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1 Introduction

Biological amphiphilies (lipids) or synthetic surfactants in aqueous solutions
self-assemble to bilayers centered on the multiply connected surface divid-
ing the space into two interpenetrating and nonintersecting “bicontinuous”
subspaces[1]. At high concentration of lipids or surfactants, these bilayers can
organize cubic phases based on mathematically well-characterized surfaces,
namely, triply periodic minimal surfaces: e.g., Schoen-Luzatti gyroid (G),
Schwarz diamond (D), Schwarz primitive (P ), and Neovius surface (C(P ))[2].
Moreover, it is known that these surfaces abound in biological cells such as
the endoplasmic reticulum, the mitochondrion and the nucleus of certain
cells[3]. For high polymeric block copolymer systems[4], bicontinuous cubic
phases had attracted much attention as well[5, 6], and it is believed that only
the G phase has been established in most block copolymer systems[7, 8].

Recently, Hayashida et al. have found a gyroid surface related structure
in an ABC star polymer system. Interestingly, the gyroid surface is deco-
rated and the structure can be regarded as a hyperbolic Archimedean tiling
structure[9]. The present paper discusses the mathematical aspects of the
hyperbolic Archimedean tiling on the Gyroid surface in an ABC star block
copolymer system.
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2 Self-organization of AB block copolymers

A block copolymer is a polymer consisting of at least two large connected
blocks of different polymer types, say, A-B diblock copolymer:

A − A − A − A − B − B − B − B.

For example, famous one is a styrene-isoprene diblock copolymer composed
of plastic (polystyrene) and rubber (polyisoprene) polymer types. Suppose
that A and B are immiscible with each other, molten copolymers can undergo
microphase separation exhibiting spatially periodic structures like lamellar
structures, bicontinuous double gyroid structures, hexagonal arrays of cylin-
ders, body-center-cubic arrays of spheres depending upon the volume frac-
tion of A and B as shown in Fig.1.[4] Such a morphological phase behavior
is common to surfactant or lipid systems.

Figure 1: Morphology of AB block copolymer systems. Light and dark gray
correspond to A and B components of AB block copolymers, respectively.
With decreasing the fraction of the A component, the shape of A component
becomes lamellae, bicontinuous double gyroid struts, cylinders, and spheres.
The lattice constants (periodic lengths) are the order of 10-100 nm.

The gyroid phase is called “bicontinuous phase” because domains of both
A and B components go to infinity. It is also called “gyroid”, because the
dark gray domain of the bicontinuous phase displayed in Fig.1 contains the
gyroid minimal surface as a mid-surface. Notice that each polymer chain is
very flexible and random in its chain shape in the domains; each domain is
made up of a random mixture of polymer chains of the same polymer type.
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3 Self-organization of ABC star block copoly-

mers

Particular interests have focused on the possibility of creating new materi-
als having new morphologies by controlling composition, molecular weight,
and molecular architecture, such as multiblock copolymers and branched
or star block copolymers. For instance, ABC three-arm star-shaped[10, 11]
copolymer systems (Figure 2(a)) have shown to have very fascinating mor-
phologies. The ABC star block copolymer consists of three different polymer
types connected at one junction. Because of this topological constraint, sev-
eral polygonal cylindrical phases called “Archimedean tiling” phases have
been obtained. See Fig.2.

Figure 2: (a) ABC star block copolymer consists of three different polymers
linked at a junction point. Cylindrical phases called Archimedean tiling
phases (b) are obtained when the fractions of A, B and C components are
not too different.

For generic microphase-separated structures, there is a recent established
scenario that bicontinuous phases exist in the boundary region between cylin-
drical and lamellar phases. In the case of a star polymer, the gyroid-type
phase exsits between a lamellar phase and a cylindrical phase [9]. The prob-
lem here is the decoration on the gyroidal membrane.
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4 The gyroid surface and its symmetry via

hyperbolic geometry

The gyroid surface S is a triply periodic minimal surface given by the Weierstrass-
Enneper formula ([12])

x = x0 + <
(

exp(iθ)

∫ ω

0

1 − w2

√
w8 − 14w4 + 1

dw

)
,

y = y0 + <
(

exp(iθ)

∫ ω

0

i(1 + w2)√
w8 − 14w4 + 1

dw

)
,

z = z0 + <
(

exp(iθ)

∫ ω

0

2w√
w8 − 14w4 + 1

dw

)
.

(1)

The angle θ is given by

θ = cot−1 K(
√

3
2

)

K(1
2
)

,

where K(k) is the complete elliptic integral of the first kind with modulus k.

Figure 3: The gyroid surface.

To study the symmetry of the gyroid surface, it is useful to regard S as

4



a Riemann surface. Thus we recall a description of the gyroid surface as a
Riemann surface.

The representation (1) of S enables us to regard S as a covering space of
a Riemann surface of genus 3 as follows.

Let Σ be the Riemann surface of the function
√

w8 − 14w4 + 1, which is
the two-sheeted covering surface of the Riemann sphere S2 branched at 8
points which correspond to the zeros {±α±1,±iα±1}(α = (

√
3 − 1)/

√
2) of

the equation w8 − 14w4 + 1 = 0,

π : Σ −→ S2.

Then the 1-forms in (1)

1 − w2

√
w8 − 14w4 + 1

dw,
i(1 + w2)√

w8 − 14w4 + 1
dw,

2w√
w8 − 14w4 + 1

dw

are holomorphic on Σ and the integrations of these holomorphic 1-forms
define the multiple-valued functions on Σ. The multiple-valuedness arises
from the integrations of the 1-forms around homotopically nontrivial loops
on Σ: period integrals, which gives the translational symmetry (periodicity)
of the gyroid surface S. Thus S is considered as a covering surface of Σ with
covering map p : S → Σ whose covering transformation group is just the
translational symmetry group of S (Fig. 4).

Since the universal covering space of Σ is the hyperbolic plane, there
exists the covering map ϕ of the Poincaré disc D to the Gyroid surface S,

ϕ : D −→ S.

Let Γ be the symmetry group of S: the space group Ia3̄d ( No. 230, see [13]
as for the notation). Since an isometry f of S are conformal automorphism,
there exists a conformal automorphism f̃ of D such that the projection ϕ
satisfy

ϕ ◦ f̃ = f ◦ ϕ. (2)

Thus we define Γ̃ to be the group of conformal automorphisms g of D such
that there exists an element f of Γ satisfying ϕ ◦ g = f ◦ ϕ. Then ϕ is an
equivariant mapping with respect to the actions of Γ̃ and Γ. Furthermore ϕ
induces a group homomorphism

ϕ∗ : Γ̃ −→ Γ,
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Figure 4: The gyroid surface S and the Riemann surface Σ. The mapping
p is the covering map and g is the composition of the Gauss map of S to
S2 and stereographic projection of S2 to C. Bottom left is one sheet of the
Riemann surface Σ. Bottom right is the complex plane. The 8 intersection
points {±α±1,±iα±1}(α = (

√
3 − 1)/

√
2) of 4 circles are the zeros of the

equation w8 − 14w4 + 1 = 0, which are the branch points of π. The points
O′, A′, B′, C ′, D′ of Σ are mapped to the points O′′, A′′, B′′, C ′′, D′′ by the
projection π.

whose kernel is isomorphic to the fundamental group π1(S) of S.
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The description of S as a covering surface of the Riemann surface Σ gives
the explicit representation of Γ̃ and Γ as follows.

The representation (1) of the gyroid surface S shows that the Gauss map
of S to the unit sphere S2 factors through a mapping of Σ to S2. Therefore
we can find the triangle OAB on S with angles (π

6
, π

6
, π

2
) such that OAB is

mapped onto a triangle O′A′B′ on Σ with same angles by p and the triangle
O′′A′′B′′ with angles (π

3
, π

3
, π

2
) on C by the Gauss map, where O′′ is the origin,

A′′, B′′ are the branch points of the covering π : Σ → C indicated in Fig. 4,
and the covering π maps O′A′B′ onto O′′A′′B′′.

The quadrilateral A′′B′′C ′′D′′ on C (Fig. 4) is transformed into 6 copies
quadrilaterals in the Riemann sphere C∪{∞} by successive reflections in the
sides of the quadrilaterals. Thus the 12 copies of the quadrilateral A′B′C ′D′

forms the Riemann surface Σ. This tiling is lifted to the Gyroid surface S
and gives a tessellation on S by the copies of OAB.

The triangle OAB is nothing but a fundamental domain of the symmetry
group Γ of S: Γ is generated by the rotations w1 of order 4 around O and
w2 of order 2 around E

Γ = 〈w1, w2〉,

where E corresponds to the midpoint on the arc A′′B′′ (Fig. 4) . The action
of Γ is easily seen from the view point of hyperbolic geometry. To do this we
consider the (2, 4, 6) tiling on the universal covering space of S: the Poincaré
disc D ([14], [15]) (Fig. 5).

The covering map ϕ maps the triangle PQR with angles (π
6
, π

6
, π

2
) onto

OAB. The group Γ̃ defined above is the subgroup of index 2 in the Schwarz
triangle group Γ̃′ of type (2, 4, 6):

Γ̃′ = 〈s1, s2, s3

∣∣ s2
1 = s2

2 = s2
3 = (s1s2)

2 = (s2s3)
4 = (s3s1)

6 = 1〉,

where s1, s2, s3 are the reflections in the sides of the triangle PQM with
angles (π

2
, π

4
, π

6
). The subgroup Γ̃ consists of orientation-preserving elements

of Γ̃′ and is generated by the rotations through angles 2π
2

, 2π
4

, 2π
6

around the
vertices of the triangle PQM .

Γ̃ = 〈s1s2, s2s3〉
' 〈a, b

∣∣ a2 = b4 = (ab)6 = 1〉.

Then the mapping ϕ∗ is given by ϕ∗(s1s2) = w2, ϕ∗(s2s3) = w1.
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Figure 5: (2,4,6)tiling on the Poincaré disc D. Angles of the triangle PQR
and PQM are (π
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5 Hyperbolic Archimedean tiling

In the (2, 4, 6) tessellation on D given by the triangle with angles π
2
, π

4
, π

6
, we

can find a dodecagonal region indicated in Fig. 6. This region is mapped to
the domain in the gyroid surface S whose translations cover S ([14]).

If we put two adjacent triangles together to form a triangle ∆ with angles
(π

4
, π

4
, π

3
). This is a fundamental domain of the action of Γ̃. Let Γ̃0 be the

subgroup of Γ̃ generated by s2s3 and (s2s3s1s2)
2

Γ̃0 = 〈s2s3, (s2s3s1s2)
2〉,

where s2s3 and (s2s3s1s2)
2 are both rotations through angle π

2
around P and

angle 2π
3

around Q in Fig. 5. The image Γ0 = ϕ∗(Γ̃0) is isomorphic to the
space group I 4̄3d (No. 220), which is the subgroup of index 2 in the space
group Γ = Ia3̄d.

Since the index of Γ̃0 in Γ̃ is 2, the action of Γ̃0 on D gives two colored
tiling (Fig. 6).

The orbit Ω of a point in a fundamental domain (shaded region in Fig. 6

) by the action of Γ̃0 defines a new tiling structure on D as follows (see Fig.
7 A).
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Figure 6: Two colored tiling on the Poincaré disc D.

Figure 7: A, Hyperbolic Archimedean tiling on the Poincaré disc D. The
circles on the shaded triangles form the tiling of vertex type (33.4.3.4). B,
ABC star-shaped block copolymer system. The I ( balls ) and the S ( mem-
brane surrounding the balls ) components forming the gyroid membrane.
Remaining parts are filled with the P component.
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Every point P of Ω is surrounded by 6 faces: 4 triangles and 2 quadrilat-
erals. We denote its vertex type by (3.3.3.4.3.4) or (33.4.3.4) which indicates
the numbers of vertices of the consecutive faces around P . We call it hyper-
bolic Archimedean tiling, because it can be considered as a simple analogue
of the Archimedean tiling of type (36) on a plane.

By the results of transmission electron microscopy and small-angle X-ray
scattering, we can find the geometry of the gyroid surface in the geometric
structure of and ABC star-shaped block copolymer system, which is com-
posed of polyisoprene (I), polystyrene (S), and poly (2-vinylpyridine) (P):
the I and S components form a gyroid membrane and the complement of the
membrane is filled with the P component (Fig. 7 B). The I component con-
sists of isolated domains that form a new tiling structure on the gyroid surface
corresponding to the hyperbolic Archimedean tiling introduced above. Fur-
thermore this tiling is characterized in three-dimensional Euclidean space as
follows.

Let P be a point on the gyroid surface S and ΩP the orbit of P under
the action of Γ̃0 . Then we have

Theorem There exists a unique point P in the triangle ϕ(∆) (a fundamental
domain of the action of Γ0 = I 4̄3d) on the gyroid surface S such that ΩP

forms a hyperbolic Archimedean tiling (33.4.3.4) in which the edges are all
the same length.

Outline of the proof. By the symmetry, points of ΩP are assembled in the
same way around each point. Thus when the faces surrounding one point of
ΩP satisfy the conditions, all faces satisfy the conditions. Let P = (x, y, z) be
a point of ΩP . Then the conditions that all edges connecting to P have the
same length are given by two quadratic equations. Let C be the intersection
of two quadric surfaces defined by the quadratic equations. It is not hard to
show that the curve C and S intersect at one point in the triangle ϕ(∆).

We show the tiling of the theorem in Fig. 8.
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