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1 Known results on the binary expansions of
algebraic numbers

The binary expansions of rational numbers are ultimately periodic. How-
ever, we know only little about the binary expansions of algebraic irrational
numbers. Let £ be a positive real number. We write the n-th digit in the
binary expansion of £ as

s(n)=[€-27"] —2[¢- 27" € {0, 1},

where |z] denotes the integral part of a real number x. Moreover, let R(&)
be the largest integer such that S(&; R(€)) # 0. Then the binary expansion
of ¢ is denoted by

R(£)

E= ) 2"-s(&n).

n=—0oo

It is widely believed that each algebraic irrational number ¢ is normal in base
2 (for instance, see [2]). Namely, let w be any finite word on the alphabet
{0,1} and |w| its length. Then it is conjectured that w occurs in the binary
expansion of ¢ with average frequency tending to 2-1*!. In particular, it is
believed that the word 11 appears in the binary expansion of £ with average
frequency tending to 1/4. However, it is still unknown whether 11 appears
infinitely many times in the binary expansions of £ or not. There is no
algebraic irrational number whose normality has been proven.
In this paper we study the complexity of the sequence

(s(&mn))s)



where £ is an algebraic irrational number. Let N be a positive integer. First
we consider the number (¢; N) of distinct blocks of N digits in the binary
expansion of £. Namely,

A& N) = Card{s(&;i)s(§1—1) ... s(§i = N+1) i < R(§)},

where Card denotes the cardinality. If £ is a normal number in base 2, then we
have 3(£; N) = 2% for any positive integer N. Let § be a positive number less
than 1/11. Then Bugeaud and Evertse [4] showed for all algebraic irrational
numbers & that

lim sup —ﬁ(f’ ) =
N—o00 N(lOg N)(S
However, it is still unknown whether there exists an algebraic irrational num-
ber £ with §(2;¢) = 3.
Next, let w be any finite word on the alphabet {0,1}. For any integer N,
put

f§,w;N) :=
Card{R(§) — |w| +1>n2> =N |s(&n+ |w| —1)---s5(§n) = w}.

The main purpose of this paper is to estimate lower bounds of f(§, w; N) in
the case of |w| < 2. In this paper, O denotes the Landau symbol and <, >
mean the Vinogradov symbols. Namely f = O(g), f < g and ¢ > [ imply
that

1fI < Cyg

for some constant C'. Moreover, f ~ g means that the ratio of f and g tends
to 1. Suppose again that & is a positive algebraic irrational number. By the
definition of normal number, £ is normal in base 2 if and only if, for any word
w?

N

as N tends to infinity. Bailey, Borwein, Crandall, and Pomerance [1] gave
lower bounds of f(&,w; N) in the case of w = 1 as follows: Let D(> 2) be
the degree of £. Then

F€,1;N) 3 NV, (1)
Take a positive integer M such that 2M > ¢. Then, using (1.1), we get
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for all sufficiently large N. Now we consider the case of |w| = 2. Let v(¢, N)
be the number of digit changes in the binary expansions of £, that is,

V(& N)=Card{n € Z | n > —N,s(&n) #s(&n+1)}

Then we have

F(6,01;N) = 55(6 V) + 0(1) (12)

and
F(6.10:N) = S2(& N) + O(1). (1.3

Thus, using (1.2), (1.3), and lower bounds by Bugeaud and Evertse [4], we
deduce the following: There exist an effectively computable positive absolute
constant C; and effectively computable positive constant Cy(§) depending
only on & such that

. (log N)?/?
f(&0LN) > Cl(log(GD))l/Q(loglogN)1/2’ (1.4)
f(&,10;N) > (log V)" (1.5)

1 log(6D)) 2 (loglog N) 72

for all N > C5(&), where D is the degree of €. In Section 2 we improve (1.4)
and (1.5) for certain classes of algebraic irrational numbers . Moreover, we
give lower bounds of the function

f(&,00; N) + f(§,11; N).

In Sections 3 and 4, we give proofs of the main results.

2 Main results

In this section we give lower bounds of the function f(&,w;N) in the case
of |lw| = 2. First, we consider the SSB expansions of real numbers which
was introduced by Dajani, Kraaikamp, and Liardet [5]. They proved the
following: Let & be a real number. Then there exist an integer R and a
sequence (z;)f with x; € {—1,0, 1} such that, for any i < R,

1=—00

Tili—1 = 0



and that

R
&= Z ;2" = TRTR_1 ... X0 T1T—s. ... (2.1)

1=—00

We call (2.1) the SSB expansion of £. In a sequence of signed bits, we write
-1 by 1. For instance,

15 = 10001.000. .. .

The SSB expansion of a real number is not always unique. In fact, we have

1 _

5 = 0-(01)* = 0.1(01)%,
where V' denotes the right-infinite word VV'V ... for each nonempty finite
word V. Note that the SSB expansion of a rational number £ is ultimately
periodic. Moreover, let r be the period of the ordinary binary expansion of
¢, then r is also the period of ¢ (see Lemma 2.2 of [6]). Combining (1.2) and

(1.3), we obtain the following:

THEOREM 2.1. Let £ be a positive algebraic irrational number with min-
imal polynomial ApXP + Ap 1 XP~1 ... + Ay € Z[X], where Ap > 0.
Assume that there exists a prime number p which divides all coefficients
Ap,Ap_1,..., A1, but not the integer 2Ay. Let o be the number of nonzero
digits in the period of the SSB expansion of Ag/p. Let € be an arbitrary
positive number less than 1 and r the minimal positive integer such that p
divides (2" —1). Then there exists an effectively computable positive constant
C3(&,¢e) depending only on & and € such that

1—¢e( op YD
Feonn) = 15 () e (22)
and that
1—¢/( op /D
f(§10; N) > 9 (%) Nl/D, (2.3)

where N is any integer with N > C3(&, €).

We consider the case where w is 00 or 11. However, it is difficult to
give lower bounds of f(£,00; N) and f(&,11; N). In fact, we can not prove
that the functions f(£,00; N) and f(, 11; N) are unbounded. We give lower
bounds of f(&£,00; N) + f(&, 11; N) for certain classes of algebraic irrational
numbers £.



THEOREM 2.2. Let £ be a positive algebraic irrational number with min-
imal polynomial ApXP + Ap 1 XP™1 + ... + Ay € Z[X], where Ap > 0.
Assume that there exists a prime number p which divides all coefficients
Ap,Ap_1,..., Ay, but not the integer 6Ay. Let o’ be the number of nonzero
digits in the period of the SSB expansion of (3P Ay)/p. Let € be an arbitrary
positive number less than 1 and r the minimal positive integer such that p
divides (2" —1). Then there ezists an effectively computable positive constant
Cy(&,¢e) depending only on & and € such that

' 1/D
F(6,005 M) + f(6, 11 N) 2 == ( ‘”’) NYP (24)

for any integer N with N > Cy(&,€).

Note that the assumptions about £ in Theorem 2.2 is stronger than the
ones in Theorem 2.1. We give numerical examples. We consider the case of
E=1/ v/5. The minimal polynomial of ¢ is

A X?+ A X + Ay =5X2— 1.

Thus, ¢ satisfies the assumptions in Theorems 2.1 and 2.2. We have p = 5
and r = 4. Since the SSB expansion of Ay/p is written as

A, 1 _
— = ——=0.(0101)*
p 5 ( )7

we get 0 = 2. Let € be an arbitrary positive number less than 1. Then, by
Theorem 2.1, we obtain

1 1—¢
f(E,OLN> > Mm,

(fms) = s

for all sufficiently large N. Similarly, using

3P Ag 9 - —
= —— =10.(0101)*
p 5 ( ) Y

we get 0’ = 2. Hence, Theorem 2.2 implies that

() ()2 o

for any sufficiently large N.



3 Hamming weights of the SSB expansions of
integers

In the previous section we introduced the SSB expansions of real numbers.
Let n be an integer. Then the SSB expansion of n is finite, that is,

N = TRTR_1-..20.0%, (3.1)
where xr # 0 if n # 0. For simplicity, we denote the SSB expansion (3.1) by
nN=TRYR—1...20.

Reitwiesner [7] proved that the representation (3.1) is unique. Let us define
the Hamming weight of the SSB expansion of n by

V() = i

In this section we introduce lemmas about the Hamming weights of integers in
[6]. It is known for each integer n that v(n) is the minimal Hamming weight
among the signed binary expansions of n (for instance, see [3]). Namely,
assume that

M
n = E a;2",

1=0

where M and ag, aq,...,ay are integers. Then

v(n) < Z |a|.

In particular, since

n:]_++1 Ol"?’L:—l—'--—]_,
| S —_——
we get
v(n) < nl|. (3.2)

The function v satisfies the convexity relations which are analogues of The-
orem 4.2 in [1].



LEMMA 3.1. Let m and n be integers. Then we have
vim+n) <v(m)+rv(n)
and

v(mn) < v(m)v(n).

Combining (3.2) and Lemma 3.1, we obtain
lv(m +n) —v(m)| < |n. (3.3)

Finally, we introduce lower bounds of Hamming weight denoted in Remark
3.1 in [6]

LEMMA 3.2. Let b be an integer and p a prime number. Assume that p
does not divide 2b. Let r be the minimal positive integer such that p divides
(2" — 1). Moreover, let o be the nonzero digits in the period of the SSB
expansion of b/p. Then we have

UQ—EQND >IN -2 -2
p T

4 Proof of Theorem 2.2

We use the same notation as in Section 1. Put

F(§&N) = f(£,00;N)+ f(&,11;N)
= Cad{R(§)—1>n>-N|s(&n+1)=s(&n)}

We give lower bounds of F'(¢; N) by the Hamming weight of the SSB expan-
sions of integers.

LEMMA 4.1. Let h be a positive integer and N a nonnegative integer. Then

v(|3"2€" ) < (6F(& N) +2)" + 6" max{1,"}.



Proof. We show for any nonnegative integer N that
V(312V€)) < 6f(6N) +2 (4.1)

We write the fractional part of a real number x by {z}. Let v be a word of
length L on the alphabet {0,1}. For nonnegative real number z, put

vt =ov. . 0,

=]
where v’ is the prefix of v with length | L{z}]. For instance, if v = 101, then
v? = 101101, v*3 = 10110110.
The ordinary binary expansion of [£2V] is written as
|€2N | = vt wd vs2wd? . vl ) (4.2)
or
1€2Y | = vl viwd? v el o (4.3)

where v; € {01,10}, w; € {0,1}, and 2z;,y; € Z for each i. Note that

F(&GN) =Y v

i>1

First we assume that |£2%V ] is written as (4.2). Then, for any 7, the ordinary
binary expansion of 3v;" is denoted as

3v;*=11...1or 11...10,
and so,
v(3v) < 2.
Thus, using Lemma 3.1 and
V(3u¥) < v(B(u?) < 4,

we obtain

ABLE]) < Y vl + Y vl

< 2A+4(1-1)=6(1—1)+2
-1
< 6) yi+2=6F(&N)+2.

=1



Next, we consider the case where |£2V | is written as (4.3)

v(BLE2Y]) < Do wui) + D v(ul)
l
< 61<6) y =6F(&N).

=1

Therefore, we proved (4.1).
Recall that the ordinary binary expansion of ¢ is

£ = Z s(&,n)2".
Put
00 —N-1
& = Z s(&,n)2", & = Z s(&, n)2".
n=—N n=-—oo

Then we have

haNeh = 3h2N(6 + &)

. By Lemma 3.1

h
h —1¢T
= 32N sty <i)€? &

i=1

and so

h
|[3"2Ve" | — [3"2Ner ]| < 1+ {3’12%? +3mV Y CL) {”‘ggJ .

i=1

Hence, using (3.3) and Lemma 3.1, we obtain

v (L3h2N€hJ)

h
<v(|3"2V¢]) +1+ {3@%{1 +3mV Yy CL) gf—iggJ
=1

h
<v([3"2Ver]) +1+3"> <?> max{1,£"}
=0
< v ([3"2M¢]) + 1+ 6" max{1,¢"}.
Note that

v(3"2MVer) < w(3-2V6)" = w(3[2V¢))"

9

(4.4)



Write the SSB expansion of 372"V ¢h by
t
3 NEr =) " 0i2"
i=0
Then we have

> Il < v(312¢))"

Let
t (h—1)N—1
0, := Z ai2i_(h_1)N, 0 1= Z U@Qi—(h—l)N'
i=(h—1)N i=0

Since 0 € Z, 05| < 1, and since

01 + 0, = 3"2N¢7,
we get

132Nl — 61 <1
By (4.5)

v([3"2Y¢]) < w(6) +1

= 1+ Y ol <1+vB2VEN"

i=(h—1)N
Consequently, combining (4.1), (4.4), and (4.6), we conclude that

v (|3"2N¢"]) v (13"2Y¢r]) + 1+ 6" max{1,¢"}

<
< w312V + 2 4 6" max{1, "}
< (6f(&N) +2)" + 6" max{1,£"}.

We now prove Theorem 2.2. By

D
> At =0,
h=0
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(4.5)

(4.6)



we get

; oV =y 3N
h=1

Lemma 3.2 implies that

D /
v Q—?’—AozNJ) >ZN -2 -2
D r
Using (3.3)and Lemmas 3.1, 4.1, we obtain
3DA0 D 3D7hAh
(15se]) o[£ 2500
p he1 p

D op_p D aD-h
<v (Z 3 pA" Lsthch> +y 3 1A
h=1

h=1 p

<

D op-h
<> e e RRA(EE))

D 3D=h| 4,

<> —— (14 (6f(GN) +2)" +6" max{L,¢"})
h=1

Therefore, there exists a polynomial P(X) € R[X] with leading term

6DTAD
a'p

XD

such that, for any nonnegative integer N,
N < P(F(g; N)).
Consequently, for any positive real number ¢ less than 1, there exists a posi-

tive computable constant Cy(§,¢) depending only on £ and e such that, for
each integer N with N > Cy(&, ¢),

1l—e (dp YD
F(&N) > ( ) NP,

6 T’AD

Finally, we showed Theorem 2.2.
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