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Abstract

This contribution is based on a talk given by the second author in
Kyoto at RIMS, June 2010. It gives an overview of some recent develop-
ments in the theory of coincidence site lattices (CSLs). In particular, the
connections between similar sublattices and CSLs, coincidences of lattice
colourings, and coincidences of shifted lattices are discussed.

1 Coincidence Site Lattices (CSLs)

1.1 Brief historical overview

1911: first ideas by Friedel [1]
mid sixties, seventies: CSLs are investigated to discribe grain boundaries in
crystals
Ranganathan, Bollmann, Grimmer, . . . [2, 3, 4]. . .
mid ninties: generalization for quasicrystals: Coincidence Site Modules (CSMs)
Baake, Pleasants, Warrington, . . . [5, 6]. . .
2002: Quantizing Using Lattice Intersections
Sloane, Beferull–Lozano [7]
20xy: Baake, Grimm, Heuer, Moody, Pleasants, Scharlau, Loquias, Glied,
Huck, PZ, Zou, . . .

1.2 Commensurate Lattices

A key notion is the concept of commensurability. We call two lattices Γ1 and
Γ2 commensurate, if one of the following properties is satisfied.

Lemma 1.1. The following are equivalent:

• Γ1 ∩ Γ2 is a sublattice of both Γ1 and Γ2.

• Γ1 ∩ Γ2 is a sublattice of Γ1 or Γ2.

• There exists an m ∈ N such that mΓ1 ⊆ Γ2 and mΓ2 ⊆ Γ1.

• There exists an m ∈ N such that mΓ1 ⊆ Γ2 or mΓ2 ⊆ Γ1.
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1.3 Ordinary CSLs

Definition 1.1. Let Γ ⊂ R
d be a lattice, R ∈ O(d). Then

Γ(R) := Γ ∩RΓ

is called a (simple,ordinary) coincidence site lattice (CSL), if Γ and RΓ are
commensurate. The index

Σ(R) := [Γ : Γ(R)] < ∞
is called coincidence index.

For a concise introduction we refer to [8].

Figure 1: The figure shows a square lattice (black dots) and a copy (red cir-
cles) rotated by eiϕ = 2+i

2−i
(corresponding to a rotation through an angle

ϕ = arctan 4/3). One clearly sees the CSL formed by the coinciding dots and
circles. The shaded areas indicate a fundamental domain for each of the lattices.

1.4 Coincidence isometries

Lemma 1.2. The set of all coincidence isometries

OC(Γ) := {R ∈ O(d)
∣

∣Σ(R) < ∞}
forms a group, a subgroup of O(d). Likewise

SOC(Γ) := OC(Γ) ∩ SO(d)

is a group.
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The group of coincidence isometries is never empty. In particular, if P (Γ)
denotes the point group of Γ, we have

Lemma 1.3. The following are equivalent:

1. R ∈ P (Γ)

2. Σ(R) = 1

Corollary 1.4. P (Γ) = {R ∈ OC(Γ)
∣

∣Σ(R) = 1} ⊆ OC(Γ)

1.5 Some Properties of the Coincidence Index

Lemma 1.5. For any coincidence isometry R

Σ(R) = Σ(R−1).

1.6 Coincidences of the dual lattice

Lemma 1.6. Γ and its dual lattice Γ∗ have the same coincidence isometries,
i.e.

OC(Γ∗) = OC(Γ).

SOC(Γ∗) = SOC(Γ).

The coincidence index is the same for both lattices:

Σ(R)∗ = Σ(R).

1.7 Coincidences of Sublattices

Lemma 1.7. Let Γ1 ⊆ Γ with index m := [Γ : Γ1]. Then

OC(Γ1) = OC(Γ).

Let Σ1(R) be the coincidence index with respect to Γ1. Then

Σ(R)
∣

∣mΣ1(R)

Σ1(R)
∣

∣mΣ(R).

Compare [8, 9].

1.8 Example Z
2 ≃ Z[i]

For more details on this example, see [8].
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1.8.1 Coincidence rotations

Let ε ∈ {±1,±i} be a unit of Z[i], and write any splitting prime p = 1 (mod 4)
as p = ωpω̄p. Then the coincidence rotations are all of the form

eiϕ = ε
∏

p≡1 (4)

(

ωp

ω̄p

)np

,

where only finitely many np 6= 0.

1.8.2 Coincidence index

Σ(eiϕ) =
∏

p≡1 (4)

p|np|

1.8.3 Spectrum

set of all integers that contain only prime factors p ≡ 1 (mod 4).

1.8.4 CSLs of Z[i]

Let
ω(ϕ) :=

∏

p≡1 (4)
np>0

ωnp

p

∏

p≡1 (4)
np<0

ω̄np

p

Then the CSL corresponding to the rotation eiϕ is given by

Z[i] ∩ eiϕZ[i] = ω(ϕ)Z[i]

1.8.5 Generating fuctions

The number f(m) of different CSLs can be nicely expressed in terms of the
Dirichlet series

Φ(s) =

∞
∑

m=1

f(m)

ms
=

∏

p≡1(4)

1 + p−s

1− p−s

= 1 +
2

5s
+

2

13s
+

2

17s
+

2

25s
+

2

29s
+

2

37s
+

2

41s

+
2

53s
+

2

61s
+

4

65s
+

2

73s
+ . . .

1.9 Example: Ammann-Beenker tiling

Coincidences of aperiodic tilings can be described via their underlying limit
translation module, giving rise to CSMs (coincidence site modules). For the
application to tilings an additional so–called acceptance factor has to be taken
into account. [6, 8]
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Figure 2: Amman Beenker tiling. The black dots indicate the coincidences
for a rotation R about the center by θ = tan−1

(

−2
√
2
)

≈ 109.5◦, Σ(R) = 9
acceptance factor = 0.980572924 . . . [9, 10]

1.10 Equal CSLs

Lemma 1.8. S ∈ P (Γ) =⇒ Γ(R) = Γ(RS)

Though the converse is true for several lattices, like the square and triangle
lattice in d = 2 and the cubic lattices in d = 3, it does not hold in general.

In particular, there are rotations S 6∈ P (Γ) such that Γ(R) = Γ(RS) for the
following lattices: Γ = (2Z)2 × Z, Z4, D4, A4

Open question: When does Γ(R) = Γ(RS) imply S ∈ P (Γ)?

1.10.1 Example: Root lattice A4

Let f(m) be the number of CSLs and |P (A4)|frot(m) the number of coincidence
isometries of the root lattice A4 of index m, where |P (A4)| denotes the order
of the point group P (A4). Clearly frot(m) ≥ f(m). The following generating
functions show that they are not equal in general.

Φrot
A4

(s) =

∞
∑

m=1

frot(m)

ms

=
1 + 51−s

1− 52−s

∏

p≡±1(5)

(1 + p−s)(1 + p1−s)

(1− p1−s)(1− p2−s)

∏

p≡±2(5)

1 + p−s

1− p2−s

= 1 +
5

2s
+

10

3s
+

20

4s
+

30

5s
+

50

6s
+

50

7s
+

80

8s
+

90

9s
+

150

10s
+

144

11s
+ · · ·
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ΦA4
(s) =

∞
∑

m=1

f(m)

ms

=
(

1+6 5−s

1−52−s

)

∏

p≡±2(5)

1+p
−s

1−p2−s

∏

p≡±1(5)

1+p
−s+2p1−s+2p−2s+p

1−2s+p
1−3s

(1−p2−s)(1−p1−2s)

= 1 +
5

2s
+

10

3s
+

20

4s
+

6

5s
+

50

6s
+

50

7s
+

80

8s
+

90

9s
+

30

10s
+

144

11s
+ · · ·

For more details, see [11, 12, 13]

1.11 Multiple CSLs

Definition 1.2. Let Γ ⊂ R
d be a lattice, Ri ∈ OC(Γ). Then

Γ(R1, . . . , Rn) := Γ ∩R1Γ ∩ . . . ∩RnΓ = Γ(R1) ∩ . . . ∩ Γ(Rn)

is called a multiple coincidence site lattice (MCSL).
The index

Σ(R1, . . . , Rn) := [Γ : Γ(R1, . . . , Rn)] < ∞

is called coincidence index.

For more information, see [14, 15, 16].

1.12 Known CSLs (and similar sublattices)

• Square lattice, hexagonal lattice [8, 17]

• certain planar modules with N–fold symmetry [6, 17]

• cubic lattices and related modules [4, 18, 8, 19, 20]

• hypercubic lattices [8, 21]

• A4–lattice, ring of icosians [11, 12, 13]

2 Similar Sublattices

For more details see [22, 23, 24, 25].

2.1 Similarity Transformations

Definition 2.1. Let α ∈ R
+ and R ∈ O(d). Then

A : Rd → R
d

x → αRx

is called a linear similarity transformation.
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Figure 3: A square lattice and two copies of it rotated by eiϕ = 2+i
2−i

(red circles)

and e−iϕ = 2−i
2+i

(green circles), respectively. The MCSL Γ(eiϕ, e−iϕ) consists
of all points where the black dots and the red and green circles coincide, a
fundamental domain of it is given by the yellow area.

2.2 Similar Sublattice

Definition 2.2. Let A = αR be a linear similarity transformation and Γ ⊆ R
d

a lattice. Then A is called a similarity transformation of Γ if

AΓ = αRΓ ⊆ Γ.

In this case AΓ = αRΓ is called a similar sublattice (similarity sublattice).

2.3 Index of a Similar Sublattice

Lemma 2.1. For any similar sublattice of the lattice Γ ⊆ R
d:

[Γ : αRΓ] = αd ∈ N.

2.4 Similarity Isometries

Definition 2.3. An isometry R ∈ O(d) is called a similarity isometry of Γ,
if there exists an α ∈ R

+ such that αR is a similarity transformation of Γ.
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Figure 4: Similar sublattices of a square lattice of index 2 and 5, the latter also
occuring as CSL, see above.

Lemma 2.2. The set of all similarity isometries of Γ forms a group, called
OS(Γ). In particular OS(Γ) is a countable subgroup of O(d). Likewise SOS(Γ) :=
OS(Γ) ∩ SO(d) is a countable subgroup of SO(d).

3 Coincidence Isometries versus Similarity Isome-
tries

Theorem 3.1. For any d–dimensional lattice Γ we have

• OC(Γ) ⊆ OS(Γ)

• OS(Γ)/OC(Γ) is abelian.

• Moreover gd = e for any g ∈ OS(Γ)/OC(Γ).

• In particular, if d = p for some prime p, then OS(Γ)/OC(Γ) is a p–group.

See [26, 27].

3.1 Coincidence Isometries versus Similarity Isometries

Lemma 3.2.

OC(Γ) = {R ∈ OS(Γ)
∣

∣ den(R) ∈ N} ⊆ OS(Γ) ⊂ O(d)

3.2 Denominator (“Minimal Blow–up factor”)

Definition 3.1. Let R ∈ OS(Γ). Then

denΓ(R) := min{α ∈ R
+
∣

∣αRΓ ⊆ Γ}.
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Lemma 3.3. Let R ∈ OS(Γ). Then

{α ∈ R
∣

∣αRΓ ⊆ Γ} = denΓ(R)Z.

Lemma 3.4. denΓ(R) = 1 if and only if R ∈ P (Γ).

Lemma 3.5. Let R ∈ OS(Γ). Then

denΓ(R)d ∈ N

3.3 Coincidence Index and Denominator

Lemma 3.6. Let m := lcm(denΓ(R), denΓ(R
−1)) and n := gcd(denΓ(R), denΓ(R

−1)).
Then

m
∣

∣Σ(R)
∣

∣nd and Σ(R)2
∣

∣md

Remark 3.1. If d = 2 then

Σ(R) = denΓ(R) = denΓ(R
−1).

3.4 Primitive Similar Sublattices

Definition 3.2. A similar sublattice Γ1 of Γ is called primitive, if 1
n
Γ1 6⊆ Γ for

all n > 1.

Lemma 3.7. A similar sublattice Γ1 of Γ is primitive if and only if there exists
an R ∈ OS(Γ) such that

Γ1 = denΓ(R)RΓ.

3.5 Example: square lattice

Let a(m) and apr(m) denote the number of similar and primitive similar sub-
lattices of the square lattice. These functions are multiplicative and have the
following generating function. See [23].

DZ2(s) =

∞
∑

m=1

a(m)

ms
= ζQ(i)(s) =

1

1− 2−s

∏

p≡1(4)

1

(1− p−s)2

= 1 +
1

2s
+

1

4s
+

2

5s
+

1

8s
+

1

9s
+

2

10s
+

2

13s
+

1

16s
+ . . .

Dpr

Z2(s) =

∞
∑

m=1

apr(m)

ms
=

1

ζ(2s)
DZ2(s)

= (1 + 2−s)
∏

p≡1(4)

1 + p−s

1− p−s

= 1 +
1

2s
+

2

5s
+

2

10s
+

2

13s
+

2

17s
+

2

25s
+

2

26s
+ . . .
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4 Colourings

Here we consider special colourings of lattices. For a fixed sublattice Γ2 of Γ1 we
assign all points of a coset the same colour, with different colours for different
cosets. [28, 29, 30, 9]

4.1 Colour symmetries

symmetry operation leaves lattice and colours fixed

colour symmetry leaves lattice fixed but permutes colors

In our case:

• all lattice translations are colour symmetries

• there is a bijection between colours and cosets

• to each colouring (up to colour permutations) there corresponds a unique
coset decomposition Γ1 =

⋃

ℓ(cℓ + Γ2) and vice versa

4.2 Coincidences and colourings

Idea: use colourings of lattices to find out more about coincidence indices of
sublattices [10, 9]

Let Γ2 a sublattice of Γ1 of index m, and let Σi(R) be the coincidence index
of R with respect to Γi for i ∈ {1, 2}.

Theorem 4.1.

Σ2(R) =
t · u · Σ1(R)

m
=

s · v · Σ1(R)

m

and s, t, u, v | m. Here s and t are the number of colours in the induced coulour-
ing of Γ1(R

−1) and Γ1(R), respectively. u is the number of colours cj with the
property that some point of Γ1(R

−1) coloured cj is mapped under R onto a point
coloured c0 = 0 in Γ1(R); v is the number of colours in the colouring of Γ1(R)
that are intersected by the images under R of those points of Γ1(R

−1) coloured
c0.

4.3 Colour coincidences

Definition 4.1. We call R a colour coincidence, if one of the following two
equivalent conditions is satisfied

1. colouring of Γ1(R) is a rotated copy of the colouring of Γ1(R
−1) (up to

colour permutations)

2. R leaves colour c0 fixed
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Theorem 4.2. If R is a colour coincidence, then Σ2(R) divides Σ1(R).

Open question: Do colour coincidences form a group?

What is known:

• R colour coincidence ⇐⇒ R−1 colour coincidence

• R,S colour coincidences and Σ1(R),Σ1(S) coprime ⇐⇒ RS colour coin-
cidence

5 Shifted lattices

5.1 Coincidence isometries

Here we consider linear isometries of lattices shifted by some vector x ∈ R
d, i.e.

sets x+ Γ. One extends all the definitions in the natural way. One gets

Theorem 5.1. OC(x+ Γ) = {R ∈ OC(Γ) : Rx− x ∈ Γ +RΓ}

• In general, OC(x+ Γ) is not a group.

For further details and applications to multilattices and sublattices see [31,
9].

5.2 Coincidence isometries of Z[i]

Theorem 5.2. Let Γ = Z[i] and x ∈ C.

1. SOC(x+ Γ) is a subgroup of SOC(Γ)

2. OC(x + Γ) is a subgroup of OC(Γ) if and only if T1T2 ∈ SOC(x + Γ)for
any T1, T2 ∈ OC(x+ Γ) \ SOC(x+ Γ),

Lemma 5.3. Let x =
p

q
where p, q ∈ Z[i], p and q relatively prime. Then

SOC(x+ Γ) = SOC

(

1

q
+ Γ

)

Lemma 5.4. If p and q are relatively prime, then

SOC

(

1

pq
+ Γ

)

= SOC

(

1

p
+ Γ

)

∩ SOC

(

1

q
+ Γ

)
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5.3 Example Z[i]: specific shift vectors (1)

-

61
2

1
2

�
�
�
�� x0

x1

• x0 = 1
5 ,

2
5 and x1 = 1

5 + 1
5 i,

2
5 + 2

5 i ⇒ q = 5

• SOC(x0 + Γ) = SOC(x1 + Γ)

• OC(x0 + Γ) and OC(x1 + Γ) are groups

The generating function Φx(s) of the shifted CSLs reads as follows (the
generating function Φ(s) of the CSLs of Z[i] is repeated for easier comparison)

Φx(s) = 1 + 2
13s + 2

17s + 2
29s + 2

37s + 2
41s + 2

53s + 2
61s + 2

73s + . . .

Φ(s) = 1 + 2
5s + 2

13s + 2
17s + 2

25s + 2
29s + 2

37s + 2
41s + 2

53s

+ 2
61s + 4

65s + 2
73s + . . .

The rotations and the orientation reversing isometries both generate the same
CSLs.

5.4 Example: Z[i]: specific shift vectors (2)

-

61
2

1
2

�
�
�
��

• x = 2
5 + 1

5 i =
i

1+2i ⇒ q = 1 + 2i

• SOC(x+ Γ) = SOC
(

1
5 + Γ

)

• OC(x+ Γ) is NOT a group!

Here rotations and orientation reversing isometries generate different CSLs.
Φx(s) generates the counting function of shifted CSLs that are generated by
rotations only, whereas Ψx(s) generates the counting function of all shifted
CSLs. Again, Φ(s) of the unshifted Z[i] is included for comparison.

Φx(s) = 1 + 2
13s + 2

17s + 2
29s + 2

37s + 2
41s + 2

53s + 2
61s + 2

73s + . . .

Φ(s) = 1 + 2
5s + 2

13s + 2
17s + 2

25s + 2
29s + 2

37s + 2
41s + 2

53s

+ 2
61s + 4

65s + 2
73s + . . .

Ψx(s) = 1 + 4
5s + 2

13s + 2
17s + 4

25s + 2
29s + 2

37s + 2
41s + 2

53s

+ 2
61s + 8

65s + 2
73s + . . .

For further examples see [9].
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6 Conclusions

There are a lot of connections . . .

• colourings ↔ similar sublattices

• similar sublattices ↔ CSLs

• CSLs ↔ colourings
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