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1 Known results on the binary expansions of

algebraic numbers

The binary expansions of rational numbers are ultimately periodic. How-
ever, we know only little about the binary expansions of algebraic irrational
numbers. Let ξ be a positive real number. We write the n-th digit in the
binary expansion of ξ as

s(ξ; n) = bξ · 2−nc − 2bξ · 2−n−1c ∈ {0, 1},

where bxc denotes the integral part of a real number x. Moreover, let R(ξ)
be the largest integer such that S(ξ; R(ξ)) 6= 0. Then the binary expansion
of ξ is denoted by

ξ =

R(ξ)∑
n=−∞

2n · s(ξ; n).

It is widely believed that each algebraic irrational number ξ is normal in base
2 (for instance, see [2]). Namely, let w be any finite word on the alphabet
{0, 1} and |w| its length. Then it is conjectured that w occurs in the binary
expansion of ξ with average frequency tending to 2−|w|. In particular, it is
believed that the word 11 appears in the binary expansion of ξ with average
frequency tending to 1/4. However, it is still unknown whether 11 appears
infinitely many times in the binary expansions of ξ or not. There is no
algebraic irrational number whose normality has been proven.

In this paper we study the complexity of the sequence

(s(ξ; n))
R(ξ)
n=−∞
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where ξ is an algebraic irrational number. Let N be a positive integer. First
we consider the number β(ξ; N) of distinct blocks of N digits in the binary
expansion of ξ. Namely,

β(ξ; N) = Card{s(ξ; i)s(ξ; i − 1) . . . s(ξ; i − N + 1) | i ≤ R(ξ)},

where Card denotes the cardinality. If ξ is a normal number in base 2, then we
have β(ξ; N) = 2N for any positive integer N . Let δ be a positive number less
than 1/11. Then Bugeaud and Evertse [4] showed for all algebraic irrational
numbers ξ that

lim sup
N→∞

β(ξ; N)

N(log N)δ
= ∞.

However, it is still unknown whether there exists an algebraic irrational num-
ber ξ with β(2; ξ) = 3.

Next, let w be any finite word on the alphabet {0, 1}. For any integer N ,
put

f(ξ, w; N) :=

Card{R(ξ) − |w| + 1 ≥ n ≥ −N | s(ξ; n + |w| − 1) · · · s(ξ; n) = w}.

The main purpose of this paper is to estimate lower bounds of f(ξ, w; N) in
the case of |w| ≤ 2. In this paper, O denotes the Landau symbol and ¿,À
mean the Vinogradov symbols. Namely f = O(g), f ¿ g and g À f imply
that

|f | ≤ Cg

for some constant C. Moreover, f ∼ g means that the ratio of f and g tends
to 1. Suppose again that ξ is a positive algebraic irrational number. By the
definition of normal number, ξ is normal in base 2 if and only if, for any word
w,

f(ξ, w; N) ∼ N

2|w|

as N tends to infinity. Bailey, Borwein, Crandall, and Pomerance [1] gave
lower bounds of f(ξ, w; N) in the case of w = 1 as follows: Let D(≥ 2) be
the degree of ξ. Then

f(ξ, 1; N) À N1/D. (1.1)

Take a positive integer M such that 2M > ξ. Then, using (1.1), we get

f(ξ, 0; N) = f(2M − ξ, 1; M) + O(1) À N1/D
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for all sufficiently large N . Now we consider the case of |w| = 2. Let γ(ξ,N)
be the number of digit changes in the binary expansions of ξ, that is,

γ(ξ; N) = Card{n ∈ Z | n ≥ −N, s(ξ; n) 6= s(ξ; n + 1)}.

Then we have

f(ξ, 01; N) =
1

2
γ(ξ; N) + O(1) (1.2)

and

f(ξ, 10; N) =
1

2
γ(ξ; N) + O(1). (1.3)

Thus, using (1.2), (1.3), and lower bounds by Bugeaud and Evertse [4], we
deduce the following: There exist an effectively computable positive absolute
constant C1 and effectively computable positive constant C2(ξ) depending
only on ξ such that

f(ξ, 01; N) ≥ C1
(log N)3/2

(log(6D))1/2(log log N)1/2
, (1.4)

f(ξ, 10; N) ≥ C1
(log N)3/2

(log(6D))1/2(log log N)1/2
(1.5)

for all N ≥ C2(ξ), where D is the degree of ξ. In Section 2 we improve (1.4)
and (1.5) for certain classes of algebraic irrational numbers ξ. Moreover, we
give lower bounds of the function

f(ξ, 00; N) + f(ξ, 11; N).

In Sections 3 and 4, we give proofs of the main results.

2 Main results

In this section we give lower bounds of the function f(ξ, w; N) in the case
of |w| = 2. First, we consider the SSB expansions of real numbers which
was introduced by Dajani, Kraaikamp, and Liardet [5]. They proved the
following: Let ξ be a real number. Then there exist an integer R and a
sequence (xi)

R
i=−∞ with xi ∈ {−1, 0, 1} such that, for any i ≤ R,

xixi−1 = 0
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and that

ξ =
R∑

i=−∞

xi2
i =: xRxR−1 . . . x0.x−1x−2 . . . . (2.1)

We call (2.1) the SSB expansion of ξ. In a sequence of signed bits, we write
-1 by 1. For instance,

15 = 10001.000 . . . .

The SSB expansion of a real number is not always unique. In fact, we have

1

3
= 0.(01)ω = 0.1(01)ω,

where V ω denotes the right-infinite word V V V . . . for each nonempty finite
word V . Note that the SSB expansion of a rational number ξ is ultimately
periodic. Moreover, let r be the period of the ordinary binary expansion of
ξ, then r is also the period of ξ (see Lemma 2.2 of [6]). Combining (1.2) and
(1.3), we obtain the following:

THEOREM 2.1. Let ξ be a positive algebraic irrational number with min-
imal polynomial ADXD + AD−1X

D−1 + · · · + A0 ∈ Z[X], where AD > 0.
Assume that there exists a prime number p which divides all coefficients
AD, AD−1, . . . , A1, but not the integer 2A0. Let σ be the number of nonzero
digits in the period of the SSB expansion of A0/p. Let ε be an arbitrary
positive number less than 1 and r the minimal positive integer such that p
divides (2r −1). Then there exists an effectively computable positive constant
C3(ξ, ε) depending only on ξ and ε such that

f(ξ, 01; N) ≥ 1 − ε

2

(
σp

rAD

)1/D

N1/D (2.2)

and that

f(ξ, 10; N) ≥ 1 − ε

2

(
σp

rAD

)1/D

N1/D, (2.3)

where N is any integer with N ≥ C3(ξ, ε).

We consider the case where w is 00 or 11. However, it is difficult to
give lower bounds of f(ξ, 00; N) and f(ξ, 11; N). In fact, we can not prove
that the functions f(ξ, 00; N) and f(ξ, 11; N) are unbounded. We give lower
bounds of f(ξ, 00; N) + f(ξ, 11; N) for certain classes of algebraic irrational
numbers ξ.
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THEOREM 2.2. Let ξ be a positive algebraic irrational number with min-
imal polynomial ADXD + AD−1X

D−1 + · · · + A0 ∈ Z[X], where AD > 0.
Assume that there exists a prime number p which divides all coefficients
AD, AD−1, . . . , A1, but not the integer 6A0. Let σ′ be the number of nonzero
digits in the period of the SSB expansion of (3DA0)/p. Let ε be an arbitrary
positive number less than 1 and r the minimal positive integer such that p
divides (2r −1). Then there exists an effectively computable positive constant
C4(ξ, ε) depending only on ξ and ε such that

f(ξ, 00; N) + f(ξ, 11; N) ≥ 1 − ε

6

(
σ′p

rAD

)1/D

N1/D (2.4)

for any integer N with N ≥ C4(ξ, ε).

Note that the assumptions about ξ in Theorem 2.2 is stronger than the
ones in Theorem 2.1. We give numerical examples. We consider the case of
ξ = 1/

√
5. The minimal polynomial of ξ is

A2X
2 + A1X + A0 = 5X2 − 1.

Thus, ξ satisfies the assumptions in Theorems 2.1 and 2.2. We have p = 5
and r = 4. Since the SSB expansion of A0/p is written as

A0

p
= −1

5
= 0.(0101)ω,

we get σ = 2. Let ε be an arbitrary positive number less than 1. Then, by
Theorem 2.1, we obtain

f

(
1√
5
, 01; N

)
≥ 1 − ε

2
√

2

√
N,

f

(
1√
5
, 10; N

)
≥ 1 − ε

2
√

2

√
N

for all sufficiently large N . Similarly, using

3DA0

p
= −9

5
= 10.(0101)ω,

we get σ′ = 2. Hence, Theorem 2.2 implies that

f

(
1√
5
, 00; N

)
+ f

(
1√
5
, 11; N

)
≥ 1 − ε

6
√

2

√
N

for any sufficiently large N .
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3 Hamming weights of the SSB expansions of

integers

In the previous section we introduced the SSB expansions of real numbers.
Let n be an integer. Then the SSB expansion of n is finite, that is,

n = xRxR−1 . . . x0.0
ω, (3.1)

where xR 6= 0 if n 6= 0. For simplicity, we denote the SSB expansion (3.1) by

n = xRxR−1 . . . x0.

Reitwiesner [7] proved that the representation (3.1) is unique. Let us define
the Hamming weight of the SSB expansion of n by

ν(n) =
R∑

i=0

|xi|.

In this section we introduce lemmas about the Hamming weights of integers in
[6]. It is known for each integer n that ν(n) is the minimal Hamming weight
among the signed binary expansions of n (for instance, see [3]). Namely,
assume that

n =
M∑
i=0

ai2
i,

where M and a0, a1, . . . , aM are integers. Then

ν(n) ≤
M∑
i=0

|ai|.

In particular, since

n = 1 + · · · + 1︸ ︷︷ ︸
n

or n = −1 − · · · − 1︸ ︷︷ ︸
n

,

we get

ν(n) ≤ |n|. (3.2)

The function ν satisfies the convexity relations which are analogues of The-
orem 4.2 in [1].
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LEMMA 3.1. Let m and n be integers. Then we have

ν(m + n) ≤ ν(m) + ν(n)

and

ν(mn) ≤ ν(m)ν(n).

Combining (3.2) and Lemma 3.1, we obtain

|ν(m + n) − ν(m)| ≤ |n|. (3.3)

Finally, we introduce lower bounds of Hamming weight denoted in Remark
3.1 in [6]

LEMMA 3.2. Let b be an integer and p a prime number. Assume that p
does not divide 2b. Let r be the minimal positive integer such that p divides
(2r − 1). Moreover, let σ be the nonzero digits in the period of the SSB
expansion of b/p. Then we have

ν

(⌊
−A0

p
2N

⌋)
≥ σ

r
N − 2σ − 2.

4 Proof of Theorem 2.2

We use the same notation as in Section 1. Put

F (ξ; N) := f(ξ, 00; N) + f(ξ, 11; N)

= Card{R(ξ) − 1 ≥ n ≥ −N | s(ξ; n + 1) = s(ξ; n)}.

We give lower bounds of F (ξ; N) by the Hamming weight of the SSB expan-
sions of integers.

LEMMA 4.1. Let h be a positive integer and N a nonnegative integer. Then

ν(b3h2Nξhc) ≤ (6F (ξ; N) + 2)h + 6h+1 max{1, ξh}.

7



Proof. We show for any nonnegative integer N that

ν(3b2Nξc) ≤ 6f(ξ; N) + 2. (4.1)

We write the fractional part of a real number x by {x}. Let v be a word of
length L on the alphabet {0, 1}. For nonnegative real number x, put

vx = vv . . . v︸ ︷︷ ︸
bxc

v′,

where v′ is the prefix of v with length bL{x}c. For instance, if v = 101, then

v2 = 101101, v8/3 = 10110110.

The ordinary binary expansion of bξ2Nc is written as

bξ2Nc = vx1
1 wy1

1 vx2
2 wy2

2 . . . v
xl−1

l−1 w
yl−1

l−1 vxl
l (4.2)

or

bξ2Nc = vx1
1 wy1

1 vx2
2 wy2

2 . . . v
xl−1

l−1 w
yl−1

l−1 vxl
l wyl

l , (4.3)

where vi ∈ {01, 10}, wi ∈ {0, 1}, and 2xi, yi ∈ Z for each i. Note that

F (ξ; N) =
∑
i≥1

yi.

First we assume that bξ2Nc is written as (4.2). Then, for any i, the ordinary
binary expansion of 3vxi

i is denoted as

3vxi
i = 11 . . . 1 or 11 . . . 10,

and so,

ν(3vxi
i ) ≤ 2.

Thus, using Lemma 3.1 and

ν(3wyi

i ) ≤ ν(3)ν(wyi

i ) ≤ 4,

we obtain

ν(3bξ2Nc) ≤
l∑

i=1

ν(3vxi
i ) +

l−1∑
i=1

ν(3wyi

i )

≤ 2l + 4(l − 1) = 6(l − 1) + 2

≤ 6
l−1∑
i=1

yi + 2 = 6F (ξ; N) + 2.
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Next, we consider the case where bξ2Nc is written as (4.3). By Lemma 3.1

ν(3bξ2Nc) ≤
l∑

i=1

ν(3vxi
i ) +

l∑
i=1

ν(3wyi

i )

≤ 6l ≤ 6
l∑

i=1

yi = 6F (ξ; N).

Therefore, we proved (4.1).
Recall that the ordinary binary expansion of ξ is

ξ =
∞∑

n=−∞

s(ξ, n)2n.

Put

ξ1 :=
∞∑

n=−N

s(ξ, n)2n, ξ2 :=
−N−1∑
n=−∞

s(ξ, n)2n.

Then we have

3h2Nξh = 3h2N(ξ1 + ξ2)
h

= 3h2Nξh
1 + 3h2N

h∑
i=1

(
h

i

)
ξh−i
1 ξi

2,

and so∣∣b3h2Nξhc − b3h2Nξh
1 c

∣∣ ≤ 1 +

⌊
3h2Nξh

1 + 3h2N

h∑
i=1

(
h

i

)
ξh−i
1 ξi

2

⌋
.

Hence, using (3.3) and Lemma 3.1, we obtain

ν
(
b3h2Nξhc

)
≤ ν

(
b3h2Nξh

1 c
)

+ 1 +

⌊
3h2Nξh

1 + 3h2N

h∑
i=1

(
h

i

)
ξh−i
1 ξi

2

⌋

≤ ν
(
b3h2Nξh

1 c
)

+ 1 + 3h

h∑
i=0

(
h

i

)
max{1, ξh}

≤ ν
(
b3h2Nξh

1 c
)

+ 1 + 6h max{1, ξh}. (4.4)

Note that

ν(3h2hNξh
1 ) ≤ ν(3 · 2Nξ1)

h = ν(3b2Nξc)h.
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Write the SSB expansion of 3h2hNξh
1 by

3h2hNξh
1 =

t∑
i=0

σi2
i.

Then we have

t∑
i=0

|σi| ≤ ν(3b2Nξc)h. (4.5)

Let

θ1 :=
t∑

i=(h−1)N

σi2
i−(h−1)N , θ2 :=

(h−1)N−1∑
i=0

σi2
i−(h−1)N .

Since θ1 ∈ Z, |θ2| < 1, and since

θ1 + θ2 = 3h2Nξh
1 ,

we get ∣∣b3h2Nξh
1 c − θ1

∣∣ ≤ 1

By (4.5)

ν
(
b3h2Nξh

1 c
)

≤ ν(θ1) + 1

= 1 +
t∑

i=(h−1)N

|σi| ≤ 1 + ν(3b2Nξc)h. (4.6)

Consequently, combining (4.1), (4.4), and (4.6), we conclude that

ν
(
b3h2Nξhc

)
≤ ν

(
b3h2Nξh

1 c
)

+ 1 + 6h max{1, ξh}
≤ ν(3b2Nξc)h + 2 + 6h max{1, ξh}
≤ (6f(ξ; N) + 2)h + 6h+1 max{1, ξh}.

We now prove Theorem 2.2. By

D∑
h=0

Ahξ
h = 0,
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we get

−3DA0

p
2N =

D∑
h=1

3D−hAh

p
3h2Nξh.

Lemma 3.2 implies that

ν

(⌊
−3DA0

p
2N

⌋)
≥ σ′

r
N − 2σ′ − 2.

Using (3.3)and Lemmas 3.1, 4.1, we obtain

ν

(⌊
−3DA0

p
2N

⌋)
= ν

(⌊
D∑

h=1

3D−hAh

p
3h2Nξh

⌋)

≤ ν

(
D∑

h=1

3D−hAh

p

⌊
3h2Nξh

⌋)
+

D∑
h=1

3D−h|Ah|
p

≤
D∑

h=1

3D−h|Ah|
p

(
1 + ν(b3h2Nξhc)

)
≤

D∑
h=1

3D−h|Ah|
p

(
1 + (6f(ξ; N) + 2)h + 6h+1 max{1, ξh}

)
.

Therefore, there exists a polynomial P (X) ∈ R[X] with leading term

6DrAD

σ′p
XD

such that, for any nonnegative integer N ,

N ≤ P
(
F (ξ; N)

)
.

Consequently, for any positive real number ε less than 1, there exists a posi-
tive computable constant C4(ξ, ε) depending only on ξ and ε such that, for
each integer N with N ≥ C4(ξ, ε),

F (ξ; N) ≥ 1 − ε

6

(
σ′p

rAD

)1/D

N1/D.

Finally, we showed Theorem 2.2.
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