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Abstract 
 

Artificial aperiodic structures have been recently the subject of extensive and 
intensive research resulting in layered quasiregular heterostructures as well as 
photonic and phononic metamaterials with possible applications as optical and 
acoustic bandpassfilters and much more.  Our main interest focuses on fundamental 
questions about determinism, order vs. disorder, their possible quantification, 
complexity and entropy and beyond.  We construct a two-dimensional instance of the 
Prouhet-Thue-Morse system and compute its line complexity; it is at most 
polynomial and hence the entropy vanishes.  We point out that the perfectly 
deterministic Champernowne sequence has entropy ln 2 and hence entropy cannot 
serve as an unqualified measure of disorder.  Thus there remain many unanswered 
questions. 

 
1. Introduction 

 

  The motivation of our research is twofold:  (1) Artificial aperiodic structures, such 
as layered quasiregular heterostructures, have been the subject of intensive research 
activities. Considerable progress has been achieved in recent years, where some of the 
most promising physical realizations of structures are photonic or phononic 
metamaterials, mainly being applied as optical and acoustical bandpassfilters. The 
fabrication of such structures is mostly governed by algorithms based on substitution 
sequences (cf. [1, 2]).  
 (2) Our main interest focuses on fundamental questions about determinism, order 
vs. disorder, complexity, entropy and beyond.  The commonplace notions of "order" 
and "disorder" are heavily context-dependent and rather subjective.  Even though in 
most cases their meaning might be more or less clear, they are, in fact, not defined at 
all.  In order to gain more insight into these fundamental issues, we undertook a study 
of double-sided substitution sequences and their multidimensional generalizations. 
The main topic of our analysis is their degrees of order vs. disorder.  A rough measure 
is the topological entropy, but better insight might be provided by the symbolic 
complexity.  While in for the standard one-dimensional sequences these functions are 
well known, little is known about their multidimensional counterparts (cf. [3-5]). 
 Here we present a generic instance of the two-dimensional Prouhet-Thue-Morse 
system (PTM) and compute its line complexity.  It turns out to be at most polynomial 
and hence its entropy vanishes.  We also briefly mention the more general notions of 
rectangle as well as lattice-animals (polyominoes) complexity.  For comparison we 
also show a periodic example of 2D PTM.    
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2. The algorithm 
 

 To construct our multidimensional sequences we essentially apply a recursive 
algorithm put forward by Barbé and von Haeseler [6] but we significantly simplify it. 
 The recurrence equations for the one-dimensional double-sided PTM sequence 
with the alphabet {1, −1}are 

(1)                                             

! 

t("2x) = t(x) ,

t("2x +1) = "t(x) ,    x # Z ,

t(0) = "1 ,  t(1) =1 .

 

 

 These equations can be readily generalized to n dimensions.  For a start (and for a 
current experiment) we stay in 2D.  We choose an expanding matrix M, a shift vector 
s and an entry x ∈

! 

Z .  The recurrence equations then are 
 

(2)  

  

! 

t(Mx) = t(x) ,

t(Mx + s) = t(x) ,    x " Z
2
 ,

t(0, 0) = #1 .

 

 

The particular instance of the sequence thus produced depends on the matrix M.  For 
the present example we choose 

(3)   
  

! 

M =
"1 "1

  1 "1

# 

$ 
% 

& 

' 
(  . 

 

 After 13 iterations this produces a patch shown in Fig.1.  It contains 213 = 8192 
points.  It is chiral and anorthotropic; it should be noted that this is the generic case.  
The patch is also fractal; that is intrinsic to the algorithm which jumps back and forth 
and leaves holes to be filled in later stages. 

 
 

Fig.1.  Patch of 2D PTM after 13 iterations containing 213 = 8192 points. 
This example is generic, anorthotropic and fractal. 
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 To construct a periodic 2D PTM structure just change the matrix M  to  
 

(4)    
  

! 

M =
0 "2

1 "1

# 

$ 
% 

& 

' 
(  . 

 

 After 13 iterations this produces a patch shown in Fig.2.  It contains 213 = 8192 
points.  It is also chiral and anorthotropic and fractal.. 

 
 

Fig.2.  Patch of 2D PTM after 13 iterations containing 213 = 8192 points. 
This example is periodic, anorthotropic and fractal. 

 
As an illustration of the possibility to generalize to higher dimensions we show in 
Fig.3 a three-dimensional example. 

 
Fig.3. A 3D example of PTM. 
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3. Determinism, order and disorder 

 

 Physicists, chemists and material scientists often loosely speak of "order" and 
"disorder".  In most cases it is more or less clear what is meant.  Yet, these terms, 
while being rather intuitive, are strongly context-dependent and, in fact, not defined at 
all.  They somewhat resemble the notions of "hot" and "cold".  Yet hot electrons are 
quite different from hot tea or a hot onsen (with apologies for the double adjective).  
Cold atoms are not the same as cold weather, and even that is different in 
Ouagadougou, Kyoto and Oymekon.  Hence, "cold and hot" have been quantified 
long ago.  They can be given a precise meaning by defining temperature, which, of 
course, can be equivalently measured in units of energy, frequency or wave number. 
 The concept of entropy as a measure of disorder was invented in the 19th century 
by Clausius and interpreted in statistical terms by Boltzmann and later introduced into 
the mathematical literature by Kolmogorov.  We note in passing that there are several 
slightly different definitions of entropy.  Strictly speaking, here we deal with 
topological entropy.  Again, instead of entropy one might use the concept of 
information equivalent to negentropy invented by Shannon. 
 Unfortunately, it turns out that entropy is insufficient to characterize the structures 
in question.  More revealing and detailed is symbolic complexity, a function pS(n) 
counting the number of words of length n in a given sequence S [7-10].  
 In terms of complexity the entropy is defined as 

(4)   ln ( )
( ) : lim S

n

p n
H S

n!"
=  . 

 Let us quote a few simple examples of sequences with low complexity.  For the 
sequences  1010… (abbreviated to 10), Fibonacci (F) and Golay-Rudin-Shapiro (GRS) 
we, respectively, have: 
 

(5)  p1010…(n) = 2  for all  n , 
 

(6)     pF = n + 1  for all  n , 
 

(7)                                              pGRS = 8(n – 1)  for n ≥ 8 . 
 

On the other hand, the perfectly deterministic Champernowne (Ch) sequence has 
complexity 
 

(8)                                                   pCh = 2 
n  for all  n , 

 

the same as fair Bernoulli and hence the entropy of both is  H(B) = H(Ch) = ln 2.  This 
seems to be a paradox.  It was explained by Baake: the structure of Ch is by 
construction such that all permutations of any length n must appear in it [11].  The 
Champernowne number, i.e. the sequence Ch interpreted as the representation of a 
number is a normal number that is one where (in the given representation) all digits 
are uniformly distributed [12, 13].  The notion of a normal number is by itself 
somewhat paradoxical: a generic real number is supposed to be normal but it is hard 
to find one. 
 Thus we are confronted with a number of challenging questions.  Is determinism 
equivalent to order and in what sense?  In crystallography, according to the current 
consensus, long range order of structure is defined as the presence of a pure point part 
in the diffraction spectrum which reflects the existence of a non-vanishing two-point 
autocorrelation.  In our opinion, this definition is not general enough.  It excludes, for 
instance, the PTM case (cf. [14]). 
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 On the other hand, we see that entropy cannot distinguish between genuine 
stochastic disorder and deterministic deviation from uniformity, at least in some cases. 
Moreover, entropy is blind to dimension; for instance, all Bernoulli structures on any 
 

d have the same entropy  ln 2 .  Thus we need a more revealing global measure of 
deviation from uniformity as well as clear-cut measure of stochasticity versus 
determinism. 

 
4. Complexity of PTM − an example 

 

 Eventually we computed the symbolic complexity of the generic example shown 
in Fig.1.  We started by exploring lattice animals (alias polyominoes) on the structure.  
We quickly learned a few things.  Already some animals of low order appeared only 
in one enantiomer and/or either in horizontal or vertical position.  Thus the pattern 
was indeed proven to be chiral and anorthotropic.   
 However, the numeric effort to find animals of higher order proved to be quite 
disproportional.  Thus we compromised and restricted our search to the complexity 
p(m, n) of rectangles of size N = m× n  [15, 16].  Moreover, to gain rapid insight we 
focused on the complexity of lines pℓ  (N), i.e. rows p r  (N, 1) and columns pc  (1, N).  
The computed results again confirmed the anorthotropy of the pattern.  The recursion 
makes the pattern fractal.  The computed complexity up to N = 20 is shown in the 
Table.  The complexity turns out to be approximately quadratic and thus polynomial 
at most; hence the entropy vanishes. 
 The result again raises some questions.  Does the complexity depend on the 
particular instance of 2D PTM?  The answer seems to be positive.  If so, how does it 
depend on the particular class of realizations (cf. [6]), or else, on the choice of the 
generating matrix M ?  Is there a canonical instance of 2D PTM? 



Ben-Abraham, Quandt: Aperiodic structures and notions of order and disorder   6 

 
 

Table –  Symbolic complexity of 2D PTM. 
 

 
 

N 
 

 
rows 

p r(N,1) 
 

 
columns 
pc(1 ,N) 

 

 
total lines 

pℓ(N) 
 

 
 

N 2 

1   2∗   2∗   2∗ 1 
2 4 4 8 4 
3 6 6 12 9 
4 8 10 18 16 
5 10 14 24 25 
6 14 20 34 36 
7 18 26 44 49 
8 24 34 58 64 
9 28 42 70 81 
10 34 52 86 100 
11 40 70 110 121 
12 46 90 136 144 
13 52 108 160 169 
14 60 130 190 196 
15 68 156 224 225 
16 76 186 262 256 
17 84 208 292 289 
18 94 236 330 324 
19 104 264 368 361 
20 122 292 414 400 

 
∗)  The entries for  N = 1 are exceptional since rows and columns are the same: (1,1). 

 
 

 4. Conclusions and outlook 
 

 The symbolic complexity of the two-dimensional Prouhet-Thue-Morse structure is 
at most polynomial.  This is probably so in higher dimensions as well.  Hence the 
entropy of 2D PTM vanishes and we conjecture that this is also true for nD PTM.  
We are presently working on other instances of PTM, other 2D sequences and try to 
extend the study to higher dimensions.  And, of course, we intend to extend the 
computation of complexity to higher N and non-trivial rectangles.  We will also try 
other algorithms, mainly direct substitution. 
 Our study raises more questions than answers.  Can one find put forward a 
canonical instance of 2D PTM (or any other multidimensional substitution system) ?  
If so, can we find a formula for the complexity ?  And most important of all:  improve 
our understanding of determinism, order, disorder, stochasticity and their proper 
quantification. 
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