

[1] Preliminary

Penrose tiles

Penrose tiling

Divided Penrose tiles

The substitution rule

some of 21 expansions

Up-down generation

By erasing edges, we have the Penrose tiling.

 $\frac{\pi}{5}$

Penrose tiling

5-fold rotational symmetry

Prototiles of Danzer tilings

The substitution rule

Vertex atlas

Configurations
 (without gap and
 overlapping)
 of tiles around a
 vertex is called the
 vertex atlas
 in a tiling.

8 kinds of vertex atlases of Penrose tiling

[2] Motivation

Motivation

 Prof. Danzer said as a remark in the appendix of Danzer's paper that

"29 kinds vertex atlases appear in the Danzer tiling, and that these vertex atlases may serve as a matching rule."

How many vertex atlases?

39 vertex atlases with arrows.
 (our result)

29 vertex atlases without arrows.
 (remark of Prof. Danzer)

Up-down generation

 Penrose tiling and Danzer tiling with rotational symmetry cannot be constructed only by the up-down generation procedure.

 It is necessary to extend the tilings to the whole plane by using reflection and rotation.

Super tile

Scale-up procedure

All of Penrose tilings with 5-fold symmetry

Scale-up procedure

The substitution rule

The center of 5-fold symmetry can not be found.

Vertex atlas

The properties of (i), (ii)

- These do not exist in the list of 39 vertex atlases.
- By substitution rule, the same type appears at the center when these subdivide.
- Therefore, the plane can be covered by 39 kinds of vertex atlas and substitution.
- (There is no one of (i) and (ii) in the Penrose tiling.)

 By substitution, we have a tiling with vertex atlas (i).

 By trial and error, we can show that configuration (I) is uniquely obtained from (i).

 If a tiling have just 39 vertex atlases and the vertex atlas (i), then vertex atlas (i) appear only in one place.

[3] Our observations

Our questions

Question 1

For which n, can tilings with n-fold symmetry be constructed only by the up-down generation procedure

Our questions

Question 2

 How can tilings be constructed by attaching unbounded configuration?

Primitive substitution

 A substitution is primitive if the substitution rule is a linear map that can be represented by a primitive matrix.

Primitive matrix

An n × n matrix A is said to be primitive
if its entries are nonnegative integers and
if there exists a positive integer k such that
all the entries of A^k are positive.

 If there is a substitution with n-fold tiling, we can make a substitution that can generate an n-fold tiling from up-down generation.

Prototiles

Substitution

This is not primitive.

New question 1

• For which *n*, can tilings with *n*-fold symmetry be constructed only by the updown generation procedure of some primitive substitution?

Forcing the border

• A substitution is said to force the border if there exists a positive integer *n* such that any two level-*n* supertiles of the same type have the same pattern of neighboring tiles.

Divided Penrose tiles

tL: level 8

red: the supertile

blue: the neighboring tiles

yellow: vertex atlas (i)

Two supertiles of the same type

 The way of attaching of Penrose tilings is unique.

 However, that of Danzer tiling is not unique.

New question 2

- Nonexistence of singular vertex atlases.
 Forcing the boder.
- In particular, is the attachment of unbouded configurations unique, if singular vertex atlases do not exist?