isomorphism of E∗(E)-comodules, so is the right
vertical arrow. It follows that S(V ′

m) ⊂ S(Vm). Exchange Vm and V ′
m, and we see

the converse.
We set out to verify the claim

(3.10) The collection Snm is closed under the smash product ∧nm. That is, for X,Y ∈
Snm, X ∧nm Y ∈ Snm.

Let ĥX and ĥY be the maps in Lemma 3.3. Then, the composite E ∧ Vk
ĥY ∧Vk−−−−→

E∧nmY ∧Vk
ĥX∧Y ∧Vk−−−−−−−→ E∧X∧nmY ∧Vk induces an isomorphism h̃

X∧n
mY

k : E∗(Vk) ∼=
E∗(X ∧nm Y ∧ Vk) of the comodules by Lemma 3.3. Furthermore, the relation

(τk−1)∗h̃
X∧n

mY
k = h̃

X∧n
mY

k−1 (τk−1)∗ follows trivially.

Next we show D(X) ∈ Snm if X ∈ Pic0(Lnm). Since X is invertible in Lnm, we
have an equivalence ε : D(X)∧X → S0. Then, Lemma 3.3 2) yields a commutative
diagram

E ∧D(X) ∧ Vk
ĥX∧1∧1 //

1∧iE∧1∧1 ��

E ∧X ∧D(X) ∧ Vk
1∧ε∧1

≃
//

1∧iE∧1∧1��

E ∧ Vk
1∧iE∧1��

E ∧ E ∧D(X) ∧ Vk
1∧ĥX∧1∧1

// E ∧ E ∧X ∧D(X) ∧ Vk
1∧1∧ε∧1

≃ // E ∧ E ∧ Vk

for Vk ∈ Vm. The upper composite gives rise to an isomorphism h̃
D(X)
k of comodules

satisfying (τk−1)∗h̃
D(X)
k = h̃

D(X)
k−1 (τk−1)∗. □
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4. Recollections on Adams towers

In this section, we recollect some notation and some facts from [11, §§3-4] and
[25] on a geometric resolution (4.6) and an s-tower (4.20)s relevant to the E-based
Adams tower, in order to construct an invertible spectrum in Ln by [25, Prop. 2.13]
(see (4.19)). Under the notation, we also show Theorem C and Proposition E (or
Proposition 4.16).

As the previous section, E denotes the ring spectrum v−1
n BP for a fixed integer

n ≥ 0. The unit map iE in (3.1) induces the cofiber sequence

(4.1) S0 iE−→ E
jE−→ E

kE−−→ S1.

Lemma 4.2. Let Vk ∈ Vm. Suppose that there exists a map h : S0 → W for a
spectrum W inducing an epimorphism (resp. monomorphism) h∗ : E∗ → E∗(W ).

Then, it induces an epimorphism (resp. monomorphism) h∗ : E∗(E
s
) → E∗(E

s ∧
W ) for s ≥ 0. Here, E

s
denotes the s-fold smash product E∧. . .∧E of the spectrum

E in (4.1).

Proof. The map h induces a commutative diagram

(4.3)

E∗(E
s
)

E∗(iE∧1) //

h∗ ��

E∗(E ∧ Es)
(µE∧1)∗

oo
E∗(jE∧1) //

h∗��

E∗(E
s+1

) //

h∗��

0

E∗(E
s ∧W )

E∗(iE∧1)// E∗(E ∧ Es ∧W )
(µE∧1)∗

oo
E∗(jE∧1)// E∗(E

s+1 ∧W ) // 0

of split exact sequences. Since E∗(E) is flat over E∗ (cf. [14, Remark 3.7]), we have
a natural isomorphism E∗(E ∧ U) ∼= E∗(E) ⊗E∗E∗(U) for a spectrum U , and a
commutative diagram

E∗(E)⊗E∗E∗(E
s
) ∼=

1⊗h∗ ��

E∗(E ∧ Es)
h∗��

E∗(E)⊗E∗E∗(E
s ∧W ) ∼= E∗(E ∧ Es ∧W ).

Therefore, the middle h∗ in the diagram (4.3) is an epimorphism (resp. monomor-
phism) if so is the left h∗. Thus, the lemma follows from the diagram (4.3) by
induction. □

The cofiber sequence (4.1) yields the E-based Adams tower

S0

iE
��

E
kEoo

1∧iE
��

· · ·1∧kEoo E
s1∧kEoo

1∧iE
��

E
s+11∧kEoo

1∧iE��

· · ·1∧kEoo

E
jE

99ttttttttt

d0
// E ∧ E

d1
// · · ·

ds−1

// E
s ∧ E

1∧jE

77nnnnnnnnn

ds
// E

s+1 ∧ E
ds+1

// · · ·

in which dotted arrows denote degree −1 maps, and

(4.4) ds = (E
s ∧ d) : Es ∧ E → E

s+1 ∧ E

for

(4.5) d = d0 = jE ∧ iE : E = E ∧ S0 → E ∧ E.
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We call the sequence

(4.6)
E ∧W d0∧W−−−−→E ∧ E ∧W d1∧W−−−−→ · · · ds−1∧W−−−−−→ E

s ∧ E ∧W
ds∧W−−−−→ E

s+1 ∧ E ∧W ds+1∧W−−−−−→ · · ·

for a spectrumW obtained from the bottom sequence of the above diagram the geo-

metric resolution ofW . Let ks : E
s → Ss denote the composite kE(E∧kE) · · · (E

s−1∧
kE) of the upper sequence in the tower, and let Es denote a fiber of ks sitting in
the cofiber sequence

(4.7) E
s ks−→ Ss

îs−→ ΣEs
ĵs−→ ΣE

s

for each s ≥ 1. Note that

î1 = iE : S0 → E1 = E.

This gives rise to a commutative diagram

(4.8)

Ss

îs+1 ��

Ss //

îs��

0 //

��

Ss+1

îs+1��
Es+1

ĵs+1 ��

kSs // ΣEs
iSs //

ĵs��

ΣE ∧ Es
jSs // ΣEs+1

ĵs+1��

E
s+11∧kE// ΣE

s 1∧iE// ΣE ∧ Es
1∧jE// ΣE

s+1

in which rows and columns are cofiber sequences. The middle row of the diagram
(4.8) yields another E-based Adams tower

(4.9)

0

��

E1
oo

d=iS1��

· · ·
kS1oo Es

kSs−1oo

iSs��

Es+1

kSsoo

iSs+1��

· · ·
kSs+1oo

E

uuuuuuuu

uuuuuuuu

d0
// E ∧ E

d1
// · · ·

ds−1

// E
s ∧ E

jSs

77nnnnnnnn

ds
// E

s+1 ∧ E
ds+1

// · · ·

for ds in (4.4). We notice that homotopy groups of the smash product of the tower
and a spectrumW define an exact couple, which yields the E-based Adams spectral
sequence

(4.10) Es,t2 (W ) = Exts,tE∗(E)(E∗, E∗(W )) =⇒ πt−s(LnW ),

where holims(Σ
1−sEs ∧W ) = LnW . We notice that the canonical map E → E(n)

inducing the projection E∗ → E(n)∗ gives rise to an isomorphism of the spectral
sequences (1.17) and (4.10). Indeed, we have the isomorphism of the E2-terms:

(4.11) ([11, Th. 3.3], [10, Cor. 4.8])

Ext∗,∗E∗(E)(E∗,M) ∼= Ext∗,∗E(n)∗(E(n))(E(n)∗, E(n)∗ ⊗E∗ M)

for an E∗(E)-comodule M , on which vn acts isomorphically.

Let V denote a generalized Moore spectrum of type m with 0 ≤ m ≤ n. The
generator 1XV ∈ E0(X ∧ V ) is also the generator

(4.12) 1XV ∈ E0,0
2 (X ∧ V ) (⊂ E0(X ∧ V )).
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The generator plays a key role in the proof of Theorem C, the definition of integers

kX and rX in Proposition 4.15 and the definition of the subsemigroups Sn,(s)m in
(1.19).

Note that Es,t2 (V ) = 0 unless q | t, which implies

(4.13) E∗,∗
s (V ) = E∗,∗

rq+1(V ) for r ≥ 1 and (r − 1)q + 1 < s ≤ rq + 1.

Moreover, there exists an integer sm such that

(4.14) (cf. [21, Th. 8.2.6]) Es,∗smq+1(V ) = 0 if s ≥ smq + 1.

We notice that sm depends only on m, and is independent of the choice of V .
In the following, we write dr(x) for x ∈ Es,t2 (W ) without mentioning ds(x) = 0

for s < r.

Proof of Theorem C. Suppose that LnmX = LnmS
0 for X ∈ Pic0(Ln). Then, for the

spectrum V of (C-I)m, X ∧ V ≃ LnmX ∧ V ≃ LnV by (1.6). It follows that the

element 1XV in (4.12) is a permanent cycle. If the generator 1X ∈ E0,0
2 (X) survives to

Erq+1-term E0,0
rq+1(X), then (iV )∗(drq+1(1

X)) = drq+1((iV )∗(1
X)) = drq+1(1

X
V ) =

0 ∈ Erq+1,rq
rq+1 (X ∧ V ). By the hypothesis (C-I)m, we obtain drq+1(1

X) = 0, and

1X ∈ E0,0
(r+1)q+1(X). Thus, we deduce inductively that 1X is a permanent cycle.

An element iX ∈ π0(X) detecting 1X yields the desired equivalence iX : LnS
0 ≃ X.

□

In the following, 1Xk denotes 1XVk
in (4.12) for Vk ∈ Vm.

Proposition 4.15. For each X ∈ Snm, there exist integers kX and rX such that

drXq+1(1
X
k ) ̸= 0 ∈ ErXq+1,rXq

rXq+1 (X ∧ Vk)

for Vk ∈ Vm with k ≥ kX unless 1Xk are permanent cycles for all k ≥ 1 (we set
kX = 1 and rX = ∞ in this case).

Proof. Suppose that 1Xℓ ∈ E0,0
2 (X ∧ Vℓ) for some integer ℓ is not a permanent

cycle. Then, there is an integer r such that drq+1(1
X
ℓ ) ̸= 0. By the naturality of

the differentials of the spectral sequences, we deduce that for every integer k > ℓ,
there exists an integer s ≤ r such that dsq+1(1

X
k ) ̸= 0. This shows the existence of

the integers kX and rX . □

The following proposition is a restatement of Proposition E:

Proposition 4.16. Let X ∈ Snm and rX be the integer given in Proposition 4.15.
If (C-IV)m holds and rX = ∞, then X ≃ LnmS

0.

Proof. Put Uk = ik +Kk ⊂ π0(LnVk) for Kk = Ker ((iE)∗ : π0(LnVk) → E0(Vk)).
Here, ik ∈ π0(LnVk) denotes the element corresponding to the inclusion ik : S

0 →
Vk in (1.10) 3). Since rX = ∞, 1Xk is a permanent cycle, and then an element
iXk : S0 → X ∧ Vk detected by 1Xk induces an equivalence eXk : LnVk ≃ X ∧ Vk.

Indeed, eXk induces the isomorphism h̃Xk in (3.2). Let σk : LnVk+1 → LnVk be the
map fitting in the commutative diagram

LnVk+1

eXk+1

≃
//

σk ��

X ∧ Vk+1

1∧τk��
LnVk

eXk

≃
// X ∧ Vk.
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Since X ∈ Snm, this induces a commutative diagram

E∗(Vk+1)
h̃X
k+1 //

(σk)∗ ��

E∗(X ∧ Vk+1)
(τk)∗��

E∗(Vk+1)
(τk)∗��

h̃X
k+1oo

E∗(Vk)
h̃X
k // E∗(X ∧ Vk) E∗(Vk).

h̃X
koo

Then, the induced homomorphism (σk)∗ : π0(LnVk+1)→ π0(LnVk) satisfies (σk)∗(ik+1) ≡
ik modulo Kk, since

(iE)∗(σk)∗(ik+1) = (σk)∗(iE)∗(ik+1) = (σk)∗(1̃k+1) = (τk)∗(1̃k+1) = 1̃k = (iE)∗(ik)

for the generators 1̃s = (iE)∗(is) ∈ E0(Vs). It gives rise to an inverse system
{Uk, (σk)∗} of sets. Consider mappings (σj,k)∗ = (σk)∗(σk+1)∗ · · · (σj−1)∗ : Uj →
Uk for j > k. Then, by the condition (C-IV)m, we have a finite filtration

Uk ⊃ Im (σk)∗ ⊃ Im (σk+2,k)∗ ⊃ · · · ⊃ Im (σjk,k)∗ = Im (σjk+1,k)∗ = · · ·

for some integer jk. Put Uk = Im (σjk,k)∗. The relation Im (σj,k)∗ = (σk)∗(Im (σj,k+1)∗)

for j > max{jk, jk+1} implies Uk = (σk)∗(Uk+1). Thus, (σk)∗ induces a sur-
jection (σk)∗ : Uk+1 → Uk. Therefore, we have an element ι ∈ lim(σk)∗ Uk ⊂
lim(σk)∗ π0(LnVk). Since X = holimk(X ∧ Vk), we have an epimorphism π0(X) →
limk π0(LnVk). Then, we also denote by ι ∈ π0(X) an element corresponding to
ι. Hence, we obtain an equivalence Lnmι : L

n
mS

0 ≃ X since ι is an (E ∧ Vk)∗-
equivalence. □

We also consider a tower

(4.17)

0

��

Q1
oo

d=iQ1��

· · ·
kQ1oo Qs

kQs−1oo

iQs��

Qs+1

kQsoo

iQs+1��

· · ·
kQs+1oo

E

tttttttt

tttttttt
d0

// E ∧ E
d1

// · · ·
ds−1

// E
s ∧ E

jQs

66nnnnnnnn

ds
// E

s+1 ∧ E
ds+1

// · · ·

with the same bottom sequence (geometric resolution of S0) as (4.9). In the same
manner as (4.10), the tower (4.17) defines a spectral sequence

(4.18) Es,t2 = Exts,tE∗(E)(E∗, E∗) =⇒ πt−s(Q),

where Q = holimkQs
Σ1−sQs.

(4.19) ([25, Prop. 2.13]) If a tower (4.17) exists, then Q = holimkQs
Σ1−sQs is an

exotic invertible spectrum of Ln.

We consider a sub-tower of (4.17):

(4.20)s

0

��

Q1
oo

d=iQ1��

· · ·
kQ1oo Qs

kQs−1oo

iQs��

Qs+1

kQsoo

E

ssssssss

ssssssss
d0

// E ∧ E
d1

// · · ·
ds−1

// E
s ∧ E

jQs

88pppppp

for each integer s ≥ 1, which we call an s-tower.

(4.21) ([11, Lemma 4.5]) Suppose that an s-tower (4.20)s for s > 1 exists and let G
be an E-module spectrum with action νG : G∧E → G. Then, we have a split short
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exact sequence

0 → πs+t−1(G)
ψs−→ [Qs, G]t

(jQs−1)
∗

−−−−−→ (Im (ds−1)∗)t → 0.

Here, ψs is defined by

(4.22) ψs(x) = νG(x ∧ E)(kQ)s−1 for (kQ)s−1 = kQ1 · · · kQs−1,

and (ds−1)∗ : [E
s ∧ E,G]t → [E

s−1 ∧ E,G]t is induced from ds−1 : E
s−1 ∧ E →

E
s ∧ E.

5. Construction of an invertible spectrum in Ln
In this section, we prove Theorem D, that is, the localization Lnm induces an

epimorphism Pic0(Ln) → Pic0(Lnm), in the following steps.

1) For X ∈ Pic0(Lnm) and Vk ∈ Vm, consider the E-based Adams tower {Es ∧
X∧Vk, iX∧Vk

s , jX∧Vk
s , kX∧Vk

s } (= (4.9)∧X∧Vk) over the geometric resolution

{Es ∧ E ∧X ∧ Vk}s.
2) Set up a map {h̃sX,k} : {E

s ∧ E}s → {Es ∧ E ∧ X ∧ Vk}s of geometric

resolutions of S0 and X ∧ Vk (Lemma 5.1).
3) Inductively, construct an ∞-tower {Qs, iQs , jQs , kQs } over the geometric reso-

lution {Es ∧ E}s along with a map {(fsk, ĥsX,k)} : {(Qs, E
s ∧ E)} → {(Es ∧

X ∧ Vk, E
s ∧E ∧X ∧ Vk)} of towers under the condition (C-III)m. For this

sake, we set up Lemmas 5.6 and 5.9.
4) Show that Q = holimsQs for Qs given in step 3) is an invertible spectrum

of Ln such that Q ∧ Vk ≃ X ∧ Vk. (Lemma 5.11).

These are summerized in Theorem 5.13, and Theorem D in Introduction follows
from Corollary 5.16 as explained in Introduction.

Lemma 5.1. For each X ∈ Snm and Vk ∈ Vm, there exist maps ĥsX,k : E
s ∧ E →

E
s ∧ E ∧X ∧ Vk for s ≥ 0 in the commutative diagram

E
d0 //

ĥ0
X,k ��

E ∧ E
d1 //

ĥ1
X,k��

· · · ds−1 // E
s ∧ E

ds //

ĥs
X,k��

E
s+1 ∧ E

ds+1 //
ĥs+1
X,k��

· · ·

E ∧X ∧ Vk
d0∧1// E ∧ E ∧X ∧ Vk

d1∧1// · · ·d
s−1∧1// E

s ∧ E ∧X ∧ Vk
ds∧1// E

s+1 ∧ E ∧X ∧ Vk
ds+1∧1// · · ·

such that ĥsX,k induces the same map as the projection (ik)∗ : π∗(E
s∧E) → π∗(E

s∧
E ∧X ∧ Vk) ∼= π∗(E

s ∧ E ∧ Vk).

Proof. For spectra X ∈ Snm and Vk ∈ Vm, Lemma 3.3 yields a commutative diagram

E
1∧iE

//
d0

--

1∧ik��
ĥ0
X,k

��

E ∧ E
jE∧1

//

1∧ik��

E ∧ E
1∧ik ��

ĥ1
X,k

{{

E ∧ Vk
1∧iE∧1 //

ĥX∧1��

E ∧ E ∧ Vk
jE∧1 //

1∧ĥX∧1��

E ∧ E ∧ Vk
1∧ĥX∧1 ��

E ∧X ∧ Vk
1∧iE∧1//

d0∧1

11E ∧ E ∧X ∧ Vk
jE∧1 // E ∧ E ∧X ∧ Vk

Put

(5.2) ĥsX,k = E
s ∧ ĥX ∧ ik : E

s ∧ E → E
s ∧ E ∧X ∧ Vk for s ≥ 0,
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and the above diagram gives rise to the commutative diagram

(5.3)

E
s∧ E ds //

ĥs
X,k ��

E
s+1∧ E

ĥs+1
X,k��

E
s∧ E ∧X ∧ Vk

ds∧1
// E

s+1∧ E ∧X ∧ Vk

for ds in (4.4).

The induced homomorphism (ĥsX,k)∗ is the same as (ik)∗ by Lemma 3.3 1). □

For spectra X ∈ Snm and Vk ∈ Vm, we consider the existence of a map of towers

(5.4)s {(ftk, ĥtX,k)}t≤s : {(Qt, E
t ∧E)}t≤s → {(Et ∧X ∧ Vk, E

t ∧E ∧X ∧ Vk)}t≤s
of s-towers: from the tower (4.20)s to the tower (4.9) ∧ X ∧ Vk. Here, the maps

ĥtX,k are the ones in Theorem 5.1. A map (5.4)s means the maps {(ftk, ĥtX,k)}t≤s
satisfying

(5.5)t
ĥtX,ki

Q
t = (iSt ∧X ∧ Vk)ftk, ftkj

Q
t−1 = (jSt−1 ∧X ∧ Vk)ĥt−1

X,k and

ft−1
k kQt−1 = (kSt−1 ∧X ∧ Vk)ftk

for 1 ≤ t ≤ s.

Lemma 5.6. Let X ∈ Snm and kX be the integer in Proposition 4.15. Suppose that

there exist an s-tower {Qt, iQt , j
Q
t , k

Q
t } lying in (4.20)s and a map in (5.4)s−1 of

towers for an integer s ≥ 2 and a spectrum Vk ∈ Vm with k ≥ kX . Then, we have
a map (5.4)s of towers for a replaced iQs : Qs → E

s ∧ E fitting in (4.20)s.

Proof. The relation ĥs−1
X,k i

Q
s−1 = (iSs−1 ∧ X ∧ Vk)fs−1

k in (5.5)s−1 defines a map fsk
fitting in the commutative diagram
(5.7)

Qs−1

iQs−1 //

fs−1
k ��

E
s−1 ∧ E

jQs−1 //

ĥs−1
X,k��

Qs

fsk��

kQs−1 // ΣQs−1

fs−1
k��

Es−1 ∧X ∧ Vk
iSs−1∧1

// E
s−1 ∧ E ∧X ∧ Vk

jSs−1∧1
// Es ∧X ∧ Vk

kSs−1∧1
// ΣEs−1 ∧X ∧ Vk

of cofiber sequences. This implies the second and the third equalities of (5.5)s.

Put osk = (iSs ∧ 1)fsk − ĥsX,ki
Q
s ∈ [Qs, E

s ∧ E ∧X ∧ Vk]0, and consider the com-
mutative diagram

πs−1(E
s ∧ E)

ψs //

(ĥs
X,k)∗��

[Qs, E
s ∧ E]0

(jQs−1)
∗

//

(ĥs
X,k)∗��

(Im (ds−1)∗)0
(ĥs

X,k)∗��
πs−1(E

s ∧ E ∧X ∧ Vk)
ψs // [Qs, E

s ∧ E ∧X ∧ Vk]0
(jQs−1)

∗

// (Im (ds−1)∗)0

of the exact sequences in (4.21). Then,

(jQs−1)
∗(osk) = ((iSs ∧ 1)fsk − ĥsX,ki

Q
s )j

Q
s−1 =

(4.20)
(iSs ∧ 1)fskj

Q
s−1 − ĥsX,kd

s−1

=
(5.7)

(iSs ∧ 1)(jSs−1 ∧ 1)ĥs−1
X,k − ĥsX,kd

s−1 =
(4.9)

(ds−1 ∧ 1)ĥs−1
X,k − ĥsX,kd

s−1 =
(5.3)

0.

Thus, osk ∈ Imψs. Since the left homomorphism (ĥsX,k)∗ in the above diagram is

an epimorphism by Lemmas 4.2 and 3.3, we have an element osk ∈ πs−1(E
s ∧ E)
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such that ψs(ĥ
s
X,k)∗(o

s
k) = osk. Replace i

Q
s by i = iQs + ψs(o

s
k) ∈ [Qs, E

s ∧ E]0, and
we obtain the lemma by computation

ijQs−1 = (iQs + ψs(o
s
k))j

Q
s−1 = ds−1 + (jQs−1)

∗(ψs(o
s
k)) = ds−1, and

(iSs ∧ 1)fsk − ĥsX,ki = (iSs ∧ 1)fsk − ĥsX,k(i
Q
s + ψs(o

s
k)) = osk − (ĥsX,k)∗ψs(o

s
k)

= osk − ψs(ĥ
s
X,k)∗(o

s
k) = osk − osk = 0. □

We note that for the spectrum V in the condition (C-III)m, we have a spectrum
Vk ∈ Vm and a map τ : Vk → V such that iV = τik. Let kV denote the minimum
integer of such integers k. Then, we have a monomorphism

(5.8) (ik)∗ : E
rq+2,rq
2 (S0) → Erq+2,rq

2 (Vk)

for k ≥ kV , if the condition (C-III)m holds.

Lemma 5.9. Let X ∈ Snm and suppose the condition (C-III)m. Suppose further

that there exists a tower {Qt, iQt , j
Q
t , k

Q
t } in (4.20)s along with a map (5.4)s for

positive integers s and k ≥ max{kX , kV }. Then, the tower extends to (4.20)s+1

after replacing iQs by a suitable map fitting in (4.20)s.

Proof. It suffices to show the existence of a map i : Qs → E
s ∧E such that ijQs−1 =

ds−1 and dsi = 0. Indeed, replace iQs by i and Qs+1 by the one in the cofiber

sequence Qs
i−→ E

s ∧ E jQs−−→ Qs+1
kQs−−→ ΣQs, and we obtain a map iQs+1 : Qs+1 →

E
s+1 ∧ E such that ds = iQs+1j

Q
s , and then we may take Qs+2 to be the cofiber of

iQs+1.

Put os = dsiQs ∈ [Qs, E
s+1 ∧ E]0, and consider the diagram

πs−1(E
s+1 ∧ E)

ψs //

(ĥs+1
X,k)∗��

[Qs, E
s+1 ∧ E]0

(jQs−1)
∗

//

(ĥs+1
X,k)∗��

(Im (ds−1)∗)0
(ĥs+1

X,k)∗��
πs−1(E

s+1 ∧ E ∧X ∧ Vk)
ψs // [Qs, E

s+1 ∧ E ∧X ∧ Vk]0
(jQs−1)

∗

// (Im (ds−1)∗)0

of exact sequences of (4.21) for Vk ∈ Vm with k ≥ max{kX , kV }. Since (jQs−1)
∗(os) =

dsiQs j
Q
s−1 = dsds−1 = 0, we have an element õs ∈ πs−1(E

s+1 ∧ E) = Es+1,s−1
1 (S0)

such that ψs(õs) = os. We compute

ψs(ĥ
s+1
X,k)∗(õs) = (ĥs+1

X,k)∗ψs(õs) = (ĥs+1
X,k)∗(os) = ĥs+1

X,kd
siQs =

(5.3)
(ds ∧ 1)ĥsX,ki

Q
s

=
(5.4)s

(ds ∧ 1)(iSs ∧ 1)fsk = 0.

It follows that

(5.10) (ĥs+1
X,k)∗(õs) = 0,

since ψs is a monomorphism. Consider a commutative diagram

πs−1(E
s ∧ E)

ψs //

ds∗��

[Qs, E
s ∧ E]0

(jQs−1)
∗

//

ds∗��

(Im (ds−1)∗)0
ds∗��

πs−1(E
s+1 ∧ E)

ψs //

ds+1
∗��

[Qs, E
s+1 ∧ E]0

(jQs−1)
∗

//

ds+1
∗��

(Im (ds−1)∗)0
ds+1
∗��

πs−1(E
s+2 ∧ E)

ψs // [Qs, E
s+2 ∧ E]0

(jQs−1)
∗

// (Im (ds−1)∗)0.
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We compute

ψsd
s+1
∗ (õs) = ds+1

∗ ψs(õs) = ds+1
∗ os = ds+1dsiQs = 0,

and we see [õs] ∈ Es+1,s−1
2 (S0), since ψs is a monomorphism. Furthermore,

(ĥX)∗(ik)∗(õs) =
(5.2)

(ĥs+1
X,k)∗(õs) =

(5.10)
0 ∈ πs−1(E

s+1∧E∧X∧Vk), and so (ik)∗(õs) =

0 ∈ πs−1(E
s+1∧E∧Vk) by (3.4) 1) and Lemma 4.2. Indeed, (ĥX)∗ = π∗(E

s+1∧ĥX∧
Vk). It follows that (ik)∗([õs]) = 0 ∈ Es+1,s−1

2 (Vk). Thus, [õs] = 0 ∈ Es+1,s−1
2 (S0)

by (5.8), and there exists an element w ∈ πs−1(E
s ∧ E) = Es,s−1

1 (S0) such that
dsw = õs. Put now i = iQs − ψs(w). Then

dsi = dsiQs − dsψs(w) = os − ψsd
s(w) = os − ψsõs = os − os = 0, and

ijQs−1 = iQs j
Q
s−1 − ψs(w)j

Q
s−1 = ds−1 − (jQs−1)

∗ψs(w) = ds−1.

Thus, this i is the desired one. □

Lemma 5.11. Suppose that there exists a tower (4.17) along with a map (5.4)∞
of ∞-towers. Then, Q in (4.18) is an invertible spectrum of Ln such that Q∧Vk ≃
X ∧ Vk.
Proof. By (4.19), Q is an invertible spectrum. Furthermore, the maps fsk : Qs →
Es∧X ∧Vk yield a map fk : Q→ X ∧Vk. This induces an E∗-equivalence Q∧Vk →
X ∧ Vk, which gives an equivalence Q ∧ Vk ≃ X ∧ Vk. □

Since 1 = [iE ] ∈ E0,0
2 (S0) is a permanent cycle of the E-based Adams spectral

sequences for computing π∗(LnS
0), there exist elements xt ∈ πt−1(Et) such that

(5.12) x1 = iE and kSt−1xt = xt−1

for t ≥ 1.

Theorem 5.13. Suppose (C-III)m. For spectra X ∈ Snm and Vk ∈ Vm with k ≥
max{kX , kV }, there exists an invertible spectrum QXk ∈ Sn0 such that QXk ∧ Vk ≃
X ∧Vk. Furthermore, we have rX = rLn

mQ
X
k

for the integer rX in Proposition 4.15.

Proof. For spectra X in Snm and Vk ∈ Vm, we inductively construct a tower (4.17)
satisfying the supposition of Lemma 5.11. In other words, we show (5.14)s below
for each integer s ≥ 2 inductively.

(5.14)s There exist an s-tower {Qt, iQt , j
Q
t , k

Q
t } in (4.20)s and a map {(ftk, ĥtX,k)} :

{(Qt, E
t ∧ E)} → {(Et ∧ X ∧ Vk, E

t ∧ E ∧ X ∧ Vk)} of s-towers in (5.4)s for an
integer k ≥ kX . Furthermore, Qt = Et for t ≤ rXq + 1.

Put Q0 = 0, Qt = Et for t ∈ {1, 2}, iQ1 = iS1 , j
Q
1 = jSt , k

Q
1 = kS1 (see (4.9)), and

f1k = ĥ0X,k : Q1 = E1 = E → E ∧X ∧ Vk = E1 ∧X ∧ Vk, and we obtain (5.14)1.

Suppose inductively that for t < s (≤ rXq), there exist maps ftk : Et → Et∧X∧Vk
satisfying (5.5)t with Q = S. In the same manner as the proof of Lemma 5.6, we
define fsk : Es → Es ∧X ∧Vk by the commutative diagram (5.7) with Qt = Et, and
see (5.5)s with Q = S except for the first equality.

We turn to the first equation in (5.5)s. As in the proof of Lemma 5.6, we have
an element

os = (iSs ∧X ∧ Vk)fsk − ĥsX,ki
S
s ∈ [Es, E

s ∧ E ∧X ∧ Vk]0
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such that (jSs−1)
∗(os) = 0. Therefore, we have an element õs ∈ πs(E

s ∧E ∧X ∧Vk)
such that ψs(õs) = os for the homomorphism ψs in (4.21). Then,

(5.15) osxs = ψs(õs)xs =
(4.22)

ν(õs ∧ E)(kS)s−1xs =
(5.12)

ν(õs ∧ E)iE = õs

for the action ν : E
s ∧ E ∧ X ∧ Vk ∧ E → E

s ∧ E ∧ X ∧ Vk given by µE in (3.1).
Therefore,

õs =
(5.15)

osxs = ((iSs ∧X ∧ Vk)fsk − ĥsX,ki
S
s )xs

= (iSs ∧X ∧ Vk)fskxs (since iSs xs = iSs k
S
s xs+1 = 0)

=
(5.5)s

ĥsX,ki
S
s xs =

(5.12)
ĥsX,ki

S
s k

S
s xs+1 =

(4.8)
0.

Thus, os = ψs(õs) = 0 implies the first equation in (5.5)s with Q = S. Therefore,
(5.5)t holds for each t ≤ rXq inductively.

Suppose that (5.14)s holds true for s ≥ rXq. Then, the s-tower extends to an
(s+ 1)-tower by Lemma 5.9. By Lemma 5.6, the (s+ 1)-tower admits a map fs+1

k

satisfying (5.14)s+1. It follows inductively that (5.14)s holds for all positive integers
s. Therefore, we have an invertible spectrum Q in Ln such that Q ∧ Vk ≃ X ∧ Vk
by Lemma 5.11. Furthermore, Qt = Et for t ≤ rXq + 1 implies that rX = rLn

mQ.
□

Corollary 5.16. Suppose that (C-II) and (C-III)m. Then, the mapping ℓnm : Pic0(Ln) →
Snm is a surjection.

Proof. Let X ∈ Snm. For every spectrum Q ∈ Pic0(Ln), consider a set S(Q) = {k |
QXk ≃ Q} ⊂ Z for spectra QXk given in Theorem 5.13. Since Pic0(Ln) is a finite
group, there exists a spectrum QX ∈ Pic0(Ln) such that |S(QX)| = ℵ0. Then,
LnmQ

X = holimk∈S(QX)Q
X ∧ Vk ≃ holimk∈S(QX)X ∧ Vk ≃ X. □

6. The cases for small n

In this section, we verify the conditions (C-I)m, (C-II), (C-III)m and (C-IV)m
for the cases where (p, n) = (2, 1), (3, 2) or n2 + n ≤ q. For (C-I)m and (C-III)m
with m ≤ n, it suffices to show (C-I)n and (C-III)n by (1.18). Furthermore, we
verify (C-IV)m for m > 0, since (C-IV)0 is void.

In general, we have the following lemma on (C-IV)m:

Lemma 6.1. If πs(LnM(p)) is finite for each integer s, then (C-IV)m holds for
1 ≤ m ≤ n.

Proof. Consider the subcategory

T = {F ∈ thick
〈
S0

〉
| πs(LnF ) is finite for each s ∈ Z} ⊂ Ln

Then, it is thick. Since T contains M(p), the thick subcategory theorem in [6]
implies that πs(LnV ) is finite for any type m (≥ 1) finite spectrum V and for any
integer s. In particular, (C-IV)m holds for m ≥ 1. □

We note that if Es,∗2 (X) is a Z/p2-module, then it is also a Z/p2[vp1 ]-module,

since ηR(v1) ≡ v1 mod (p). By [16], we may set Vk =M(pk, vp
k

1 ) ∈ V2 for k ≥ 1.
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Lemma 6.2. Let Vk =M(pk, vp
k

1 ) ∈ V2 for k ≥ 1, and suppose the existence of an

integer s such that Es,t2 (S0) is a Z/p-module and vp1E
s,t
2 (S0) = 0 for s ≥ s. Then,

(ik)∗ : E
s,t
2 (S0) → Es,t2 (Vk) is a monomorphism for k ≥ 2 and s ≥ s.

Proof. Consider the cofiber sequence S0 pr−→ S0 ιr−→M(pr), which induces an exact
sequence

(6.3) Es,t2 (S0)
pr=0−−−→ Es,t2 (S0)

(ιr)∗−−−→ Es,t2 (M(pr))
δ−→ Es+1,t

2 (S0).

Let s ≥ s. Since Es,t2 (S0) is a Z/p-module, the homomorphism (ιr)∗ is a monomor-

phism. This further indicates that Es,t2 (M(pr)) is a Z/p2-module, and then a
Z/p2[vp1 ]-module. Therefore, the above exact sequence is the one of Z/p2[vp1 ]-
modules. We consider a commutative diagram

0 → Es,t2 (S0)
(ιr)∗ //

vp1 ��

Es,t2 (M(pr))
δ //

vp1��

Es+1,t
2 (S0) → 0

vp1��
0 → Es,t2 (S0)

(ιr)∗ // Es,t2 (M(pr))
δ // Es+1,t

2 (S0) → 0

of short exact sequences. A diagram chasing with the hypothesis vp1E
s,t
2 (S0) = 0

shows v2p1 E
s,t
2 (M(pr)) = 0. Thus, we have vp

r

1 = 0: E
s,t−|bq|
2 (M(pr)) → Es,t2 (M(pr))

for r ≥ 2. Apply this to the exact sequence E
s,t−|bq|
2 (M(pr))

vp
r

1−−→ Es,t2 (M(pr))
(ι̃r)∗−−−→

Es,t2 (M(pr, vp
r

1 )) induced from the cofiber sequence Σp
rqM(pr)

vp
r

1−−→ M(pr)
ι̃r−→

M(pr, vp
r

1 ), and we see (ι̃r)∗ : E
s,t
2 (M(pr)) → Es,t2 (M(pr, vp

r

1 )) a monomorphism
for r ≥ 2. Therefore, (ir)∗ = (ι̃r)∗(ιr)∗ is a monomorphism for r ≥ 2. □

From now, we give a proof of Theorem G.

6.1. The case n2 + n ≤ q. We exclude the case (p, n) = (2, 1). In this case,
Es,∗2 (S0) = 0 for s > n2 + n (cf. [20, (10.10)], and hence (C-I)m, (C-II), (C-III)m
and (C-IV)m follow trivially (cf. Remark 1.20).

6.2. The case (p, n) = (2, 1). The condition (C-II) holds by [9, Th. 6.1]. For (C-
III)1, consider a short exact sequence 0 → E(2)∗ → M0

0 → M1
0 → 0 of comodules

for M0
0 = 2−1E(2)∗. We use an abbreviation of the Ext group:

(6.4) Hs,t
(n)M = Exts,tE(n)∗(E(n))(E(n)∗,M)

for an E(n)∗(E(n))-comodule M . It is well known that Hs
(1)M

0
0 = 0 for s >

0. Therefore, the connecting homomorphism associated to the above short exact
sequence is an isomorphism Hs

(1)M
1
0
∼= Hs+1

(1) E(2)∗ = Es+1
2 (S0). Note that Hs

(1)M
1
0

for s ≥ 2 is a Z/2-module by [15, Th. 4.16]. Then, we have (C-III)1, that is,

(ik)∗ : E
2s+2,2s
2 (S0) → E2s+2,2s

2 (M(2k)) is a monomorphism, since we have an exact
sequence

E2s+2,2s
2 (S0)

2k−→ E2s+2,2s
2 (S0)

(ik)∗−−−→ E2s+2,2s
2 (M(2k)).

Furthermore, we deduce Es,s2 (M(2k)) finite by [15, Th. 4.16]. Thus (C-IV)1 follows
from Remark 1.20.
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Turn to (C-I)1. By [15, Th. 4.16], we have the E2-term

E2k+1,2k
2 (S0) = H2k,2kM1

0 =

{
Z/2{v−k1 h2k0 /2} if k is odd

Z/2{v1−k1 ρ1h
2k−1
0 /2} if k is even

.

From [19, §5], we deduce the differential:
d3(v

3−k
1 ρ1h

2k−4
0 /2) = v1−k1 ρ1h

2k−1
0 /2 if k ≡ 0 mod 4

d3(v
−k
1 h2k0 /2) = v−k−2

1 h2k+3
0 /2 if k ≡ 1 mod 4

d3(v
1−k
1 ρ1h

2k−1
0 /2) = v−1−k

1 ρ1h
2k+2
0 /2 if k ≡ 2 mod 4

d3(v
2−k
1 h2k−3

0 /2) = v−k1 h2k0 /2 if k ≡ 3 mod 4

These show E2k+1,2k
2k+1 (S0) = 0 for k ≥ 1, which implies the condition (C-I)1.

6.3. The case (p, n) = (3, 2). By [11, Cor. 1.4 (c)], Pic0(L2) is a finite group, and
so the condition (C-II) holds.

We read off from [23, Th. 2.11] (see also [4]) that πs(L2M(3)) is finite for each
degree s. Lemma 6.1 together with this implies the condition (C-IV)m for m ∈
{1, 2}.

Consider the comodules N1
0 and M2

0 defined by the short exact sequences 0 →
E(2)∗ → 3−1E(2)∗ → N1

0 → 0 and 0 → N1
0 → v−1

1 N1
0 → M2

0 → 0. Then, they

induce the connecting homomorphisms δ : Hs,t
(2)N

1
0 → Hs+1,t

(2) E(2)∗ = Es+1,t
2 (S0)

and δ′ : Hs,t
(2)M

2
0 → Hs+1,t

(2) N1
0 for H∗

(2) in (6.4), which are isomorphisms if s ≥ 1

and s ≥ 2, respectively by [15]. By [24, Cor. 2.5, Prop. 4.7], we see that Es,t2 (S0) ∼=
Hs−2,t

(2) M2
0 is a Z/3-module and v21H

s−2,t
(2) M2

0 = 0 for s ≥ 6 = q + 2. That is,

(6.5) Es,t2 (S0) is a Z/3-module and v31E
s,t
2 (S0) = 0 for s ≥ 6.

Therefore, Lemma 6.2 implies (C-III)2.

Lemma 6.6. The Erq+1-term of the E(2)-based Adams spectral sequence for π−1(L2S
0)

is given by

E5,4
5 (S0) = Z/3{v−2

2 h11b
2
10, v

−1
2 ξb10ζ2} and E4r+1,4r

4r+1 (S0) = 0 for r ≥ 2.

Proof. LetM2 denotes a spectrum such that E(2)∗(M
2) =M2

0 . Actually, we define
N1 and M2 to be cofibers of the natural maps L2S

0 → L0S
0 and N1 → L1N

1.
Note that Es,t2 (M2) = Hs,t

(2)M
2
0 . By [24, Prop. 4.7, Th. 6.4], we read off

H7,8
(2)M

2
0 = 0 and E4r−1,4r

4r+1 (M2) = 0 for r ≥ 3.

Furthermore, we have an exact sequence H3,4
(2)M

1
1

φ−→ H3,4
(2)M

2
0

3−→ H3,4
(2)M

2
0 with

φ(x) = x/3 ([15, §3]) and H3,4
(2)M

1
1 = Z/p{v−1

2 h1b0/v1, ξζ2/v1} by [24, Th. 2.3].

Therefore, [24, Prop. 5.3] implies

H3,4
(2)M

2
0 = Z/3{v−1

2 h1b0/3v1, ξζ2/3v1}.

Now the lemma follows from the isomorphism δδ′ : Hs,t
(2)M

2
0 → Es+2,t

2 (S0). □

Lemma 6.7. The condition (C-I)2 holds. In other words, The unit map ik : S
0 →

Vk induces a monomorphism (ik)∗ : E
4r+1,4r
4r+1 (S0) → E4r+1,4r

4r+1 (Vk) for Vk =M(3k, v3
k

1 ) ∈
V2.
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Proof. By Lemma 6.6, the homomorphism (ik)∗ is a monomorphism for r ≥ 2.
For r = 1, the E5-term is the same as the E2-term. Let V (1) = M(p, v1). The
E2-term of L2V (1) is given in [22, Th. 5.8] (see also [2]), and we see that the

inclusion inc : S0 → V (1) induces a monomorphism E5,4
2 (S0) → E5,4

2 (V (1)) by
Lemma 6.6. Since inc factors through ik : S

0 → Vk, we obtain a monomorphism
(ik)∗ : E

5,4
2 (S0) → E5,4

2 (Vk). □
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