On the complexity of the binary expansions of algebraic numbers

京都大学理学研究科 金子 元（Kaneko Hajime）
Department of Mathematics，Kyoto University

1 Known results on the binary expansions of algebraic numbers

The binary expansions of rational numbers are ultimately periodic．How－ ever，we know only little about the binary expansions of algebraic irrational numbers．Let ξ be a positive real number．We write the n－th digit in the binary expansion of ξ as

$$
s(\xi ; n)=\left\lfloor\xi \cdot 2^{-n}\right\rfloor-2\left\lfloor\xi \cdot 2^{-n-1}\right\rfloor \in\{0,1\},
$$

where $\lfloor x\rfloor$ denotes the integral part of a real number x ．Moreover，let $R(\xi)$ be the largest integer such that $S(\xi ; R(\xi)) \neq 0$ ．Then the binary expansion of ξ is denoted by

$$
\xi=\sum_{n=-\infty}^{R(\xi)} 2^{n} \cdot s(\xi ; n)
$$

It is widely believed that each algebraic irrational number ξ is normal in base 2 （for instance，see［2］）．Namely，let w be any finite word on the alphabet $\{0,1\}$ and $|w|$ its length．Then it is conjectured that w occurs in the binary expansion of ξ with average frequency tending to $2^{-|w|}$ ．In particular，it is believed that the word 11 appears in the binary expansion of ξ with average frequency tending to $1 / 4$ ．However，it is still unknown whether 11 appears infinitely many times in the binary expansions of ξ or not．There is no algebraic irrational number whose normality has been proven．

In this paper we study the complexity of the sequence

$$
(s(\xi ; n))_{n=-\infty}^{R(\xi)}
$$

where ξ is an algebraic irrational number. Let N be a positive integer. First we consider the number $\beta(\xi ; N)$ of distinct blocks of N digits in the binary expansion of ξ. Namely,

$$
\beta(\xi ; N)=\operatorname{Card}\{s(\xi ; i) s(\xi ; i-1) \ldots s(\xi ; i-N+1) \mid i \leq R(\xi)\}
$$

where Card denotes the cardinality. If ξ is a normal number in base 2 , then we have $\beta(\xi ; N)=2^{N}$ for any positive integer N. Let δ be a positive number less than $1 / 11$. Then Bugeaud and Evertse [4] showed for all algebraic irrational numbers ξ that

$$
\limsup _{N \rightarrow \infty} \frac{\beta(\xi ; N)}{N(\log N)^{\delta}}=\infty .
$$

However, it is still unknown whether there exists an algebraic irrational number ξ with $\beta(2 ; \xi)=3$.

Next, let w be any finite word on the alphabet $\{0,1\}$. For any integer N, put

$$
\begin{aligned}
& f(\xi, w ; N):= \\
& \operatorname{Card}\{R(\xi)-|w|+1 \geq n \geq-N \mid s(\xi ; n+|w|-1) \cdots s(\xi ; n)=w\}
\end{aligned}
$$

The main purpose of this paper is to estimate lower bounds of $f(\xi, w ; N)$ in the case of $|w| \leq 2$. In this paper, O denotes the Landau symbol and \ll, \ggg mean the Vinogradov symbols. Namely $f=O(g), f \ll g$ and $g \gg f$ imply that

$$
|f| \leq C g
$$

for some constant C. Moreover, $f \sim g$ means that the ratio of f and g tends to 1 . Suppose again that ξ is a positive algebraic irrational number. By the definition of normal number, ξ is normal in base 2 if and only if, for any word w,

$$
f(\xi, w ; N) \sim \frac{N}{2^{|w|}}
$$

as N tends to infinity. Bailey, Borwein, Crandall, and Pomerance [1] gave lower bounds of $f(\xi, w ; N)$ in the case of $w=1$ as follows: Let $D(\geq 2)$ be the degree of ξ. Then

$$
\begin{equation*}
f(\xi, 1 ; N) \gg N^{1 / D} . \tag{1.1}
\end{equation*}
$$

Take a positive integer M such that $2^{M}>\xi$. Then, using (1.1), we get

$$
f(\xi, 0 ; N)=f\left(2^{M}-\xi, 1 ; M\right)+O(1) \ggg N^{1 / D}
$$

for all sufficiently large N. Now we consider the case of $|w|=2$. Let $\gamma(\xi, N)$ be the number of digit changes in the binary expansions of ξ, that is,

$$
\gamma(\xi ; N)=\operatorname{Card}\{n \in \mathbb{Z} \mid n \geq-N, s(\xi ; n) \neq s(\xi ; n+1)\} .
$$

Then we have

$$
\begin{equation*}
f(\xi, 01 ; N)=\frac{1}{2} \gamma(\xi ; N)+O(1) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
f(\xi, 10 ; N)=\frac{1}{2} \gamma(\xi ; N)+O(1) \tag{1.3}
\end{equation*}
$$

Thus, using (1.2), (1.3), and lower bounds by Bugeaud and Evertse [4], we deduce the following: There exist an effectively computable positive absolute constant C_{1} and effectively computable positive constant $C_{2}(\xi)$ depending only on ξ such that

$$
\begin{align*}
& f(\xi, 01 ; N) \geq C_{1} \frac{(\log N)^{3 / 2}}{(\log (6 D))^{1 / 2}(\log \log N)^{1 / 2}} \tag{1.4}\\
& f(\xi, 10 ; N) \geq C_{1} \frac{(\log N)^{3 / 2}}{(\log (6 D))^{1 / 2}(\log \log N)^{1 / 2}} \tag{1.5}
\end{align*}
$$

for all $N \geq C_{2}(\xi)$, where D is the degree of ξ. In Section 2 we improve (1.4) and (1.5) for certain classes of algebraic irrational numbers ξ. Moreover, we give lower bounds of the function

$$
f(\xi, 00 ; N)+f(\xi, 11 ; N) .
$$

In Sections 3 and 4, we give proofs of the main results.

2 Main results

In this section we give lower bounds of the function $f(\xi, w ; N)$ in the case of $|w|=2$. First, we consider the SSB expansions of real numbers which was introduced by Dajani, Kraaikamp, and Liardet [5]. They proved the following: Let ξ be a real number. Then there exist an integer R and a sequence $\left(x_{i}\right)_{i=-\infty}^{R}$ with $x_{i} \in\{-1,0,1\}$ such that, for any $i \leq R$,

$$
x_{i} x_{i-1}=0
$$

and that

$$
\begin{equation*}
\xi=\sum_{i=-\infty}^{R} x_{i} 2^{i}=: x_{R} x_{R-1} \ldots x_{0} \cdot x_{-1} x_{-2} \ldots \tag{2.1}
\end{equation*}
$$

We call (2.1) the SSB expansion of ξ. In a sequence of signed bits, we write -1 by $\overline{1}$. For instance,

$$
15=1000 \overline{1} .000 \ldots
$$

The SSB expansion of a real number is not always unique. In fact, we have

$$
\frac{1}{3}=0 .(01)^{\omega}=0.1(0 \overline{1})^{\omega}
$$

where V^{ω} denotes the right-infinite word $V V V \ldots$ for each nonempty finite word V. Note that the SSB expansion of a rational number ξ is ultimately periodic. Moreover, let r be the period of the ordinary binary expansion of ξ, then r is also the period of ξ (see Lemma 2.2 of [6]). Combining (1.2) and (1.3), we obtain the following:

THEOREM 2.1. Let ξ be a positive algebraic irrational number with minimal polynomial $A_{D} X^{D}+A_{D-1} X^{D-1}+\cdots+A_{0} \in \mathbb{Z}[X]$, where $A_{D}>0$. Assume that there exists a prime number p which divides all coefficients $A_{D}, A_{D-1}, \ldots, A_{1}$, but not the integer $2 A_{0}$. Let σ be the number of nonzero digits in the period of the SSB expansion of A_{0} / p. Let ε be an arbitrary positive number less than 1 and r the minimal positive integer such that p divides $\left(2^{r}-1\right)$. Then there exists an effectively computable positive constant $C_{3}(\xi, \varepsilon)$ depending only on ξ and ε such that

$$
\begin{equation*}
f(\xi, 01 ; N) \geq \frac{1-\varepsilon}{2}\left(\frac{\sigma p}{r A_{D}}\right)^{1 / D} N^{1 / D} \tag{2.2}
\end{equation*}
$$

and that

$$
\begin{equation*}
f(\xi, 10 ; N) \geq \frac{1-\varepsilon}{2}\left(\frac{\sigma p}{r A_{D}}\right)^{1 / D} N^{1 / D} \tag{2.3}
\end{equation*}
$$

where N is any integer with $N \geq C_{3}(\xi, \varepsilon)$.
We consider the case where w is 00 or 11 . However, it is difficult to give lower bounds of $f(\xi, 00 ; N)$ and $f(\xi, 11 ; N)$. In fact, we can not prove that the functions $f(\xi, 00 ; N)$ and $f(\xi, 11 ; N)$ are unbounded. We give lower bounds of $f(\xi, 00 ; N)+f(\xi, 11 ; N)$ for certain classes of algebraic irrational numbers ξ.

THEOREM 2.2. Let ξ be a positive algebraic irrational number with minimal polynomial $A_{D} X^{D}+A_{D-1} X^{D-1}+\cdots+A_{0} \in \mathbb{Z}[X]$, where $A_{D}>0$. Assume that there exists a prime number p which divides all coefficients $A_{D}, A_{D-1}, \ldots, A_{1}$, but not the integer $6 A_{0}$. Let σ^{\prime} be the number of nonzero digits in the period of the SSB expansion of $\left(3^{D} A_{0}\right) / p$. Let ε be an arbitrary positive number less than 1 and r the minimal positive integer such that p divides $\left(2^{r}-1\right)$. Then there exists an effectively computable positive constant $C_{4}(\xi, \varepsilon)$ depending only on ξ and ε such that

$$
\begin{equation*}
f(\xi, 00 ; N)+f(\xi, 11 ; N) \geq \frac{1-\varepsilon}{6}\left(\frac{\sigma^{\prime} p}{r A_{D}}\right)^{1 / D} N^{1 / D} \tag{2.4}
\end{equation*}
$$

for any integer N with $N \geq C_{4}(\xi, \varepsilon)$.
Note that the assumptions about ξ in Theorem 2.2 is stronger than the ones in Theorem 2.1. We give numerical examples. We consider the case of $\xi=1 / \sqrt{5}$. The minimal polynomial of ξ is

$$
A_{2} X^{2}+A_{1} X+A_{0}=5 X^{2}-1
$$

Thus, ξ satisfies the assumptions in Theorems 2.1 and 2.2. We have $p=5$ and $r=4$. Since the SSB expansion of A_{0} / p is written as

$$
\frac{A_{0}}{p}=-\frac{1}{5}=0 .(0 \overline{1} 01)^{\omega}
$$

we get $\sigma=2$. Let ε be an arbitrary positive number less than 1 . Then, by Theorem 2.1, we obtain

$$
\begin{aligned}
& f\left(\frac{1}{\sqrt{5}}, 01 ; N\right) \geq \frac{1-\varepsilon}{2 \sqrt{2}} \sqrt{N} \\
& f\left(\frac{1}{\sqrt{5}}, 10 ; N\right) \geq \frac{1-\varepsilon}{2 \sqrt{2}} \sqrt{N}
\end{aligned}
$$

for all sufficiently large N. Similarly, using

$$
\frac{3^{D} A_{0}}{p}=-\frac{9}{5}=\overline{1} 0 \cdot(010 \overline{1})^{\omega}
$$

we get $\sigma^{\prime}=2$. Hence, Theorem 2.2 implies that

$$
f\left(\frac{1}{\sqrt{5}}, 00 ; N\right)+f\left(\frac{1}{\sqrt{5}}, 11 ; N\right) \geq \frac{1-\varepsilon}{6 \sqrt{2}} \sqrt{N}
$$

for any sufficiently large N.

3 Hamming weights of the SSB expansions of integers

In the previous section we introduced the SSB expansions of real numbers. Let n be an integer. Then the SSB expansion of n is finite, that is,

$$
\begin{equation*}
n=x_{R} x_{R-1} \ldots x_{0} .0^{\omega}, \tag{3.1}
\end{equation*}
$$

where $x_{R} \neq 0$ if $n \neq 0$. For simplicity, we denote the SSB expansion (3.1) by

$$
n=x_{R} x_{R-1} \ldots x_{0} .
$$

Reitwiesner [7] proved that the representation (3.1) is unique. Let us define the Hamming weight of the SSB expansion of n by

$$
\nu(n)=\sum_{i=0}^{R}\left|x_{i}\right| .
$$

In this section we introduce lemmas about the Hamming weights of integers in [6]. It is known for each integer n that $\nu(n)$ is the minimal Hamming weight among the signed binary expansions of n (for instance, see [3]). Namely, assume that

$$
n=\sum_{i=0}^{M} a_{i} 2^{i}
$$

where M and $a_{0}, a_{1}, \ldots, a_{M}$ are integers. Then

$$
\nu(n) \leq \sum_{i=0}^{M}\left|a_{i}\right| .
$$

In particular, since

$$
n=\underbrace{1+\cdots+1}_{n} \text { or } n=\underbrace{-1-\cdots-1}_{n},
$$

we get

$$
\begin{equation*}
\nu(n) \leq|n| . \tag{3.2}
\end{equation*}
$$

The function ν satisfies the convexity relations which are analogues of Theorem 4.2 in [1].

LEMMA 3.1. Let m and n be integers. Then we have

$$
\nu(m+n) \leq \nu(m)+\nu(n)
$$

and

$$
\nu(m n) \leq \nu(m) \nu(n)
$$

Combining (3.2) and Lemma 3.1, we obtain

$$
\begin{equation*}
|\nu(m+n)-\nu(m)| \leq|n| . \tag{3.3}
\end{equation*}
$$

Finally, we introduce lower bounds of Hamming weight denoted in Remark 3.1 in [6]

LEMMA 3.2. Let b be an integer and p a prime number. Assume that p does not divide $2 b$. Let r be the minimal positive integer such that p divides $\left(2^{r}-1\right)$. Moreover, let σ be the nonzero digits in the period of the SSB expansion of b / p. Then we have

$$
\nu\left(\left\lfloor-\frac{A_{0}}{p} 2^{N}\right\rfloor\right) \geq \frac{\sigma}{r} N-2 \sigma-2 .
$$

4 Proof of Theorem 2.2

We use the same notation as in Section 1. Put

$$
\begin{aligned}
F(\xi ; N) & :=f(\xi, 00 ; N)+f(\xi, 11 ; N) \\
& =\operatorname{Card}\{R(\xi)-1 \geq n \geq-N \mid s(\xi ; n+1)=s(\xi ; n)\}
\end{aligned}
$$

We give lower bounds of $F(\xi ; N)$ by the Hamming weight of the SSB expansions of integers.

LEMMA 4.1. Let h be a positive integer and N a nonnegative integer. Then

$$
\nu\left(\left\lfloor 3^{h} 2^{N} \xi^{h}\right\rfloor\right) \leq(6 F(\xi ; N)+2)^{h}+6^{h+1} \max \left\{1, \xi^{h}\right\} .
$$

Proof. We show for any nonnegative integer N that

$$
\begin{equation*}
\nu\left(3\left\lfloor 2^{N} \xi\right\rfloor\right) \leq 6 f(\xi ; N)+2 . \tag{4.1}
\end{equation*}
$$

We write the fractional part of a real number x by $\{x\}$. Let v be a word of length L on the alphabet $\{0,1\}$. For nonnegative real number x, put

$$
v^{x}=\underbrace{v v \ldots v}_{\lfloor x\rfloor} v^{\prime},
$$

where v^{\prime} is the prefix of v with length $\lfloor L\{x\}\rfloor$. For instance, if $v=101$, then

$$
v^{2}=101101, v^{8 / 3}=10110110
$$

The ordinary binary expansion of $\left\lfloor\xi 2^{N}\right\rfloor$ is written as

$$
\begin{equation*}
\left\lfloor\xi 2^{N}\right\rfloor=v_{1}^{x_{1}} w_{1}^{y_{1}} v_{2}^{x_{2}} w_{2}^{y_{2}} \ldots v_{l-1}^{x_{l-1}} w_{l-1}^{y_{l-1}} v_{l}^{x_{l}} \tag{4.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\left\lfloor\xi 2^{N}\right\rfloor=v_{1}^{x_{1}} w_{1}^{y_{1}} v_{2}^{x_{2}} w_{2}^{y_{2}} \ldots v_{l-1}^{x_{l-1}} w_{l-1}^{y_{l-1}} v_{l}^{x_{l}} w_{l}^{y_{l}}, \tag{4.3}
\end{equation*}
$$

where $v_{i} \in\{01,10\}, w_{i} \in\{0,1\}$, and $2 x_{i}, y_{i} \in \mathbb{Z}$ for each i. Note that

$$
F(\xi ; N)=\sum_{i \geq 1} y_{i} .
$$

First we assume that $\left\lfloor\xi 2^{N}\right\rfloor$ is written as (4.2). Then, for any i, the ordinary binary expansion of $3 v_{i}^{x_{i}}$ is denoted as

$$
3 v_{i}^{x_{i}}=11 \ldots 1 \text { or } 11 \ldots 10,
$$

and so,

$$
\nu\left(3 v_{i}^{x_{i}}\right) \leq 2 .
$$

Thus, using Lemma 3.1 and

$$
\nu\left(3 w_{i}^{y_{i}}\right) \leq \nu(3) \nu\left(w_{i}^{y_{i}}\right) \leq 4,
$$

we obtain

$$
\begin{aligned}
\nu\left(3\left\lfloor\xi 2^{N}\right\rfloor\right) & \leq \sum_{i=1}^{l} \nu\left(3 v_{i}^{x_{i}}\right)+\sum_{i=1}^{l-1} \nu\left(3 w_{i}^{y_{i}}\right) \\
& \leq 2 l+4(l-1)=6(l-1)+2 \\
& \leq 6 \sum_{i=1}^{l-1} y_{i}+2=6 F(\xi ; N)+2 .
\end{aligned}
$$

Next, we consider the case where $\left\lfloor\xi 2^{N}\right\rfloor$ is written as (4.3). By Lemma 3.1

$$
\begin{aligned}
\nu\left(3\left\lfloor\xi 2^{N}\right\rfloor\right) & \leq \sum_{i=1}^{l} \nu\left(3 v_{i}^{x_{i}}\right)+\sum_{i=1}^{l} \nu\left(3 w_{i}^{y_{i}}\right) \\
& \leq 6 l \leq 6 \sum_{i=1}^{l} y_{i}=6 F(\xi ; N)
\end{aligned}
$$

Therefore, we proved (4.1).
Recall that the ordinary binary expansion of ξ is

$$
\xi=\sum_{n=-\infty}^{\infty} s(\xi, n) 2^{n} .
$$

Put

$$
\xi_{1}:=\sum_{n=-N}^{\infty} s(\xi, n) 2^{n}, \xi_{2}:=\sum_{n=-\infty}^{-N-1} s(\xi, n) 2^{n} .
$$

Then we have

$$
\begin{aligned}
3^{h} 2^{N} \xi^{h} & =3^{h} 2^{N}\left(\xi_{1}+\xi_{2}\right)^{h} \\
& =3^{h} 2^{N} \xi_{1}^{h}+3^{h} 2^{N} \sum_{i=1}^{h}\binom{h}{i} \xi_{1}^{h-i} \xi_{2}^{i},
\end{aligned}
$$

and so

$$
\left|\left\lfloor 3^{h} 2^{N} \xi^{h}\right\rfloor-\left\lfloor 3^{h} 2^{N} \xi_{1}^{h}\right\rfloor\right| \leq 1+\left\lfloor 3^{h} 2^{N} \xi_{1}^{h}+3^{h} 2^{N} \sum_{i=1}^{h}\binom{h}{i} \xi_{1}^{h-i} \xi_{2}^{i}\right\rfloor .
$$

Hence, using (3.3) and Lemma 3.1, we obtain

$$
\begin{align*}
& \nu\left(\left\lfloor 3^{h} 2^{N} \xi^{h}\right\rfloor\right) \\
& \leq \nu\left(\left\lfloor 3^{h} 2^{N} \xi_{1}^{h}\right\rfloor\right)+1+\left\lfloor 3^{h} 2^{N} \xi_{1}^{h}+3^{h} 2^{N} \sum_{i=1}^{h}\binom{h}{i} \xi_{1}^{h-i} \xi_{2}^{i}\right\rfloor \\
& \leq \nu\left(\left\lfloor 3^{h} 2^{N} \xi_{1}^{h}\right\rfloor\right)+1+3^{h} \sum_{i=0}^{h}\binom{h}{i} \max \left\{1, \xi^{h}\right\} \\
& \leq \nu\left(\left\lfloor 3^{h} 2^{N} \xi_{1}^{h}\right\rfloor\right)+1+6^{h} \max \left\{1, \xi^{h}\right\} . \tag{4.4}
\end{align*}
$$

Note that

$$
\nu\left(3^{h} 2^{h N} \xi_{1}^{h}\right) \leq \nu\left(3 \cdot 2^{N} \xi_{1}\right)^{h}=\nu\left(3\left\lfloor 2^{N} \xi\right\rfloor\right)^{h} .
$$

Write the SSB expansion of $3^{h} 2^{h N} \xi_{1}^{h}$ by

$$
3^{h} 2^{h N} \xi_{1}^{h}=\sum_{i=0}^{t} \sigma_{i} 2^{i} .
$$

Then we have

$$
\begin{equation*}
\sum_{i=0}^{t}\left|\sigma_{i}\right| \leq \nu\left(3\left\lfloor 2^{N} \xi\right\rfloor\right)^{h} \tag{4.5}
\end{equation*}
$$

Let

$$
\theta_{1}:=\sum_{i=(h-1) N}^{t} \sigma_{i} 2^{i-(h-1) N}, \theta_{2}:=\sum_{i=0}^{(h-1) N-1} \sigma_{i} 2^{i-(h-1) N} .
$$

Since $\theta_{1} \in \mathbb{Z},\left|\theta_{2}\right|<1$, and since

$$
\theta_{1}+\theta_{2}=3^{h} 2^{N} \xi_{1}^{h}
$$

we get

$$
\left|\left\lfloor 3^{h} 2^{N} \xi_{1}^{h}\right\rfloor-\theta_{1}\right| \leq 1
$$

By (4.5)

$$
\begin{align*}
\nu\left(\left\lfloor 3^{h} 2^{N} \xi_{1}^{h}\right\rfloor\right) & \leq \nu\left(\theta_{1}\right)+1 \\
& =1+\sum_{i=(h-1) N}^{t}\left|\sigma_{i}\right| \leq 1+\nu\left(3\left\lfloor 2^{N} \xi\right\rfloor\right)^{h} . \tag{4.6}
\end{align*}
$$

Consequently, combining (4.1), (4.4), and (4.6), we conclude that

$$
\begin{aligned}
\nu\left(\left\lfloor 3^{h} 2^{N} \xi^{h}\right\rfloor\right) & \leq \nu\left(\left\lfloor 3^{h} 2^{N} \xi_{1}^{h}\right\rfloor\right)+1+6^{h} \max \left\{1, \xi^{h}\right\} \\
& \leq \nu\left(3\left\lfloor 2^{N} \xi\right\rfloor\right)^{h}+2+6^{h} \max \left\{1, \xi^{h}\right\} \\
& \leq(6 f(\xi ; N)+2)^{h}+6^{h+1} \max \left\{1, \xi^{h}\right\} .
\end{aligned}
$$

We now prove Theorem 2.2. By

$$
\sum_{h=0}^{D} A_{h} \xi^{h}=0
$$

we get

$$
-\frac{3^{D} A_{0}}{p} 2^{N}=\sum_{h=1}^{D} \frac{3^{D-h} A_{h}}{p} 3^{h} 2^{N} \xi^{h}
$$

Lemma 3.2 implies that

$$
\nu\left(\left\lfloor-\frac{3^{D} A_{0}}{p} 2^{N}\right\rfloor\right) \geq \frac{\sigma^{\prime}}{r} N-2 \sigma^{\prime}-2 .
$$

Using (3.3)and Lemmas 3.1, 4.1, we obtain

$$
\begin{aligned}
& \nu\left(\left\lfloor-\frac{3^{D} A_{0}}{p} 2^{N}\right\rfloor\right)=\nu\left(\left\lfloor\sum_{h=1}^{D} \frac{3^{D-h} A_{h}}{p} 3^{h} 2^{N} \xi^{h}\right\rfloor\right) \\
& \leq \nu\left(\sum_{h=1}^{D} \frac{3^{D-h} A_{h}}{p}\left\lfloor 3^{h} 2^{N} \xi^{h}\right\rfloor\right)+\sum_{h=1}^{D} \frac{3^{D-h}\left|A_{h}\right|}{p} \\
& \leq \sum_{h=1}^{D} \frac{3^{D-h}\left|A_{h}\right|}{p}\left(1+\nu\left(\left\lfloor 3^{h} 2^{N} \xi^{h}\right\rfloor\right)\right) \\
& \leq \sum_{h=1}^{D} \frac{3^{D-h}\left|A_{h}\right|}{p}\left(1+(6 f(\xi ; N)+2)^{h}+6^{h+1} \max \left\{1, \xi^{h}\right\}\right) .
\end{aligned}
$$

Therefore, there exists a polynomial $P(X) \in \mathbb{R}[X]$ with leading term

$$
\frac{6^{D} r A_{D}}{\sigma^{\prime} p} X^{D}
$$

such that, for any nonnegative integer N,

$$
N \leq P(F(\xi ; N)) .
$$

Consequently, for any positive real number ε less than 1 , there exists a positive computable constant $C_{4}(\xi, \varepsilon)$ depending only on ξ and ε such that, for each integer N with $N \geq C_{4}(\xi, \varepsilon)$,

$$
F(\xi ; N) \geq \frac{1-\varepsilon}{6}\left(\frac{\sigma^{\prime} p}{r A_{D}}\right)^{1 / D} N^{1 / D}
$$

Finally, we showed Theorem 2.2.

Acknowledgements

I would like to thank Prof. Yann Bugeaud for giving me useful advice. I am very grateful to Prof. Shigeki Akiyama for useful suggestions and for giving me fruitful information about the SSB expansions of integers. This work is supported by the JSPS fellowship.

References

[1] D. H. Bailey, J. M. Borwein, R. E. Crandall and C. Pomerance, 'On the binary expansions of algebraic numbers', J. Théor. Nombres Bordeaux 16 (2004), 487-518.
[2] É. Borel, ‘Sur les chiffres décimaux de $\sqrt{2}$ et divers problèmes de probabilités en chaîne', C. R. Acad. Sci. Paris 230 (1950), 591-593.
[3] W. Bosma, 'Signed bits and fast exponentiation', J. Théor. Nombres Bordeaux 13 (2001), 27-41.
[4] Y. Bugeaud and J.-H. Evertse, 'On two notions of complexity of algebraic numbers', Acta Arith. 133 (2008), 221-250.
[5] K. Dajani, C. Kraaikamp and P. Liardet, 'Ergodic properties of signed binary expansions', Discrete Contin. Dyn. Syst. 15 (2006), 87-119.
[6] H. Kaneko, On the binary digits of algebraic numbers, J. Aust. Math. Soc. to appear.
[7] G. W. Reitwiesner, 'Binary arithmetic', Advances in computers, 1 (1960), 231-308.

