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Abstract. Meyer sets have played important roles in the study of aperiodic systems. We

present various properties on the Meyer sets. We consider self-affine tilings and determine

when the corresponding point sets representing the tilings are the Meyer sets.

1. Preliminary

A discrete set Y is called Delone set if it is uniformly discrete and relatively dense. A Delone

set Y ⊂ Rd is Meyer if it is relatively dense and Y − Y is uniformly discrete. A cluster P of

Λ is a finite subset of Λ.

Example 1.1. The examples of Meyer sets are

(i) Λ = (1 + 2Z) ∪ S for any subset S ⊂ 2Z.

(ii) Λ = {a+ bτ ∈ Z[τ ] | a− b 1
τ ∈ [0, 1)}, where τ2 − τ − 1 = 0.

An example of non-Meyer set is Λ = {n+ 1
n | n ∈ Z\{0}}.

The following are various equivalent properties of the Meyer sets.

Theorem 1.2. [10, 6, 11] Let Λ be a Delone set. The following are equivalent;

(i) Λ is a Meyer set.

(ii) Λ− Λ ⊂ Λ + F for some finite set F ⊂ Rd (almost lattice).

(iii) For each ε > 0, there is a dual set Λε in R̂d,

Λε = {χ ∈ R̂d : |χ(x)− 1| < ε for all x ∈ Λ}

is relatively dense.

Let Λ be a Delone set in Rd. We consider a measure of the form ν = a · δΛ =
∑

x∈Λ a · δx
and a ∈ C. The autocorrelation of ν is

γ(ν) = lim
n→∞

1
Vol(Bn)

(ν|Bn ∗ ν̃|Bn),

where ν|Bn is a measure of ν restricted on the ball Bn of radius n and ν̃ is the measure,

defined by ν̃(f) = ν(f̃), where f is a continuous function with compact support and f̃(x) =

f(−x). The diffraction measure of ν is the Fourier transform γ̂(ν) of the autocorrelation
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(see [4]). When the diffraction measure γ̂(ν) is a pure point measure, we say that Λ has

pure point diffraction spectrum.

The following theorem characterizes the pure point diffractive sets.

Theorem 1.3. [2] If Λ is a Meyer set admitting autocorrelation, then Λ is pure point

diffractive if and only if for any ε > 0, {t ∈ Rd : density(Λ\(Λ− t)) < ε} is relatively dense.

We say that a Delone set Λ has finite local complexity (FLC) if for each radius R > 0

there are only finitely many translational classes of clusters whose support lies in some ball

of radius R. A Delone set Λ is said to be repetitive if the translations of any given patch

occur uniformly dense in Rd; more precisely, for any Λ-cluster P , there exists R > 0 such

that every ball of radius R contains a translated copy of P .

Given a Delone set Λ, we define the space of Delone sets as the orbit closure of Λ under the

translation action: XΛ = {−g + Λ | g ∈ Rd}, in the well-known “local topology”: for a small

ε > 0 two tilings Γ1,Γ2 are ε-close if Γ1 and Γ2 agree on the ball of radius ε−1 around the

origin, after a translation of size less than ε. It is known that XΛ is compact whenever Λ has

FLC. Thus we get a topological dynamical system (XΛ,Rd) where Rd acts by translations.

This system is minimal (i.e. every orbit is dense) whenever Λ is repetitive. Let µ be an

invariant Borel probability measure for the action; then we get a measure-preserving system

(XΛ,Rd, µ). Such a measure always exists; under the natural assumption of uniform patch

frequencies, it is unique, see [7]. Tiling dynamical systems have been investigated in a large

number of papers (e.g. [12, 3]).

Definition 1.4. A vector α = (α1, . . . , αd) ∈ Rd is said to be an eigenvalue for the Rd-

action if there exists an eigenfunction f ∈ L2(XΛ, µ), that is, f 6≡ 0 and for all g ∈ Rd and

µ-almost all Γ ∈ XΛ,

(1.1) f(Γ− g) = e2πi〈g,α〉f(Γ).

Here 〈·, ·〉 denotes the standard scalar product in Rd.

The following gives an important criterion on Meyer sets.

Theorem 1.5. [15] If Λ is a Meyer set with uniform cluster frequencies, then the Bragg

peaks in the diffraction pattern of Λ are relatively dense. It implies that the set of eigenvalues

for the dynamical system (XΛ,Rd, µ) is relatively dense.

2. Substitution tilings

From now on, we consider substitution tilings. Note that whenever substitution tilings are

given, we can get the corresponding substitution Delone sets taking representative points of

tiles at the relatively same positions for the same type of tiles. So most of the properties on

substitution tilings can be stated on substitution point sets.
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We say that a linear map Q : Rd → Rd is expansive if all its eigenvalues lie outside the

closed unit disk in C.

Definition 2.1. Let A = {T1, . . . , Tm} be a finite set of tiles in Rd such that Ti = (Ai, i);

we will call them prototiles. Denote by PA the set of non empty patches. We say that

Ω : A → PA is a tile-substitution (or simply substitution) with an expansive map Q if there

exist finite sets Dij ⊂ Rd for i, j ≤ m such that

(2.1) Ω(Tj) = {u+ Ti : u ∈ Dij , i = 1, . . . ,m}

with

QAj =
m⋃
i=1

(Dij +Ai) for j ≤ m.(2.2)

Here all sets in the right-hand side must have disjoint interiors; it is possible for some of the

Dij to be empty.

We say that T is a substitution tiling if T is a tiling and Ω(T ) = T with some substitution

Ω. We say that substitution tiling is primitive if the corresponding substitution matrix S,

with Sij = ](Dij), is primitive, i.e. S` is a matrix whose each entry is positive for some

` ∈ Z+. A repetitive primitive substitution tiling with FLC is called a self-affine tiling. If φ

is a similarity map, we can that the tiling is a self-similar tiling. Let ΛT = (Λi)i≤m be the

substitution point set representing T .

Example 2.2. The Fibonacci substitution tiling is defined by the following substitution

rule

0 τ

A1

→ q
A1 A2

0 τ τ + 1(= τ2)

0 1

A2

→ 0 τ

A1

where τ2 − τ − 1 = 0. The tiles A1 and A2 satisfy the following tile-equations

τA1 = A1 ∪ (A2 + τ)

τA2 = A1

Continuously iterating the tiles and subdividing them, we can construct a tiling.

3. Meyer property on self-affine tilings

Let T be a self-affine tiling in Rd with an expansion map φ and ΛT = (Λi)i≤m be a

substitution point set representing T . Suppose that all the eigenvalues of φ are algebraic

conjugates with the same multiplicity. Let

Ξ = {x ∈ R | ∃ T, T − x ∈ T } and K = {x ∈ Rd | T = T − x}.

Before we talk about how to determine the Meyer property on substitution tilings, we

present some preliminary results.
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Theorem 3.1. [1] If a substitution point set is a Meyer set, then one can determine pure

point spectrum using a computational algorithm.

Theorem 3.2. [8] The set of eigenvalues for the dynamical system (XT ,Rd, µ) is relatively

dense if and only if the corresponding substitution point set ΛT is a Meyer set.

Theorem 3.3. [14] γ is an eigenvalue for the dynamical system (XT ,Rd, µ) if and only if

lim
n→∞

e2πi〈φnx,γ〉 = 1 for all x ∈ Ξ ,

e2πi〈x,γ〉 = 1 for all x ∈ K = {x ∈ Rd | T − x = T }.

Theorem 3.4. [5, 14] Let T be a self-similar tiling in Rd with a similarity λ, where |λ| > 1.

Then

Ξ ⊂ Z[λ]α1 + · · ·Z[λ]αd

for some basis {α1, . . . , αd} of Rd.

Question What can we say in the case of self-affine tilings?

Theorem 3.5. [9] Suppose that φ is diagonalizable and all the eigenvalues of φ are alge-

braically conjugate with the same multiplicity m. Then ∃ an isomorphism ρ : Rd → Rd such

that

ρφ = φρ and Ξ ⊂ ρ(Z[φ]α1 + · · ·+ Z[φ]αJ),

where Jm = d and

(αj)n =

{
1 if (j − 1)m+ 1 ≤ n ≤ jm
0 else

.

We show now how this theorem is used to get the Meyer property of Ξ. To be simple, we

consider the case that all the eigenvalues of φ are real. However the main result of Theorem

3.11 is not restricted on this case.

An algebraic integer λ is a Pisot number if |λ| > 1 and all other algebraic conjugates are

less than 1 in modulus. A set Λ = {λ1, . . . , λm} of algebraic integers is a Pisot family if for

every λi ∈ Λ, if γ is an algebraic conjugate of λi and γ /∈ Λ, then |γ| < 1. Let dist(x,Z) be

the minimal distance from x to Z.

Lemma 3.6. Let λ be a Pisot number. Then dist(λn,Z)→ 0 as n→∞.

Proof. Let λ2, . . . , λs be all the algebraic conjugates of λ. For any n ∈ Z+,

λn +
s∑
j=2

(λj)n ∈ Z.

Note that
s∑
j=2

(λj)n ≤ (s− 1) sup
2≤j≤m

|λj |n → 0 as n→∞ .

Thus the claim follows. �
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Lemma 3.7. Let Λ = {λ1, . . . , λm} be a Pisot family. Then

dist(
m∑
k=1

(λk)n,Z)→ 0 as n→∞ .

Proposition 3.8. If the set of eigenvalues of φ is a Pisot family, then the set of eigenvalues

for (XT ,Rd, µ) is relatively dense.

Proof. For any n ∈ Z≥0 and 0 ≤ ` < m,

〈φnαj , (φT )`αj〉 = 〈φn+`αj , αj〉 =
m∑
k=1

λn+`
k .

Since {λ1, . . . , λm} is a Pisot family,

dist(
m∑
k=1

λn+`
k ,Z)→ 0 as n→∞.

Note

〈φnαi, (φT )`αj〉 = 0 if i 6= j.

Hence

lim
n→∞

e2πi〈φny,(φT )`αj〉 = 1 for all y ∈ Z[φ]α1 + · · ·+ Z[φ]αJ .

Thus

lim
n→∞

e2πi〈φnx,(ρT )−1(φT )`αj〉 = 1 for all x ∈ Ξ.

From the uniform convergence of the limit in x ∈ Ξ,

e2πi〈x,(ρT )−1(φT )k+`αj〉 = 1 for all x ∈ K and some big k ∈ Z+ .

So (ρT )−1(φT )k+`αj is an eigenvalue for (XT ,Rd, µ) for ` = 0, . . . ,m− 1. Since

{α1, . . . , (φT )m−1α1, . . . , αJ , . . . , (φT )m−1αJ}

is a basis of Rd, the claim follows.

Theorem 3.9. [16] Let U1, U2, . . . be a sequence of real numbers, where

Un = c1λ
n
1 + c2λ

n
2 + · · ·+ cmλ

n
m, c1c2 · · · cm 6= 0,

λ1, . . . , λm are distinct algebraic numbers, and |λk| > 1 (k = 1, . . . ,m). If dist(Un,Z) → 0

as n→∞, then {λ1, . . . , λm} is a Pisot family.

Proposition 3.10. If γ is a non-zero eigenvalue for (XT ,Rd, µ), then the set of eigenvalues

of φ is a Pisot family.

Proof. For any x ∈ Ξ, x ∈ ρ(
∑J

j=1 gj(φ)αj) for some polynomials gj(x) ∈ Z[x]. Then

〈φnx, γ〉 =
J∑
j=1

〈φngj(φ)αj , ρTγ〉

=
m∑
k=1

ckλ
n
k for some ck ∈ C.
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Since γ is an eigenvalue, dist(〈φnx, γ〉,Z) → 0 as n → ∞. By Vijayaraghavan’s theorem,

the set of eigenvalues of φ is a Pisot family.

Theorem 3.11. Let T be a self-affine tiling of Rd with a diagonalizable expansion map φ.

Suppose that all the eigenvalues of φ are algebraic conjugates with the same multiplicity.

Then the following are equivalent:

(i) Spec(φ) is a Pisot family.

(ii) The set of eigenvalues of (XT ,Rd, µ) is relatively dense in Rd.

(iii) The system (XT ,Rd, µ) is not weakly mixing (i.e., it has eigenvalues other than 0).

(iv) Ξ(T ) is a Meyer set.
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