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Examples of Topological Invariants

You all know Euler’s formula relating the number of faces, edges and

vertices of a polyhedron:

nf − ne + nv = 2

The number 2 is actually a topological invariant of the 2-sphere S2.

It is called the Euler characteristic χ(S2).

A polyhedron represents a decomposition of S2 into cells. A space

composed of such cells is called a cell complex. χ does not depend on the

decomposition that is chosen.

Franz Gähler Topological invariants of aperiodic tilings



Homology of Finite Cell Complexes

Given a cell complex, we can consider formal linear combinations of k-cells,

forming so-called chain groups Ck under addition. In the polyhedron case,

we have C2 = Znf , C1 = Zne , C0 = Znv .

There are natural boundary maps ∂k : Ck → Ck−1. The boundary of a

k-cell is the sum of the cells in its boundary. This gives a sequence of

groups and maps

0
∂3−→ C2

∂2−→ C1
∂1−→ C0

∂0−→ 0

The quotients Hk = ker(∂k)/im(∂k+1) are called homology groups, and are

topological invariants of the cell complex. Their ranks bk = rk(Hk) are

called Betty numbers, and χ =
∑

k(−1)kbk .

Franz Gähler Topological invariants of aperiodic tilings



Cohomology of Finite Cell Complexes

For finite cell complexes, cohomology is almost the same as homology.

We consider formal linear combinations of k-cells, forming this time

so-called co-chain groups C k under addition. In the polyhedron case, we

again have C 2 = Znf , C 1 = Zne , C 0 = Znv .

The natural maps between co-chain groups are the co-boundary maps

δk : C k−1 → C k . δk is simply the transpose of ∂k .

We now have a sequence of groups and maps

0
δ3←− C2

δ2←− C1
δ1←− C0

δ0←− 0

The quotients Hk = ker(δk+1)/im(δk) are called co-homology groups, and

are topological invariants of the cell complex.
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Klein’s Bottle and Torsion
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For this cell complex, we have ∂2c = 2e1,

and ∂1 ≡ 0. Thus, we get

H1 = ker(∂1)/im(∂2) = Z2/2Z

= Z⊕ (Z/2Z) = Z⊕ Z2

H1 contains torsion elements - elements of finite order.

In cohomology, the torsion appears in a different dimension:

H2 = Z2, H1 = H0 = Z
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Properties of Tilings

I finite number of local patterns

(finite local complexity)

I repetitivity

I well-defined patch frequencies

I translation module

I local isomorphism

(LI classes)

I mutual local derivability
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The Hull of a Tiling

Let T be a tiling of Rd , of finite local complexity.

We introduce a metric on the set of translates of T :

Two tilings have distance < ε, if they agree in a ball of radius 1/ε around

the origin, up to a translation < ε.

The hull ΩT is then the closure of {T − x |x ∈ Rd}.

ΩT is a compact metric space, on which Rd acts by translation.

If T is repetitive, every orbit is dense in ΩT .

ΩT then consists of the LI class of T .
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Approximating the Hull by Cell Complexes

We define a sequence of cellular (CW-)spaces Ωn approximating Ω.

The d-cells of Ω0 are the interiors of the tiles; two tile boundaries are

identified if they are shared somewhere in the tiling.
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The Cells of the Octagonal Tiling

Cells of first order

approximant of the

octagonal tiling.
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Approximating the Hull by Cell Complexes

We define a sequence of cellular (CW-)spaces Ωn approximating Ω.

The d-cells of Ω0 are the interiors of the tiles; two tile boundaries are

identified if they are shared somewhere in the tiling.

For Ωn we proceed as for Ω0, except that we first label the tiles according

to their nth corona (collared tiles).

There are natural, continuous cellular mappings h : Ωn → Ωn−1, and

induced homomorphisms h∗ : H∗(Ωn−1)→ H∗(Ωn).

Ω then is the inverse limit lim←−Ωn, consisting of all sequences {xk}∞k=0,

with xk ∈ Ωk and h(xk) = xk−1.

The cohomology of Ω is the direct limit H∗(Ω) ∼= lim−→H∗(Ωn)
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Cohomology of Substitution Tilings

The appromimants Ωn of the hull were introduced by Anderson and

Putnam (AP), Ergod. Th. & Dynam. Sys. 18, 509 (1998).

They used a single CW-space Ω′ and the mapping Ω′ → Ω′ induced by

substitution, and take the inverse limit of the iterated mapping. This is

equivalent to iterated refinements according to the nth corona, for some n.

This inverse limit using a single Ωn is easier to control, but is limited to

substitution tilings.

Using a sequence of Ωn is more general, but the limit is hard to control.

However, the approach may be of conceptual interest.
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Quasiperiodic Projection Tilings

Irrational sections through a

periodic klotz tiling.

We assume polyhedral

acceptance domains with

rationally oriented faces.

Such tilings are called canonical projection tilings.

Forrest-Hunton-Kellendonk computed their cohomology for low

co-dimensions in terms of acceptance domains.

Here, we shall use a different approach.
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Kalugin’s Approach

Irrational sections through a

periodic klotz tiling.

Disregarding singular cut

positions, points in unit cell

parametrize tilings.

For proper parametrisation, torus has to be cut up.

This is done is steps −→ inverse limit construction!

Cohomology of n-torus cut up along set Ar satisfies

−→ Hk(Ωr ) −→ Hn−k−1(Ar ) −→ Hn−k−1(Tn) −→ Hk+1(Ωr ) −→

P. Kalugin, J. Phys. A: Math. Gen. 38, 3115 (2005).

Franz Gähler Topological invariants of aperiodic tilings



Simplifying the Set of Cuts

H∗(Ar ) and thus H∗(Ωr ) depends only on homotopy type of Ar .

We assume polyhedral acceptance domains with rationally oriented faces

−→ with increasing r , pieces of Ar grow together.

For r sufficiently large, Ar is a union of thickened affine tori.

Homotopy type of Ar stabilizes at finite r0!

Often, we can replace Ar by equivalent arrangement Ã of thin tori.

For computing H∗(Ã): replace Ã by its simplicial resolution, A.

For icosahedral tilings, Ã consists of 4-tori, intersecting in 2-tori and 0-tori.

For codimension-2 tilings, there are only 2-tori and 0-tori.
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Kalugins Exact Sequences – 2D Case

Kalugin’s long exact sequence can be split; for tilings of dimension 2 and

co-dimension 2, it reads:

0 −→ Sk −→ Hk(Ω) −→ H4−k−1(A)
αk+1

−−−→ H4−k−1(T6) −→ Sk+1 −→ 0

0 −→ H4(T4) −→ H0(Ω) −→ 0 −→ H3(T4) −→ S1 −→ 0

0 −→ H3(T4) −→ H1(Ω) −→ H2(A) −→ H2(T4) −→ S2 −→ 0

0 −→ S2 −→ H2(Ω) −→ H1(A) −→ H1(T4) −→ 0

0 −→ 0 −→ 0 −→ H0(A) −→ H0(T4) −→ 0

We need to determine H∗(T4), H∗(A), Sk = cokerαk , and derive H∗(Ω) from that.
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Mayer-Vietoris Spectral Sequence

First page E 1
k,` of Mayer-Vietoris double complex for H∗(A):

⊕θ∈I1 Λ2Γθ

⊕θ∈I1 Λ1Γθ

ZL1
L

ZL0 ⊕θ∈I1 ZLθ
0

As A is connected, the only differential left has rank L1 + L0 − 1, so that we get:

H0(A) = Z

H1(A) = ⊕θ∈I1 Λ1Γθ ⊕ Zf

H2(A) = ⊕θ∈I1 Λ2Γθ

where f =
∑

θ∈I1
Lθ

0 − L1 − L0 + 1.
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Cohomology of the Hull

Kalugins exact sequences can now be solved:

H0(Ω) = Z

H1(Ω) = Λ3Γ⊕ kerα2

H2(Ω) = Λ2Γ/〈Λ2Γθ〉θ∈I1 ⊕ kerα3

The kerαk are free groups, whose ranks are computable.

Torsion can only occur in cokerα2 = Λ2Γ/〈Λ2Γθ〉θ∈I1 .

Geometrically, kerαk consists of closed k-chains which are non-trivial in

Hk(A), but are exact in the full torus. Thus, they are boundaries of

(k + 1)-chains of T4.

Franz Gähler Topological invariants of aperiodic tilings



Examples

Cohomology of some 2D tilings from the literature:

H2 H1 H0 χ lines name

Z8 Z5 Z 4 along Penrose

Z24⊕Z2
5 Z5 Z 20 between Tübingen Triangle

Z9 Z5 Z 5 along Ammann-Beenker

Z14⊕Z2 Z5 Z 10 between colored Ammann-Beenker

Z28 Z7 Z 22 along/between Shield, Socolar
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The 3D Case

Similar to the 2D case, except that Kalugin’s exact sequences are much

more difficult to solve.

In particular, this is so for the torsion part. Only some examples could be

solved; for the general case, some extra ideas are required.

0 −→ Sk −→ Hk(Ω) −→ H6−k−1(A)
αk+1

−−−→ H6−k−1(T6) −→ Sk+1 −→ 0

In all icosahedral examples, we have torsion in H2(A), and may have torsion

in S3. This leads to group extension problems.

F. Gähler, J. Hunton, J. Kellendonk, Z. Kristallogr. 223, 801-804 (2009).
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Icosahedral Examples

Cohomology of some icosahedral tilings from the literature:

H3 H2 H1 H0 χ planes Γ

Z20⊕Z2 Z16 Z7 Z 10 5-fold F Danzer

Z181⊕Z2 Z72⊕Z2 Z12 Z 120 mirror P Ammann-Kramer

Z331⊕Z20
2 ⊕Z4 Z102⊕Z4

2⊕Z4 Z12 Z 240 mirror F dual can. D6

Z205⊕Z2
2 Z72 Z7 Z 145 3,5-fold F canonical D6

Even the simplest of all icosahedral tilings have torsion!

Formulae have to be evaluated by computer (GAP programs). Combinatorics of

intersection tori are determined with (descendants of) programs from the GAP

package Cryst (B. Eick, F. Gähler, W. Nickel, Acta Cryst. A53, 467-474 (1997)).
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Mutual Local Derivability

One tiling must be locally

constructible from the other, and

vice versa.

Tilings must have same

translation module.

Acceptance domains of one tiling

must be constructible by finite

unions and intersections of

acceptance domains of the other.

MLD induces a bijection between LI classes.
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MLD Classification

Both cohomology and MLD class are determined by the arrangement of singular

spaces A, and how the lattice Γ acts on it.

To fix an MLD class, we fix a space group and orbit representatives of the singular

spaces.

To make MLD classification finite, we consider

I singular spaces in special orientations

I restricted number of orbits

I some non-genericity condition, like

I closeness condition

I existence of non-generic intersections

I singular spaces pass through special points
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MLD Relationships

We fix a space group, and compare different singular sets A, generated from

“interesting” orbit representatives. Different singular sets may define the same

MLD class!

Singular sets may be related by translation, or by inflation. These are local

transformations, and so they define same MLD class.

There are also non-local transformations normalizing the space group, like the

*-map. This leads to an MD relationship, but not to MLD!

The full translation symmetry Γ̃ of the singular set may be larger than the

translation symmtery Γ of the tiling.

MLD relationship may be symmetry-preserving (S-MLD) or not. MLD by

translation is symmetry-preserving only of translation normalizes the space group.
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Cohomology of Octagonal MLD Classes

H2 H1 H0 χ lines |Γ̃/Γ| mult cc gen remarks

Z9 Z5 Z 5 4A 1 2 (tr) x Ammann-Beenker

Z12 Z5 Z 8 4A 1 2 (tr,inf) x x

Z28 Z9 Z 20 4A+4A 4 2 (tr) x 1)

Z33 Z9 Z 25 4A+4A 1 4 (tr,inf) x

Z40 Z9 Z 32 8A 1 ∞ x

Z14⊕Z2 Z5 Z 10 4B 2 2 (tr) x 1)

Z20⊕Z2 Z5 Z 16 4B 2 2 (tr,inf) x x

Z48⊕Z2 Z9 Z 40 4B+4B 8 2 (tr) x 1)

Z58⊕Z2 Z9 Z 50 4B+4B 2 4 (tr,inf) x

Z72⊕Z2 Z9 Z 64 8B 2 ∞ x

Z23 Z8 Z 16 4A+4B 1 2 (tr) x decorated Ammann-Beenker

Z24 Z8 Z 17 4A+4B 1 2 (tr) x

Z29 Z8 Z 22 4A+4B 1 2 (tr,inf) x 2)

Z29 Z8 Z 22 4A+4B 1 2 (tr,inf) x 2)

Z35 Z8 Z 28 4A+4B 1 4 (tr,inf) x

Z36 Z8 Z 29 4A+4B 1 4 (tr,inf) x

1) MLD class splits in two S-MLD classes 2) inequivalent, different combinatorics
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Cohomology of Decagonal MLD Classes

H2 H1 H0 χ lines |Γ̃/Γ| mult cc gen remarks

Z8 Z5 Z 4 5A 1 1 x Penrose

Z14 Z5 Z 10 5A 1 3 (inf) x x

Z33 Z10 Z 24 5A+5A 1 3 (inf) x

Z34 Z10 Z 25 5A+5A 1 3 (inf) x gen. Penrose (γ=1/2)

Z37 Z10 Z 28 10A 1 2 (inf)

Z49 Z10 Z 40 10A 1 ∞ x

Z24⊕Z2
5 Z5 Z 20 5B 5 1 x Tübingen Triangle

Z54⊕Z2
5 Z5 Z 50 5B 5 3 (inf) x x

Z129⊕Z2
5 Z10 Z 120 5B+5B 5 3 (inf) x

Z134⊕Z2
5 Z10 Z 125 5B+5B 5 3 (inf) x

Z149⊕Z2
5 Z10 Z 140 10B 5 2 (inf)

Z209⊕Z2
5 Z10 Z 200 10B 5 ∞ x

Z49 Z10 Z 40 5A+5B 1 1 x

Z69 Z10 Z 60 5A+5B 1 3 (inf) x

Z79 Z10 Z 70 5A+5B 1 3 (inf) x

Z93 Z10 Z 84 5A+5B 1 3 (inf) x

Z94 Z10 Z 85 5A+5B 1 3 (inf) x 1)

Z94 Z10 Z 85 5A+5B 1 3 (inf) x 1)

1) swapped by *-map, which exchanges physical and internal space (non-local equivalence)
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Cohomology of Dodecagonal MLD Classes

H2 H1 H0 χ lines |Γ̃/Γ| mult cc gen remarks

Z28 Z7 Z 22 6A 1 1 x Socolar tiling

Z33 Z7 Z 27 6A 1 1 x

Z42 Z7 Z 36 6A 1 2 (inf) x x

Z100 Z13 Z 88 6A+6A 4 1 x

Z112 Z13 Z 100 6A+6A 1 2 (inf) x 1)

Z120 Z13 Z 108 6A+6A 4 1 x 2)

Z129 Z13 Z 117 6A+6A 1 2 (inf) x

Z112 Z13 Z 100 12A 1 2 (inf) 1)

Z120 Z13 Z 108 12A 1 2 (inf) 2)

Z144 Z13 Z 132 12A 1 6 (inf)

Z156 Z13 Z 144 12A 1 ∞ x

Z59 Z12 Z 48 6A+6B 1 1 x decorated Socolar tiling

Z68 Z12 Z 57 6A+6B 1 1 x

Z69 Z12 Z 58 6A+6B 1 2 (inf) x

Z87 Z12 Z 76 6A+6B 1 4 (inf) x

Z92 Z12 Z 81 6A+6B 1 4 (inf) x

Z95 Z12 Z 84 6A+6B 1 4 (inf) x

1) not equivalent 2) not equivalent
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