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ABSTRACT. We work in the stable homotopy category of p-local spectra for a
fixed prime number p. Let E be a spectrum and Lg denote the stable homo-
topy category of localized spectra with respected to E in the sense of Bousfield.
Then, M. Hopkins introduced a Picard group Pic(Lg) of the category Lg. If
the spectra F and F satisfy the relation (E) > (F') of the Bousfield classes,
then we have a homomorphism £: Pic(Lg) — Pic(Lr). We consider the spec-
tra K7 = E(n) A MJp, for the n-th Johnson-Wilson spectrum E(n) and a
type m generalized Moore spectrum M Jp, for 0 < m < n. For E = K]}, we
have a subgroup Pic®(Lg) of Pic(Lg) consisting of exotic elements. In this
paper, we study the homomorphism £: PicO(CE(n)) — Pico(ﬁK%), and give
conditions under which it is an isomorphism. This is a generalization of the
result Pic®(L2) = k2 ([3, Remark. 6.5]) for (p,n,m) = (3,2,2).

1. INTRODUCTION

Let S(,) denote the stable homotopy category of p-local spectra for a prime
number p. For each spectrum E € S(,), we call a spectrum X € S,) E-local if
[C, X]. = 0 for any C with C A E = 0, and denote by Lg the full subcategory
consisting of all E-local spectra. We then have the Bousfield localization functor
Lg: Sy) — Le C S along with a natural transformation 7: id — Lg. Let (E)
for a spectrum F denote the Bousfield class of E. We define an order on Bousfield
classes by setting (E) > (F) if X A F =0 whenever X A E = 0. Then,

Lg =Lp (or Lg = L) if and only if (E) = (F).

A spectrum X € Lg is called invertible if there is a spectrum Y € L such that
Le(X ANY) ~ LgS° € Lg. M. Hopkins introduced the Picard group Pic(Lg) of
a localized category Lg, which consists of equivalence classes of invertible spectra
under weak equivalences (cf. [26], [5]). We notice that the Picard group needs not
be a set. The multiplication Ag of the group is defined by X Ap Y = Lg(X AY)
for X,Y € Lg, and LS is the unit. Hereafter, we abuse notation and write
X € Pic(LEg) for the equivalence class of an invertible spectrum X. For spectra E
and F with (E) > (F'), we have a homomorphism

(].1) EFZ PIC(EE) — Pic(ﬁp)

defined by ¢p(X) = LrpX (c¢f. [12, Lemma 2.2]). Moreover, we see easily the
following:

(1.2) (c¢f. [12, Lemma 2.5]) {r is a monomorphism if (E) > (F) and LgS® = LpS°.
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Let BP, E(n) and K(n) denote the Brown-Peterson spectrum, the Johnson-
Wilson spectrum and the Morava K-theory for each integer n > 0, respectively,
whose coefficient rings are

BP* = Z(p)[’vl,’l}g, ces ]7
E(0), = Q= K(0)., and for n > 1,
E(n). = Zgy[vi,v2, ..., 00,0, '] and  K(n), = Z/plv,,v,"].

Consider the spectra
K = \/ K(i) for0<m <n.

Then, the Bousfield classes of these spectra satisfy
(1.3) (E(n)) = (Kg) > > (Kp) > (K ) > > (K)) = (K(n)).
Here, the first equality is shown in [20, 2.1.Th.(d)]. We consider the stable homo-
topy categories localized with respect to these spectra:

Ly, =Lgn and L, = Lgw) = Ly,
and the Bousfield localization functors

Ly,: Sy — Ly, and L,(= Lgy): Spy = L

for 0 < m < n. The smash product A}y on L} is defined by
(1.4) XALY = Lgn (X AY) =L (X AY)

for X,Y € L7
We say that a finite spectrum V has type m, if K(i).(V) = 0 for ¢« < m and
K(m).«(V) # 0. A typical example of a type m finite spectrum is a generalized
Moore spectrum M J for an invariant ideal J = (p®,v{',... v," ') of BP,, such
that
BP,(MJ) = BP,/J.

For a type m finite spectrum V,

(1.5) (K2) = (B(n) A V).

Furthermore, for a spectrum W,

(1.6) (cf. [7, Cor. 2.2]) L} =LyL, and WALV ~L,WAV.

Here, the second follows from the first by W A V = Ly L,W AV ~ L,W AV,
since V is finite.

Note that L7, ;5% is an L7, S°-module spectrum, and we have (L7 5%) > (L, S°).
Since (Ly(,)SY) = (E(n)) = (E) for

E=v,'BP
by [7, Cor. 2.4] and [20, 2.1.Th.(b)], we see the following:
(1.7) (B) = (LnS%) = (L3,5%) = (Li(mS°),

where (E(n)) = (L,S°) since E(n) is smashing (cf. [21]).
Now we consider the Picard groups of the categories L},. For L, = Lf and
L m) = L}, we have the followings:
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(1.8) ([9, Prop. 1.4, Lemma 1.5], [5, Prop. 7.6]) Both Pic(L,) and Pic(Lk ) are
sets. Furthermore, there is a summand Pic®(L,,) such that Pic(L,,) = Pic®(L,,)DZ.

(1.9) ([9], [5, Th. 1.3, (15)]) For an invertible spectrum X in L,, E(n).(X)
E(n). as E(n).-modules. For an invertible spectrum X in Li (n), E(n)«(X AV)
E(n)«(V) as E(n).-modules for any generalized Moore spectrum V of type n.

o~
o~

The next theorem is a generalization of (1.9).

Theorem A. Let 0 < m < n. For an invertible spectrum X in L7, there is

an isomorphism E(n).(X AV) = E(n)«(V) of E(n).-modules for any generalized
Moore spectrum V' of type m.

By the results of Hopkins and Smith [6] and Devinatz [1], we have a sequence
(110) Vm = {Vk,Tkt Vk+1 — Vk}k21

of type m generalized Moore spectra Vj for each m > 0 satisfying the following five
properties:

1) Each Vi, € V,, is a generalized Moore spectrum M J,, 1, for an invariant ideal
Ik = (pOF o7k o) with ejp >0

» Ym—1
of BP,.

2) Ik D Imk+1 and ﬂkZI I = 0.

3) For each k > 1, V}, € V,,, is a ring spectrum with multiplication my: Vi A
Vi = Vi and unit 45: S° — V4, in which iy, is the inclusion to the bottom
cell.

4) For each k > 1, the map 74 satisfies 7xix+1 = . In particular, it induces
the projection (7x).: BPy/Jm.k+1 — BPi/Tm k-

5) For each k > 1, Vi € V,, is self-dual: D(V}) = X%V}, for the Spanier-
Whitehead dual D(X) = F(X, S°) and an integer a.

We notice that Vo = {S°} and so V;, = S° € V, for k > 1.

(1.11) ([7, Th. 2.1, Cor. 2.2]) L7 X = holimy, ¢y,, L, X AV}, for 0 < m < n and for
any spectrum X.

We call an invertible spectrum X in L7, ezotic if the isomorphism E(n).(X A
V) — E(n)«(V) in Theorem A is the one of E(n),(F(n))-comodules for each V €
V- We have well known subgroups of the Picard groups of £,, and L ;) consisting
of exotic elements:

Pic’(L,) C Pic(L,) and K, C Pic(Lg(m))-

(1.12) ([9, Th. 2.4]) For Q € Pic(L,,), we have an isomorphism E(n).(Q) = E(n).
as an E(n).(E(n))-comodule.

For a given sequence V,, in (1.10), we consider a collection

Spo={X € Ly, [YVi € Vin, 3hil: B(n).(Vi) Ze(n) E(n)«(X A Vi),
(Te—1)«hiy = Py (Th-1):}/ =,

in which =¢(,,) denotes an isomorphism of E(n).(E(n))-comodules, and put

(1.14) PicO(£") = Pic(£7) N S™ C S™.

(1.13)
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We see that S;), is a semigroup with multiplication given by the smash product A,
(see (3.10)). It looks that S depends on the choice of a sequence V,, of (1.10),
and so does Pic?(L%,).

Proposition B. Let 0 < m < n. Then, S, is defined independently of the choice
of V. Furthermore, Pic®(L") is a subgroup of Pic(L™).

We notice that the following:

(1.15) (cf. 9], [5]) Pic®(L£y) = Pic®(L,,) and Pic®(L1) = k.

Consider the homomorphism 7}, : Pic(L,,) — Pic(L},) in (1.1) obtained from the
relation (E(n)) > (K) in (1.3). It follows from (1.6) and (1.12) that LI, Q € S,
for Q € Pic®(L,,), and so the homomorphism ¢7, is restricted to a homomorphism
(1.16) 0 Pic®(L,,) — Pic®(Ln).

We now consider a similar statement to (1.2) on 7, : Pic®(L,,) — Pic®(L?,) with
(E(n)) > (K=) and (L,S%) = (L%S%). Let {E2*(X)} for a spectrum X € S,
denote the F(n)-based Adams spectral sequence converging to the homotopy groups
Tw (L X):

(1.17) Ey'(X) = Ext3(,) gy (E()w () (X)) = 7 (L X).
We consider a condition:

(C-I),,, There exists a generalized Moore spectrum V of type m such that the inclu-
sion iy : S° — V to the bottom cell induces a monomorphism (iy ). : E:gill’rq(SO) —

E[TET(V) for every v > 1.

Hereafter, we put
q=2p—2.

Theorem C. Let m be an integer with 0 < m < n, and suppose (C-1),,. Then,
o Pic®(L,) — Pic®(£7) in (1.16) is a monomorphism.

m*

Next, we consider two conditions, under which £, in (1.16) is an epimorphism:
(C-II) Pic%(L,,) is a finite group.

(C-III),,, There exists a generalized Moore spectrum V of type m such that the inclu-
sion iy : S® = V to the bottom cell induces a monomorphism (iy-), : E59T>7(50) —
E;TT2TUV)Y for every r > 1.

Theorem D. Let m be an integer with 0 < m < n, and suppose (C-II) and (C-
I1),,. Then, €7 : Pic®(L,) — Pic®(L%) in (1.16) is an epimorphism.

Actually, we show the mapping 7, : Pic%(L,) — 8% given by ¢ (X) = L™ X
surjective in Corollary 5.16. The mapping factors as Pic®(L,,) Ly Pic(Ln) c S».
Corollary D-1. Let m be an integer with 0 < m < n, and suppose (C-II) and
(C-II),,,. Then, Pic®(L™) = 8% In particular,

Sy =Pic®(L,) and S = ky.

In other words, a spectrum X € L7, is exotic invertible in L7, if and only if there
ezists an isomorphism hi\ : E(n).(Vi) 2 E(n).(X A Vi) of E(n).(E(n))-comodules
for each Vi, € Vyy, such that (Tk_l)*hkx = th_l(Tk_l)*,
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Corollary D-2. Let 0}, : Pic®(L}) — Pic®(Ly,) for 0 < i < m < n be the
homomorphism defined by (', (X) = Ly, X. If (C-II) and (C-III),, hold, then the
homomorphism (', for 0 <i < m <mn is an epimorphism.

We note that

(1.18) If (C-I),, (resp. (C-1II),,) holds, then so does (C-1); (resp. (C-III);) for each
1 with 0 <1< m.

Corollary D-3. Let m be an integer with 0 < m < n, and suppose (C—I),LL,
(C-I1) and (C-111),,. Then, the functor LT, defines an isomorphism Pic®(L,) —
Pic®(£"). Furthermore, Pic®(L,) = Pic®(L?) for i < m.
We also study a generalization of [11] (see Proposition F), and consider a condi-
tion:
(C-1V),, For each spectrum Vj, € V,,, the homotopy group mo(L,, V%) is finite.
Since Vo = {S°}, we set (C-IV)q void.
Proposition E. Let m be an integer with 0 < m < n and X € §},. If (C-IV),
holds and X ANVy, ~ L, Vi, for each Vi, € Vyy,, then X ~ LfnSO.

We fix a spectrum Vi, € V,,, with k& > kx, in which ky is the integer in Proposition
4.15. For each m with 1 <m < n and s > 0, consider the subsemigroups of S, :

(1.19)  SpW ={X e8! |d (1) =0€ Er" "1 (X A V) for r < sq + 1}.

Here, 13} € EYY(X AVj) is the generator in (4.12). We notice the existence of an
integer s, such that E:gi%’rq(Vk) =0 for r > s, and Vi, € V,, (see (4.14)). Then,
Proposition E implies Selsm) — (¢f. [11, Cor. 2.2]). The same argument as [11,
§2] works to show the following:

Proposition F. Let 0 < m < n. If (C-IV),, holds, S, has a decreasing finite
filtration

St = 5:;;(0) > 5:;{(1) 5o Sg(smfl) > Srrg(sm) =0
of subgroups with monomorphisms

s SO /S 5 pITERA(V)

for s > 1. In particular, S, is an abelian group if (C-IV),, holds, and then SI =
Pic%(Ln).
This is a generalization of [11, Th. 1.2, Lemma 2.8], which is the case for m = 0.

The conditions (C-II) and (C-1V),, are replaced by stronger conditions stated
by the E(n)-based Adams spectral sequence:

Remark 1.20. The condition (C-IT) (resp. (C-IV),,) holds if the Ey-term E5*~'(S?)
(resp. E5°(Vk)) is finite for each s > 0.

The Picard group Pic?(£,,) is known in the following cases:
e ([9, Th. A, Th. 5.4] (c¢f. [11, Cor. 1.4.(a)])) Pic®(L,) = 0 for n? + n < ¢
except for (p,n) = (2,1).
e ([3, Th. 1.2] (¢f. [11, Cor. 1.4.(c)])) Pic®(L2) = Z/3 & Z/3 for (p,n) = (3,2)
e ([9, Th. 6.1] (cf. [11, Cor. 1.4.(b)])) Pic®(Ly) = Z/2 for (p,n) = (2,1)



6 KATSUMI SHIMOMURA

We notice that the condition n? + n < ¢ in [11, Cor. 1.4.(a)] and [11, (1.3)(a)
may be replaced by n* +n < ¢ with (p,n) # (2, 1), since @, E:ZI%”(SO) =0i
n? +n < ¢ with (p,n) # (2,1) by [20, (10.10)].

Theorem G. In the above cases, the conditions (C-I),,, (C-II) and (C-1II),, hold.
Furthermore, (C-IV),,, holds.

Corollary G-1.
1) If n2 +n < gqand (p,n) # (2,1), then Pic®(L") = 0 for 0 < m < n.
2) If (p,n) = (3,2), then Pic®(Ls) = Pic®(L3}) & ka.
3) If (p,n) = (2,1), then Pic (L) = k1.

We notice that Pic®(£?) is the kernel of a homomorphism from Pic(£?,) to an
algebraic Picard group, and so the homomorphism is a monomorphism in the first
case. Pstragowski [18] shows the monomorphism is an isomorphism for £} = Ly,
with ¢ > n? + n.

]
f

This paper is organized as follows: In the next section, we study invertible
spectra and show Theorem A. A converse of Theorem A is also studied under a
stronger condition (see Proposition 2.6). In section three, we study the condition
of §) and set up Lemma 3.3, by which we show Proposition B, and also construct
a map of geometric resolutions (¢f. (4.6)) in Lemma 5.1.

In order to prove Theorem D, we construct an invertible spectrum of L, by
setting up an infinite tower. For this sake, we recall terminology, notions and results
on invertible spectra and the E-based Adams spectral sequence for E = v, ! BP
from previous papers in section four. We also prove Theorem C and Proposition E
in this section.

Over a map between geometric resolutions given in Lemma 5.1, we construct an
infinite tower (cf. (4.17)) along with a map of towers, and then show Theorem D
in section five. The last section is devoted to proving Theorem G.

The author wishes to thank the referee for useful comments on the first version
of this paper.

2. INVERTIBLE SPECTRA IN L],

In the following, we fix non-negative integers m and n with 0 < m < n. In
this section, we characterize an invertible spectrum in L7 (C L,) by the E(n).-
homology. Let thick (L, S°) denote the thick subcategory of £,, generated by L, S°.

Lemma 2.1. Let X € L}, and V be a type m finite spectrum. Then, X is strongly
dualizable in L7 if and only if X AV € thick <Ln50>. In particular, for an invertible
spectrum X of L7, X AV € thick (L,S%).

Proof. Since an invertible spectrum is strongly dualizable by [8, Prop. A.2.8], the
latter statement follows from the former.

We turn to the former statement. Since L, is a monogenic stable homotopy
category, a spectrum X € £, is strongly dualizable if and only if X € thick (L, S")
(cf. [8, Th. 2.1.3]). Thus, it suffices to show that X is strongly dualizable in L} if
and only if X AV is strongly dualizable in £,,.

Suppose X strongly dualizable in £7,. Then, D(X)ALU = F(X,U) for U € L},
where D(X) = F(X,S°). For W € L,,, we compute

DX AV)AW = D(V)AD(X) A", W = D(V) AF(X,LEW) = F(X AV, W)
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in £, by (1.6). Thus, X AV is strongly dualizable in £,

Conversely, suppose X AV strongly dualizable in £,,. Consider the natural map
¢ F(X,SO AW ~ F(X,8% A F(S°, W) 2 F(X,W) for a spectrum W € L,.
Then, similarly as above, we see ¢ A D(V) to be an equivalence, and so is L, ¢ by

(1.6). O
Proof of Theorem A. Let V be a generalized Moore spectrum of type m such that
BP.(V) = BP,/J,, for an invariant ideal J,, = (p®,v{,..., v, 7). Then, for
m < i < n, we have ideals J; = (p°,v{',...,v;"]") of BP, and spectra M.J; such

that BP,(MJ;) = BP,/J;. By downword induction on ¢, we show the theorem for
m. For i = n, it follows from (1.9).
In general, we verify easily the following:

(2.2) Let M be a finitely generated E(n).«-module. If x € M is infinitely divisible
by an element v € Zp[v1,- -+ ,vn—1] C E(n)s, then x = 0.

Suppose that the theorem holds true for ¢ + 1 > m. Let X be an invertible
spectrum in £7). Then, L?X is an invertible spectrum in £ and X A MJ; =
LYX AN MJ;. For M J;,

(2.3) E(n).(X A MJ;) is a finitely generated E(n).-module

by Lemma 2.1. Consider the cofiber sequence
(2.4) Sl AL g, 25 Mg 2 M, 2 sl

for a map v; with BP,(v;) = v;*. Since L} ;X is invertible in L}, ;, we have
an isomorphism bh: E(n)«(X A MJiy1) = E(n)itq(MJ;11) for an integer a by
the inductive hypothesis. Note that the degree |v;| is a multiple of ¢. Apply
E(n) (X A —) to the cofiber sequence (2.4) to obtain the exact sequence

B oy (XA M) L2 B(n), (X A M)

B B)(X A MJis1) 225 B(n),_ o, -1 (X A ML),
Since E(n):(X AMJ;i11) 2 E(n)ira(MJ;41) = 0 unless q | (t 4+ a), the self map v;
induces an epimorphism (v;).: E(n);_jo, (X A MJ;) = E(n):(X A M J;) for t with
q1 (t+ a). Then, by (2.2) with (2.3), E(n)(X A MJ;) = 0 unless ¢ | (t +a). It
follows that

(2.5)

0= E(n)_jo (X A M) L2 Bn)o(X A M) 825 Bn), (X A M) — 0
is short exact. Thus, we obtain a generator g € E(n)_o(X A MJ;) such that
(ii)«(g) = b71(1) € E(n)_o(X A MJ;11) for the generator 1 € E(n)o(MJ;41).
Since E(n)«(X A MJ;) is an E(n).(MJ;)-module, we define a homomorphism
frEM)«(MJ;) = EMn)sw—a(XAMJ;) by f(1) = g. Then it fits in the commutative
diagram

(03)« 1)«
0 ——> B0} o (M) — 2o B (M) — 2 B () (M) —> 0
g (03)4 W ik

0= E(n)s_jo,—a(X A M) L E()s_o(X A M) L )y (X A M) -0

of short exact sequences. Since E(n). is noetherian, the kernel of f is a finitely
generated F(n),.-module. Moreover, the cokernel of f is also finitely generated by
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(2.3). Therefore, the snake lemma together with (2.2) shows f to be an isomor-
phism. ([

With an additional condition, we obtain a converse of Theorem A:

Proposition 2.6. Suppose that a spectrum X € L}, is strongly dualizable and there
is a generalized Moore spectrum V' of type m such that E(n).(X AV) = E(n).(V)
and E(n)«(D(X)AV) 2 E(n).(V) as an E(n).-module. Then, X is an invertible
spectrum in L7,. Its inverse is L7 D(X).

Proof. Consider the cofiber sequence
(2.7) DX)ANX 51,55 C
for the evaluation map e, and a commutative diagram

ad (=AV).
_—

[D(X) A X, L,S% 0 —2“~ [D(X),D(X)]o [D(X)AV,D(X)AV]y
c*i/ i/F(X,c),k

i/(l/\c/\l)*
[D(X) A X, Clo —“> [D(X), F(X, C)o 2 [D(X) AV, D(X) AC A V)]o

in which ¢ is a map of (2.7), and ad denotes an adjunction. Here, D(X)ACAV =
F(X,C)AV by (1.6), since X is strongly dualizable. We see that D(X)AcAV =
(AANecALD)(=AV)ilad(e)) = (= A V).(ad(ci(e))) = 0, since ad(e) = idp(x)
and ce = 0. It follows that the cofiber sequence D(X)A(2.7)AV give rise to a
decomposition

(2.8) DX)ADX)AXAV =~ (D(X)AV)V (E'DX)ACAV).

By the hypothesis, we have equivalences E(n) A X AV ~ E(n) AV and E(n) A
D(X)AV ~ E(n) AV up to suspension, and so

EmMADX)ADX)AXAV 2~ E(n)ADX)AXAV 2 En)AXAV ~ E(n)AV

up to suspension. Apply F(n).(—) to (2.8), and we have an epimorphism E(n),/J =
En)«(D(X)ADX)AXAV) = E(n)«(D(X)AV) 2 E(n)./J for the ideal J such
that E(n).(V) = E(n)./J. By Nakayama’s Lemma (cf. [13, Th. 2.4]), the epimor-
phism is an isomorphism, and so we obtain F(n).(CAV) = E(n).(D(X)ACAV) =
0 by (2.8). Thus, C is E(n) A V-acyclic, and hence L7 C' is trivial by (1.5). Thus
XSSt O

the evaluation map e induces the desired equivalence D(X) AT,

3. Pic®(L") 1S A SUBGROUP OF Pic(L%)
In this section, we give a paraphrase of the condition E(n).(V) Z¢n) E(n)«(X A
V) on 87 in Lemma 3.3 by using E = v, ! BP instead of E(n), and verify that
Sn is depends only on the integers m and n, and that Pic®(£?) is a subgroup of
Pic(L7,), which is the claim of Proposition B. We also use Lemma 3.3 in section
five to construct a map between geometric resolutions (Lemma 5.1).
Let E denote the ring spectrum v, ! BP for a fixed integer n > 0. Then, we
obtain a Hopf algebroid

(E.,E.(E)) = (v,'BP,,E, ®pp, BP.(BP) ®@pp, F.),
which inherits the Hopf algebroid structure from the well known Hopf algebroid
(BP*,BP*(BP)) = (Z(p)[vl,vg, . ]7 BP*[tl,tg, .. ])
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We write the multiplication and the unit of the ring spectrum E as
(3.1) pp: EANE - E and ip:S° — E.

Since the category of E(n).(E(n))-comodules is equivalent to the category of F, (E)-
comodules by [10, Th. 4.2], the isomorphisms th in the definition of Sy}, is replaced
by the isomorphisms

(3.2) hil: B, (Vi) & Eo(X A Vi)

of E.(F)-comodules satisfying (Tk_l)*%é( = Eiﬂl(ﬂc_l)*. Hereafter, we consider
every X € 87, to be a spectrum satisfying this.

Lemma 3.3. For X € S;, there exists a map hx: 8% - E AR X such that the
induced map

Ly (npAX)
P

(34) hx: EZMS EABAYL X I LM (EAEAX) EA" X

m
for the map pg in (3.1) satisfies

1) W*(TLX AVE): Ei(Vi) = Eo(X A Vy) for Vi, € V,,, is the isomorphism Ei( of
E.(E)-comodules in (3.2), and
2) hx sits in the commutative diagram

E;{/\V}C

EANV,—————FEANX AV,
EAipAVi | R VERisAX AV
ENhx AV
ENEANV,——=FEANEANXAV,

for Vi, € Vy, and the map ig in (3.1). Here, note that E N}y, X AN Vj, ~
EANX AV by (1.6).

Proof. Let X € §),. The limit of the isomorphisms {?LkX }i gives rise to an isomor-
phism

(3.5) RX: lim E. (V)2 lim EJ(X AV).
VeV, VeVm

We begin with defining a map hy : S — E A" X such that m, (hx A Vi) = lNLf By
(1.4) and (1.11), the Milnor sequence admits an epimorphism

Y n .
s (E Y 1 E.(Y
pm(E A, )—>Vggm (Y AV)

for a spectrum Y, and we obtain a commutative diagram

pX

m.(E A" X) Jim EL(XAV)
e m

(ik)*‘L p XAV Wik)*
T (E N, X ANVy) — Vlgr} E.XANVAVL) =E.(XAV)
for the inclusion iz : S® — V4 in (1.10) 3). For the generators
Tk = (’LE A\ ik) € Eo(Vk),
we have an element (1) € limyey,, E.(V). Let

hx:S° = EA" X €m,(EA X)
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be a map such that p* (hx) = hX((1x)) € limyey,, B.(X AV) for hX in (3.5).
Note that hX ((1)x) = (ki (1x))x by definition. Then,

(3.6)  hX(1x) = (in)ep ¥ (hx) = pX"Ve (i) o (hx) = hx N ik € Eo(X A Vy).

On the other hand, the induced homomorphism 7, (hx AVi): Ey (Vi) = E (X AVi)
acts on the generator 1y € Eg(Vy) by
W*(}\LX N Vk)(lvk) =(ug NX ANV)(E /\EX AVie)(ig Aig)

= (up AX AVi)(ig AEAX AV (hx Aig) = hx Ay o Rl (1)
Since E, (V) is a monogenic E,-module, we see 7, (71 x AVg) = %f , which implies
(3.4) 1).

Next, we turn to show the commutativity of the diagram in (3.4) 2). The
E.(E)-comodule structure ¢y : E.(W) — E.(E) ®@g E.(W) on E.(W) for a spec-
trum W is given by the composite (ug); ! E«(ig A W), where the isomorphism
(ug)«: Ex(E) ®@p, Ex(W) — E.(EAW) is given by (up)«(x ® y) = (E A pug A
W)(xz Ay). Consider the diagram

(3.7)

EX/\V]C

E*(Vk) E*(X A\ Vk) B.(ipAl).

\vak e ¢,¢XAvk\

EAEAVL) = BL(E) ©p, (Vi) 22 E,(E) @5, EL(X A Vi) = E.(EAX A V).
M

E.(hxAl)

E.(ipNl)

Here, p, denotes (ug).. We begin with showing the diagram to be commutative,
in other words,

(3.8) E.(ip AN X AVO)hE = E,(hx AVi)E.(ig A Vy).

Since Ef is a homomorphism of comodules, the middle rectangle commutes. The
triangles on both sides commute by definition. Thus, it suffices to verify

(3.9) (1) (1 1Y) = E,(hx A Vi) (15)s.
For x ® y € E«(E) ®g, E«(Vi), we compute, by 1) of the lemma,
(1E)+ (1 & 1) (2 @ ) = (up)ale @ bl W) = (ne)-(@® (hx A VR)Y)

=(EApug AX AV)(EANEANRhx AVi)(xAy) and
E*(/h\,X AN Vk)(,uE)*(x ®y) = (E /\/]“\LX AN Vk)(E AN g N Vk)(,’E A\ y).

Both of the right hand sides of the above equalities agree by the commutative
diagram

12Ahx Al
A M
SEL EAEANEAV —>=EAEAEAEAXAV, —=EANEANEAX AV,
13 AR x Al 12ApnpAIAL
\LMMEM 1/\,“;/\1/\1/\1i \Ll/\uE/\l/\l
12Ahx Al 1 1A1
ENEANV, L EAEANEAX AV, DS BEAEAX AV
1IARx AL

Thus, the equality (3.9) holds, and the relation (3.8) follows.
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To see the diagram (3.4) 2) commutative, we verify x = y for x = (EAig A X A
Vk)(hx/\vk) and y = (E/\hx/\Vk)(E/\iE/\Vk) in [E/\Vk,E/\E/\X/\Vk]O. The

homomorphism
(1) [EAVe, EANEANX AVi]o = mo(EAEAX A V).
induced from the generator 1, € Eo(Vi) = mo(E A Vi) acts on the elements by
10" @) ¢ Bl A DA @) = Blbx AVOE(in A V(0 = (1))

We verify easily that z and y are E' A Vi-module maps, and obtain z = y from [17,
Lemma 1.3]. O

Proof of Proposition B. Let S(V,,) for a sequence V,, of (1.10) denote the collection
given in (1.13). Let V,, and V), be sequences given in (1.10). For X € S(V,), there
exists hx : E — EAX inducing an isomorphism E, (V') = E, (X AV') for V' € %4
of E, (E)-comodules by Lemma 3.3. Therefore, hy is a V'-equivalence. Note that
(V"y = (V) for any type m finite spectrum V. It follows that hx:E > EANX
induces an isomorphism (hx A V)y: E,(V) = E.(X AV) for V € V,,. For each
V €V, there exist a spectrum V' € V! and amap 7: V' — V inducing a canonical
projection (EAT).: Ex(V') — E.(V) of comodules. Consider the diagram
B.(v) 05 By
(hx V). |22 | GxAv).
B.(X AV) <= (X AV).

Since the left vertical arrow is an isomorphism of E,(E)-comodules, so is the right
vertical arrow. It follows that S(V/,) C S(Vi,). Exchange V,,, and V/,, and we see
the converse.

We set out to verify the claim

(3.10) The collection S, is closed under the smash product AY,. That is, for X, Y €
S, XAy Y eSp.
Let /ﬁx and /f\ly be the maps in Lemma 3.3. Then, the composite £ AV}, Joy AV,

hxAY . . o TXAD
ENYY ANV LEILEAN ENX ALY AVy induces an isomorphism hzm’“yz E. (V) =

E.(X N, Y A Vy) of the comodules by Lemma 3.3. Furthermore, the relation
(Tk_l)*iNLkX/\;LY = Ef_/\fgy(m_l)* follows trivially.

Next we show D(X) € S? if X € Pic%(L?). Since X is invertible in L7, we
have an equivalence e: D(X)A X — S° Then, Lemma 3.3 2) yields a commutative
diagram

hxALAL 1AeAl

EANDX)ANV; EANXADX)AVy ————=EAV;
1NiBATALY, J1AiBAIAL \Ll/\iE/\l

ENEANDX)AV, —>=EANEAXADX)AVe——=EANEAV,
1IANhx A1IAL IAIAeNl

for Vi € V,,,. The upper composite gives rise to an isomorphism iNL,?(X) of comodules

satisfying (Tk_l)*ﬁkD(X) = ﬁkD_()l()(Tk_l)*. O
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4. RECOLLECTIONS ON ADAMS TOWERS

In this section, we recollect some notation and some facts from [11, §§3-4] and
[25] on a geometric resolution (4.6) and an s-tower (4.20), relevant to the E-based
Adams tower, in order to construct an invertible spectrum in £,, by [25, Prop. 2.13]
(see (4.19)). Under the notation, we also show Theorem C and Proposition E (or
Proposition 4.16).

As the previous section, E denotes the ring spectrum v, ! BP for a fixed integer
n > 0. The unit map ig in (3.1) induces the cofiber sequence

(4.1) RIS JE LNy LIS

Lemma 4.2. Let Vi, € V,,. Suppose that there exists a map h: S° — W for a
spectrum W inducing an epimorphism (resp. monomorphism) h,.: E, — E.(W).
Then, it induces an epimorphism (resp. monomorphism) hy: E.(E°) — E.(E° A
W) for s > 0. Here, E° denotes the s-fold smash product EN...NE of the spectrum
E in (4.1).

Proof. The map h induces a commutative diagram

E.(ipAl)

s (UeAl) —s+1

— —s E.
E(F)————=E.(FANE") E.(E ) 0
(BEAL)«
(4.3) h*i/ ih* \Lh*
—s E.(ipAl) —s E.(jeAl)_ —s+1
E.(E /\VV)<7> E*(E/\E /\W)4>E*(E AW)——=0
(kEAL)«

of split exact sequences. Since E,.(FE) is flat over E, (cf. [14, Remark 3.7]), we have
a natural isomorphism E,(E AU) & E.(E) ®g, E.(U) for a spectrum U, and a
commutative diagram

R

E.(E)®p, E.(E") S E.(ENE")
1®h. | \ he
E.E)®p E.E°AW) = EJ(ENE AW).

Therefore, the middle h, in the diagram (4.3) is an epimorphism (resp. monomor-
phism) if so is the left h,. Thus, the lemma follows from the diagram (4.3) by
induction. |

The cofiber sequence (4.1) yields the E-based Adams tower

k — 1Ak 1Nk —s 1Nk —s+1 1Ak
SO« B E e e B Y L
i \Ll/\’iE i/l/\iE/ \Ll/\iE
B _ —=s 1/\jierl
E EANE ENE——F ANE ——-..
40 b ds—1 dq° g5 +T

in which dotted arrows denote degree —1 maps, and
(4.4) & =E Nd):ENE-SETAE
for

(4.5) d=d"=jpNig: E=EANS° - EAE.
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We call the sequence

W) EAW LW ABAW S0, S B BAW
: s s s+1
dAWE+1/\E/\Wd+/\W

for a spectrum W obtained from the bottom sequence of the above diagram the geo-
metric resolutionof W. Let k*: E° — S* denote the composite kp(EAkg) - - - (Es_l/\
kg) of the upper sequence in the tower, and let F denote a fiber of k* sitting in

the cofiber sequence

(4.7) E X, 80 SE, I SE
for each s > 1. Note that

%1 =1ig: SO—>E1 =F.

This gives rise to a commutative diagram

§F==5° 0 e

A’e+1i J/%S \L J/A'e-u
ks 4s ]

(4.8) Eo1 —>YE, ~YEANE 2SE,,

.78+1¢/ J/ﬁs H J/]SJrl

E9+11/\kE EES ]ﬂ;; SEA Es 1INjE EEs+1

in which rows and columns are cofiber sequences. The middle row of the diagram
(4.8) yields another E-based Adams tower

N kL, I kS

0 <o E, < s Ey <t Egpq <o
(4 9) \L / J/d:if \Llf 1 ¢’L§.+1
EZ>ENE—>- —E AE B AE

for d® in (4.4). We notice that homotopy groups of the smash product of the tower
and a spectrum W define an exact couple, which yields the E-based Adams spectral
sequence

(4.10) By (W) = Extyy! ) (Be, Bo(W)) = mi—s (Lo W),

where holimg(X175E; AW) = L, W. We notice that the canonical map E — E(n)
inducing the projection F, — FE(n). gives rise to an isomorphism of the spectral
sequences (1.17) and (4.10). Indeed, we have the isomorphism of the Es-terms:

(4.11) ([11, Th. 3.3], [10, Cor. 4.8])
ExtE’ (E)(E*,M) ExtE(n) (E(n))(E(n)*,E(n)* ®p, M)
for an E.(E)-comodule M, on which v, acts isomorphically.

Let V denote a generalized Moore spectrum of type m with 0 < m < n. The
generator 155 € Eo(X A V) is also the generator

(4.12) 1I¥ e EYY(X AV) (CEy(XAV)).
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The generator plays a key role in the proof of Theorem C, the definition of integers
kx and rx in Proposition 4.15 and the definition of the subsemigroups S,T,L{(S) in
(1.19).

Note that E5*(V) = 0 unless ¢ | t, which implies

(4.13) EX*(V)=E; (V) forr>Tand (r—1)g+1<s<rqg+1.
Moreover, there exists an integer s,, such that

(4.14) (cf. [21, Th. 8.2.6]) B (V)=0 ifs>sng+1.

We notice that s, depends only on m, and is independent of the choice of V.
In the following, we write d,.(z) for = € Ey*(W) without mentioning dy(x) = 0
for s < r.

Proof of Theorem C. Suppose that L™ X = L" S° for X € Pic’(£,,). Then, for the
spectrum V of (C-I)p,, X AV ~ L? X AV ~ L,V by (1.6). It follows that the
clement 15 in (4.12) is a permanent cycle. If the generator 1¥ € ES%(X) survives to
Erqia1-term Eg(}?i-l(X)v then (iv)«(drg+1(1%)) = drg1((iv)(1Y)) = drg1 (13) =
0¢€ E:gill’rq(X A V). By the hypothesis (C-I),,, we obtain d,,4+1(1%) = 0, and

1% € E?;-j-l)q +1(X ). Thus, we deduce inductively that 1% is a permanent cycle.
An element iX € 7y(X) detecting 1% yields the desired equivalence i~ : L,,S° ~ X.

O

In the following, 13X denotes 1{/2 in (4.12) for V, € V.
Proposition 4.15. For each X € S}, there exist integers kx and rx such that

dryqr1(13) #0 € BEXI7(X A V)

for Vic € Vy, with k > kx unless 13X are permanent cycles for all k > 1 (we set
kx =1 and rx = oo in this case).

Proof. Suppose that 1;X € EYY(X A'V;) for some integer ¢ is not a permanent
cycle. Then, there is an integer r such that d,,+1(1) # 0. By the naturality of
the differentials of the spectral sequences, we deduce that for every integer k > ¢,
there exists an integer s < r such that dsq+1(1i() # (0. This shows the existence of
the integers kx and rx. O

The following proposition is a restatement of Proposition E:

Proposition 4.16. Let X € S, and rx be the integer given in Proposition 4.15.
If (C-1V),, holds and rx = oo, then X ~ L" S°.

Proof. Put Uy, = iy, + Ki, C mo(L, Vi) for K, = Ker ((ig)«: mo(LnVi) = Eo(Vk)).
Here, iy € 7o(L, V%) denotes the element corresponding to the inclusion iy : S® —
Vi in (1.10) 3). Since rx = oo, 13 is a permanent cycle, and then an element
sz SO — X AV, detected by 1? induces an equivalence e?: L, Vi, ~ X ANV.
Indeed, e? induces the isomorphism th in (3.2). Let ox: L,Viy1 — L, Vi be the
map fitting in the commutative diagram

ekx+1
Lnd+1 *>§ XA Vk+1

O'k\b x ¢1/\7‘)€

L,Vi —* = X A V.

~
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Since X € S}, this induces a commutative diagram
Ek+1 EkX+1
E(Vig1) — Es(X A Viy1) <— Ei(Vit)
(o8)+ Tx ¥ (75) S x } (75)

Then, the induced homomorphism (o)« : mo(LynVit1) = mo(Ln Vi) satisfies (ok )« (ik41) =
i modulo Ky, since

(18)x (0k)ulins1) = (08)«(i)x (irs1) = (Ok)s(Trs1) = (Te)s(Trg1) = L = (ip).(ix)

for the generators 1, = (ig).(is) € Eo(Vs). It gives rise to an inverse system
{Uk, (ok)+} of sets. Consider mappings (0 %)« = (0k)«(0kt1)s - (0j—1)x: Uj —
Uy, for j > k. Then, by the condition (C-IV),,, we have a finite filtration

U, O Im (Uk)* O Im (Uk+2,k)* D---DIm (Ujk,k)* =Im (Ujk+1,k)* =

for some integer j,. Put U = Im (O'jk)k,)*. The relation Im (o)« = (0%)«(Im (0 k41)+)
for j > max{jy, jrr1} implies Up = (04)«(Ugs1). Thus, (ox). induces a sur-
jection (og)«: Upy1 — Upg. Therefore, we have an element ¢ € lim(,, ). U, C
lim(,, ), m0(L,Vk). Since X = holimy(X A Vi), we have an epimorphism 7 (X) —
limg, 7o (L Vi). Then, we also denote by ¢ € mo(X) an element corresponding to
t. Hence, we obtain an equivalence L7:: L™ S% ~ X since ¢ is an (E A Vj).-
equivalence. ([l

We also consider a tower

I3 k?—1 k9 k?+1
0 < ~Qy < e < ST [ J Qop1 < e
(4.17) i / Ja=i i@ 47 1¢z‘?+1
EZ >EANE—> - —>ENE—>E"NE—> -
d° d! s~ astt

with the same bottom sequence (geometric resolution of S%) as (4.9). In the same
manner as (4.10), the tower (4.17) defines a spectral sequence

(4.18) E5' = Bxty! o (E., B.) = m(Q),
where @ = holim, ¢ Q..

(4.19) ([25, Prop. 2.13]) If a tower (4.17) ewists, then @ = holim,q Y1I=5Q, is an
exotic invertible spectrum of L,,.

We consider a sub-tower of (4.17):

(4.20) d=i% i? o
|~ et Ve

*>E/\E—>d ~—>d E°NE

for each integer s > 1, which we call an s-tower.

(4.21) ([11, Lemma 4.5]) Suppose that an s-tower (4.20)4 for s > 1 exists and let G
be an E-module spectrum with action vg: GANE — G. Then, we have a split short
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exact sequence

Q%
0= more1(G) 25 Qs Gl 220 (tm (@), — 0.

Here, 15 is defined by

(4.22) Vs(x) = vg(@ AE)(KQ)*™ for (kQ) 1 = k9. k2 |,
and (d*~1)*: [E° A E, G, — [Es_l A E,G); is induced from d*1: EAE -
E°AE.

5. CONSTRUCTION OF AN INVERTIBLE SPECTRUM IN L,

In this section, we prove Theorem D, that is, the localization L}, induces an
epimorphism Pic®(L,,) — Pic®(£?), in the following steps.
1) For X € Pic’(£") and Vj € Vp, consider the E-based Adams tower {Es A

XAV, XNV jXAVE XAV (= (4.9)A X AV},) over the geometric resolution
{E°NEANX AVids.

2) Set up a map {%}k} {E°NE}y — {E°ANEAX AV} of geometric

resolutions of S° and X A V;, (Lemma 5. 1)

3) Inductively, construct an oo-tower {Q,, i ’ 79, k%) over the geometric reso-

lution {E” A E}, along with a map {(fk,f& D Qe E°AE)Y = {(Es A

XAV, E° ANEAX AVi)} of towers under the condition (C-IIT),,. For this
sake, we set up Lemmas 5.6 and 5.9.

4) Show that @ = holim Qs for Q5 given in step 3) is an invertible spectrum

of £, such that Q AV}, ~ X A V. (Lemma 5.11).

These are summerized in Theorem 5.13, and Theorem D in Introduction follows

from

Corollary 5.16 as explained in Introduction.

Lemma 5.1. For each X € S;, and Vi, € Vi, there exist maps ﬁﬁ(k E°ANE —
E°NEAX AV, for s > 0 in the commutative diagram

s+1 as+1

40 — dt ds—1 =S d®
ANE

EANE E NE

E E

~0 ~1 =~ Ts41
h ki i/ths l/hg(k i/hxk

EAXAVEABEAEAXAVEEA . TN ABAX AV EAE

s+1 astInl

aal A AEAXAVEZLL

such that hg(,k induces the same map as the projection (iy)s: m(E°NE) — m,(E°A
EAX AV 27m.(E° NEAVL).

Proof. For spectra X € S, and V}, € Vm, Lemma 3.3 yields a commutative diagram

Put
(5.2)

E/ZWFEAE

\l/l/\zk ‘e \Ll/\zk B lAzk\L
=0 1Nig Al BAL h
hx,k,E/\Vk EAE/\V]C%-E/\E/\V]C X,k

o {hxAl . \Lmhxm ‘ 1/\hx/\1¢ L
EAXAV LA BEAEAX AV, ZLEAEAX AV,
—= ENEANX AV, —=
d°A1

hr=E Nhx Nig: EEANE - E ANEAX AV, for s >0,
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and the above diagram gives rise to the commutative diagram

ErE—Y L FEYVAE
(5.3) R Vhsts
EAEAX A Vkﬁlﬁs“A EAX AV,

for d® in (4.4).
The induced homomorphism (hX )« 1S the same as (ig)+ by Lemma 3.31). O

For spectra X € S} and Vj, € V,,,, we consider the existence of a map of towers

(5.4)s {76 hl ) Yezs: HQLE AE)hizs = {EAX AVi,E' NEAX AVi) oz

of s-towers: from the tower (4.20)s to the tower (4.9) A X A V. Here, the maps

htXJf are the ones in Theorem 5.1. A map (5.4), means the maps {(f}@,hfx’k)}tgs

satisfying

(5.5), R it = (i AX AVISE, iy = (G5, AX AVi)RY L and
Bty = (A X A VIR,

for1 <t<s.

Lemma 5.6. Let X € S and kx be the integer in Proposition 4.15. Suppose that
there exist an s-tower {Q4,i%,j&, k2} lying in (4.20)s and a map in (5.4)s_1 of
towers for an integer s > 2 and a spectrum Vi € V,, with k > kx. Then, we have
a map (5.4), of towers for a replaced i9: Qs — E° A E fitting in (4.20),.

Proof. The relation h;; ? L= (@ AX AV in (5.5)s_1 defines a map f}
fitting in the commutative diagram
(5.7)

Q -Q Q
ts—1 —s—1 Js—1 kEy

Qs—l E ANE Qs EQs—l
f;fli ﬁi{fé i lf;’l
.S S A \ ES Al

_ AN . e _ ERTAN _
Ee  AX AV e B T A BAX AV S B AX AV -2 SE, L A X AV,

of cofiber sequences. This implies the second and the third equalities of (5.5)s.
Put of = (i5 A 1)f§ — E%kz? € [Qs,E° ANE A X AVi]o, and consider the com-
mutative diagram
—s P —s5 (j.?_1)* NECIN
Ts—1(E" NE) Qs, E" N Elg (Im (d°~)")o
V(R )= ¥ (R i) o V(% )+
1ot (BE°NEAXAVi) —2 [Q0, B A EAX A ViJo 2> (Im (d°1)")g

of the exact sequences in (4.21). Then,

(‘7871)*(02) = ((lf ADfy — X ki )Js 1( :20)( )fk]s 1 kds_l
N 7 1

-S .S s— s— s—1 7s—1 s s—1
= Al ADRS . — h d AP AND)hS . — h .d = 0.
(5.7)(15 )1 ) X, X,k (4.9)( ) X,k X,k (5.3)

Thus, 0} € Im),. Since the left homomorphism (ﬁi( x)+ in the above diagram is

an epimorphism by Lemmas 4.2 and 3.3, we have an element 0, € Ws_l(Es AE)
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such that 9 (h% ;). (0}) = 0f. Replace i@ by i =9 + ¢,(0}) € [Qs, E” A E]o, and
we obtain the lemma by computation

& = (i9 + (@))%, = d* L+ (5 1><k<az>>:d5*1, and
(5 AL, — Wi = (05 A D — Ry x (6@ + 05(83)) = 0f — (A 0)«¥s(T})
= 0§ — s (W% 1)< (0}) = 0f — 0§ = 0. O

We note that for the spectrum V' in the condition (C-III),,, we have a spectrum
Vi € V,, and a map 7: V;, — V such that iy = 7i. Let k¥ denote the minimum
integer of such integers k. Then, we have a monomorphism

(5.8) (i) : E5TT279(S0) — ELIT2T9(Vy)

for k > kY, if the condition (C-III),, holds.

Lemma 5.9. Let X € S and suppose the condition (C-1II),,. Suppose further
that there ezists a tower {Qy, i, j@ k@} in (4.20), along with a map (5.4), for
positive integers s and k > max{kx,k"}. Then, the tower extends to (4.20)s;1
after replacing i€ by a suitable map fitting in (4.20)s.

Proof. 1t suffices to show the existence of a map i: Qs — E’ A E such that ij?_l =
d*~1 and d%i = 0. Indeed, replace z? by i and Qs4+1 by the one in the cofiber

P -Q kQ
sequence Q) LEANE 2 Qs+1 — XQs, and we obtain a map isQ+15 Qs+1 —
E*™ A E such that @° = z'sQHjSQ, and then we may take Q512 to be the cofiber of

-Q
[NER
—s+1

Put os = d*i? € [Qs, E° A Elo, and consider the diagram

S s fS (437 —
AR — QU ETT A Bl — e (Im (d 1)),
VRS- V(RS- ¢(ﬁ§g;)*

5 GE D
NEAX AV —2= [Q0 B A EAX A ViJo == (Im (d°~1)")g

7TS_1(E

7TS_1(ES+

of exact sequences of (4.21) for Vi, € V,, with k > max{kx, k" }. Since (< ,)*(0s) =
d#i2j9 | = d*d*~' = 0, we have an element o, € 7TS_1(ES+1 AE) = EFT1(89)
such that ¥s(0s) = 0s. We compute
s (I50)+(60) = (X065 00) = (A0 (00) = IR = (" NI
= (d°AN1 A D). = 0.
o, (@ ADGE A
It follows that
(5.10) (R 1)+(3:) = 0,

since 15 is a monomorphism. Consider a commutative diagram

P Ge

e 1(E°ANE) ———[Q,,E° N E)y V) (Im (d*~H")o
T yds 0oy J/di
re (BT AE) Y 100 BT A Bl S (Im (05 )0
¢/d&+1 J/dwrl \Ldi+1
—s+2 g+2 (39_1)* Ss—1\%
ms—1 (B "AE)—=[Qs, E " A E]g —— (Im (d°~7)")o.



A RELATION BETWEEN HOPKINS’ PICARD GROUPS 19

‘We compute
$ediT(05) = diT ' (0,) = dit o, = AT %P = 0,

and we see [0s] € E§+1,371(50)’ since 1 is a monomorphism. Furthermore,
(hx)«(i1)-(3s) = (AB5(@) = 0€m (B AEAXAVL), and so (ir).(3,) =

(5.2) (5.10)
0¢e ﬂs,l(Esﬂ/\E/\Vk) by (3.4) 1) and Lemma 4.2. Indeed, (EX)* = T, (ESH/\BX/\
Vi.). Tt follows that (ix).([0s]) = 0 € EST* 71 (V4). Thus, [6,] =0 € E5T"571(59)
by (5.8), and there exists an element w € m,_1(E° A E) = ES*71(59) such that
d*w = 0,. Put now i = i¥ — 1,(w). Then
d’i = dsi? — d*Ys(w) = 05 — Ysd® (W) = 05 — Y505 = 05 — 05 =0, and
ij?—1 = Zf;;")stA - ¢s(w)j§_1 =d - (st—l)*¢s(w) =dt

Thus, this i is the desired one. [l

Lemma 5.11. Suppose that there exists a tower (4.17) along with a map (5.4)x
of co-towers. Then, @ in (4.18) is an invertible spectrum of L,, such that Q AV}, ~
X A Vg.

Proof. By (4.19), @ is an invertible spectrum. Furthermore, the maps f3: Qs —
E,ANX AV yield amap fr: Q — X AVj. This induces an E,-equivalence Q AV, —
X AV, which gives an equivalence Q A Vi, ~ X A V. [

Since 1 = [ig] € EY°(S°) is a permanent cycle of the E-based Adams spectral
sequences for computing (L, S°), there exist elements x; € m;_1(FE;) such that
(5.12) vy =ig and kP xy =124
fort > 1.

Theorem 5.13. Suppose (C-III),,. For spectra X € S, and Vi, € V,, with k >
max{kx,k"}, there exists an invertible spectrum QX € S such that Qi A Vi ~
X AVy. Furthermore, we have rx = rpn QX for the integer rx in Proposition 4.15.

Proof. For spectra X in 87 and Vi, € V,,, we inductively construct a tower (4.17)
satisfying the supposition of Lemma 5.11. In other words, we show (5.14) below
for each integer s > 2 inductively.

(5.14), There ezist an s-tower {Qs,i, 72, k@Y in (4.20), and a map {( ’;C,ﬁth)}
{(Qt,Et ANE)Y = {(E;ANX A Vk,Et ANEANX AV} of s-towers in (5.4)5 for an
integer k > kx. Furthermore, Q;, = E, fort <rxq+1.
Put Qy =0, Q; = E; for t € {1,2}, z? =iy, j? =37, k? = k7 (see (4.9)), and
f}c = hg{’k: Qi =E,=E—EANXAVy=FE;ANXAV, and we obtain (5.14);.
Suppose inductively that for ¢ < s (< ryq), there exist maps ft.: E; — E;AX AV
satisfying L5'5)t with @ = 5. In the same manner as the proof of Lemma 5.6, we
define f;: E5 — E; A X AV} by the commutative diagram (5.7) with Q; = E, and
see (5.5)s with @ = S except for the first equality.

We turn to the first equation in (5.5)s. As in the proof of Lemma 5.6, we have
an element

05 = (i5 AN X AVR)FE — Wi € [Eo, EANEAX AVido
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such that (75 ;)*(0s) = 0. Therefore, we have an element 0, € 7,(E° AEAX AV})
such that ¢s(0s) = 0, for the homomorphism ), in (4.21). Then,

=,(0 = v, AE) K 'z, = v(C,AE)ig=0
(5.15) 0525 = Vs(05)xs (432 v(os NE)(k”) a, 512 v(ogs A E)ig = 0,
for the action v: E°AEAXAVRAE — E°ANEAX AV given by pug in (3.1).
Therefore,

.S s _7s .S
0s = 0sx5= (1 ANXAV —h J)Ts
(5.15) T ((d %)k Xxls)w

= (IS AX AVfizs  (since iz, =iSkSz, 1 = 0)

s +S Ts  :S81.8

530, R gises 512) Xokls kS Tsta i 0.
Thus, 05 = 15(05) = 0 implies the first equation in (5.5); with @ = S. Therefore,
(5.5)¢ holds for each t < rxq inductively.

Suppose that (5.14)s holds true for s > rxq. Then, the s-tower extends to an
(s + 1)-tower by Lemma 5.9. By Lemma 5.6, the (s + 1)-tower admits a map f;
satisfying (5.14)s41. It follows inductively that (5.14), holds for all positive integers
s. Therefore, we have an invertible spectrum @ in £,, such that Q AV, ~ X AV},
by Lemma 5.11. Furthermore, Q; = E, for t < rxq + 1 implies that rx = TLr Q-

O

Corollary 5.16. Suppose that (C-1I) and (C-1I1),,,. Then, the mapping €7, : Pic®(L,) —
S)r is a surjection.
Proof. Let X € S". For every spectrum @ € Pic%(L,,), consider a set S(Q) = {k |

X ~ Q} C Z for spectra QX given in Theorem 5.13. Since Pic®(L,,) is a finite

group, there exists a spectrum QX € Pic%(£,) such that |S(Q¥)| = Rg. Then,
L%QX = hOhmkes(QX) QX AV~ hOlimkEs(QX) XAV~ X. ([

6. THE CASES FOR SMALL n

In this section, we verify the conditions (C-I),,, (C-II), (C-III),, and (C-IV),,
for the cases where (p,n) = (2,1), (3,2) or n? +n < ¢q. For (C-I),, and (C-III),,
with m < n, it suffices to show (C-I),, and (C-III),, by (1.18). Furthermore, we
verify (C-IV),, for m > 0, since (C-IV)q is void.

In general, we have the following lemma on (C-IV),,:

Lemma 6.1. If n,(L,M(p)) is finite for each integer s, then (C-IV),, holds for
1<m<n.

Proof. Consider the subcategory
T = {F € thick (5§°) | my(L,F) is finite for each s € Z} C L,

Then, it is thick. Since T contains M (p), the thick subcategory theorem in [6]
implies that 7s(L, V) is finite for any type m (> 1) finite spectrum V and for any
integer s. In particular, (C-IV),, holds for m > 1. O

We note that if E5*(X) is a Z/p?*-module, then it is also a Z/p*[v}]-module,
since nr(v1) = v1 mod (p). By [16], we may set Vj, = M(pk,vfk) €V, for k> 1.
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Lemma 6.2. Let Vj, = M(pk,vfk) € Vs for k > 1, and suppose the existence of an
integer 3 such that Ey"(S°) is a Z/p-module and v?Ey*(S°) = 0 for s > 3. Then,
(ir)«: E3'(S%) = ES' (Vi) is a monomorphism for k > 2 and s > 3.

Proof. Consider the cofiber sequence S 2 S0 25 M (p"), which induces an exact
sequence

(6.3) B3t (8% X0 B3t(s0) L Byt (pr)) S ESTR(SO).

Let s > 5. Since EJ(S°) is a Z/p-module, the homomorphism (), is a monomor-
phism. This further indicates that E5'(M(p")) is a Z/p?>-module, and then a
Z/p*[v}]-module. Therefore, the above exact sequence is the one of Z/p?[v]]-
modules. We consider a commutative diagram

0— B4 (s%) 2 Bt (M (pr)) —- ByT(S0) = 0

ofy ) yot Vot
0 = E31(S0) 5 BSt (M) —> ESTI(S0) 5 0

of short exact sequences. A diagram chasmg with the hypothesis v} E3’ t(SO) =0
shows v B3 (M (p")) = 0. Thus, we have of = 0: E5" 1" (0r (p )) = ESY(M(p"))

for r > 2. Apply this to the exact sequence E, st=lbal (M(p")) M, ESY (M (p")) LN

Eg’t(M(pT,va)) induced from the cofiber sequence 3P qM( ry M(p") N
M(pr,oP"), and we see (3,).: EyH(M(pr)) — E3'(M(p™,v"")) a monomorphism
for r > 2. Therefore, (i,)s« = (¢ )«(tr)« is a monomorphism for r > 2. O

From now, we give a proof of Theorem G.

6.1. The case n?> + n < gq. We exclude the case (p,n) = (2,1). In this case,
E>*(8Y%) =0 for s > n? +n (cf. [20, (10.10)], and hence (C-1),,, (C-1I), (C-III),,
and (C-1V),, follow trivially (¢f. Remark 1.20).

6.2. The case (p,n) = (2,1). The condition (C-II) holds by [9, Th. 6.1]. For (C-
II1);, consider a short exact sequence 0 — E(2), — MY — Mg — 0 of comodules
for MY = 271E(2),. We use an abbreviation of the Ext group:

s,t s,t
(6.4) H( )M ExtE(n) (E(n))

for an E(n).(E(n))-comodule M. It is well known that Hfl)Mg =0 for s >
0. Therefore, the connecting homomorphism associated to the above short exact
sequence is an isomorphism Hy) Mg = HffglE( )« = B3T1(S9). Note that HYy Mg
for s > 2 is a Z/2-module by [15, Th. 4.16]. Then, we have (C-III);, that is,
(ir)«: E5T225(80) - E2°T22%()M(2%)) is a monomorphism, since we have an exact
sequence

(E(n)., M)

k Uk )« s s
E§5+2’25(SO) 2, E225+2,25(50) (ix) E22 +2,2 (M(2k))

Furthermore, we deduce E5°(M (2F)) finite by [15, Th. 4.16]. Thus (C-IV); follows
from Remark 1.20.
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Turn to (C-I);. By [15, Th. 4.16], we have the Eo-term

Z/2{v*h3k/2} if k is odd
Z.)2{vi *p h2*71/2}  if kis even

From [19, §5], we deduce the differential:

E§k+1,2k(so) _ sz,szé _ {

d3(v¥Fp h2F1/2) = o] R p hZET1 /2 if k=0 mod 4
ds(vy"hEk/2) = v F2REET3 12 if k=1 mod 4
ds(vi % p1h2F=1/2) = o7 R p hEFT2 /2 if k= 2 mod 4
d3(vi*hZF=3 /2) = v Rk /2 if k =3 mod 4

These show Eg,’jill 2k (§0) = 0 for k > 1, which implies the condition (C-I);.

6.3. The case (p,n) = (3,2). By [11, Cor. 1.4 (¢)], Pic’(L5) is a finite group, and
so the condition (C-II) holds.

We read off from [23, Th. 2.11] (see also [4]) that ms(L2M (3)) is finite for each
degree s. Lemma 6.1 together with this implies the condition (C-IV),, for m €
{1,2}.

Consider the comodules N} and MZ defined by the short exact sequences 0 —
E(2). — 37'E(2). - N} = 0and 0 — N} — v;'N} — Mg — 0. Then, they

induce the connecting homomorphisms §: H(sz’gNO1 — Hé’gl’tE(Q)* = ESTH(99)

and §’: H(Sz’;Mg — H(S;gl’tN(} for Hy) in (6.4), which are isomorphisms if s > 1
and s > 2, respectively by [15]. By [24, Cor. 2.5, Prop. 4.7], we sce that E3"'(S0) =

H(S;)Q’tMg is a Z/3-module and foéf’tMg =0 for s > 6 = ¢+ 2. That is,
(6.5) E3'(8°) is a Z/3-module and v} E3*(S°) = 0 for s > 6.

Therefore, Lemma 6.2 implies (C-III)s.

Lemma 6.6. The E,.,1-term of the E(2)-based Adams spectral sequence for m_1(L2S°)

is given by
E2*(S%) = Z/3{vy *h11blg, vy EbioCa}  and By i1*(S) =0 forr>2.

Proof. Let M? denotes a spectrum such that E(2).(M?) = MZ. Actually, we define
N and M? to be cofibers of the natural maps L2S° — LyS® and N' — L N%.
Note that E5'(M?) = H?;;Mg By [24, Prop. 4.7, Th. 6.4], we read off

Hi33M5 =0 and  Ep 7" (M?) =0 forr>3.

Furthermore, we have an exact sequence HEQ’Q’;LMll 4 H?Q’?MO2 3 H?Q’;LM(? with

p(z) = x/3 ([15, §3]) and Hz M} = Z/p{vy hibo/v1,&Co/v1} by [24, Th. 2.3].

Therefore, [24, Prop. 5.3] implies
HIME = 7/3{vy " hibo /301, ECa /301 }.

(2)
Now the lemma follows from the isomorphism §¢': H(SQ’I;MO2 — E5T2(89), O

Lemma 6.7. The condition (C-1)y holds. In other words, The unit map ij: S° —

Vi induces a monomorphism (if)«: Eﬁ:_‘t%’“ (8% — Ej:j_‘?“ (Vi) for Vie = M (3%, 03"

Vs.

)€
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Proof. By Lemma 6.6, the homomorphism (i), is a monomorphism for » > 2.
For r = 1, the Es-term is the same as the Ea-term. Let V(1) = M(p,v1). The
Es-term of LyV(1) is given in [22, Th. 5.8] (see also [2]), and we see that the
inclusion inc: S° — V(1) induces a monomorphism E3*(S%) — EJ*(V(1)) by
Lemma 6.6. Since inc factors through iz: S° — Vj, we obtain a monomorphism

(Zk)*

(1]
(2]

[3

(4]

(5]

(7]

(8]

(10]

11]

[12]
[13]
[14]
[15]

[16]
(17)

(18]
(19]

20]
21]
22]

(23]

D B389 — B (Vy). O
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