On a beta expansion with negative bases

Fumihiko Nakano
(Gakushuin Univ.)
Taizo Sadahiro
(Kumamoto Prefecutural Univ.)

CONTENTS

§1 Beta expansion
§2 Ito-Sadahiro ($-\beta$) expansion
$\S 3$ An ($-\beta$) expansion related to Sturmian seq.

§1 Beta expansion

(1) Definition

$$
\begin{aligned}
& x \in(0,1), \beta>1 \\
& x=\frac{a_{1}(x)}{\beta}+\frac{a_{2}(x)}{\beta^{2}}+\cdots
\end{aligned}
$$

where

$$
\begin{aligned}
a_{n}(x) & :=\left[\beta T_{\beta}^{n-1}(x)\right] \in\{0,1, \cdots,[\beta]\} \\
T_{\beta}(x) & :=\{\beta x\}:[0,1) \rightarrow[0,1)
\end{aligned}
$$

(2) Admissible sequence

Def.

A sequence $\left(x_{n}\right)_{n \geq 1}$ is β-admissible $\stackrel{\text { def }}{\Longleftrightarrow}$ $\left(x_{n}\right)_{n \geq 1}$ is the β-expansion of some $x \in[0,1)$.

Notation

$$
\begin{aligned}
d(x, \beta) & :=\left(a_{1}(x), a_{2}(x), \cdots\right) \\
d^{*}(1, \beta) & :=\lim _{\epsilon \in 0} d(1-\epsilon, \beta)
\end{aligned}
$$

Theorem(Parry)

$\left(x_{n}\right)_{n \geq 1}$ is β-admissible
$\Longleftrightarrow \quad\left(x_{m}, x_{m+1}, \cdots\right) \preceq_{l e x} d^{*}(1, \beta), \forall m \geq 1$

Ex. $\beta=\tau, d^{*}(1, \tau)=(1,0,1,0, \cdots)$.

(3) Shift Space

Def.

$$
\begin{aligned}
X_{\beta}:=\left\{\left(x_{n}\right)_{n \in \mathbf{Z}} \mid \quad \forall\right. & \text { subword of }\left(x_{n}\right) \text { appears } \\
& \text { in an admissible seq. }\}
\end{aligned}
$$

Theorem

(1)(Ito-Takahashi 1974)
X_{β} is SFT
$\Longleftrightarrow d^{*}(1, \beta)$ is purely-periodic
(2)(Bertrand-Mathis 1986)
X_{β} is Sofic
$\Longleftrightarrow d^{*}(1, \beta)$ is eventually-periodic
Ex.
$\beta=\tau, X_{\tau}=\left\{\left(x_{n}\right)_{n \in \mathbf{Z}} \mid 1\right.$ is isolated $\}$.

(4) Invariant measure

The invariant measure on $[0,1)$ w.r.t. T_{β} is given by

$$
\nu(E)=\int_{E} h_{\beta}(x) d x,
$$

where

$$
\begin{aligned}
& h_{\beta}(x)=\sum_{n \geq 0} 1_{\left\{x<T_{\beta}^{n}(1)\right\}} \cdot \beta^{-n} \\
& T_{\beta}^{n}(1):=T_{\beta}^{n-1}((\beta)), T_{\beta}^{0}(1):=1
\end{aligned}
$$

Normalization Constant

$$
F(\beta):=\int_{0}^{1} h_{\beta}(x) d x
$$

Theorem(Parry)

(1) $F(\beta)$ is right continuous
(2) $F(\beta)$ is left dis-continuous at simple Parry numbers.
§2 Ito-Sadahiro expansion
(Ito-Sadahiro, 2009)

(1) Definition

Def.

$x \in\left(l_{\beta}, r_{\beta}\right), \quad l_{\beta}:=\frac{-\beta}{\beta+1}, r_{\beta}:=\frac{1}{\beta+1}, \beta>1$
$x=\frac{a_{1}(x)}{(-\beta)}+\frac{a_{2}(x)}{(-\beta)^{2}}+\cdots$
where

$$
\begin{aligned}
a_{n}(x) & =\left[-\beta T_{-\beta}^{n-1}(x)-l_{\beta}\right] \in\{0,1, \cdots[\beta]\} \\
T_{-\beta}(x) & =-\beta x-\left[-\beta x-l_{\beta}\right]
\end{aligned}
$$

(2) Admissible seq.

Def.

$\left(x_{n}\right)_{n \geq 1}$ is $(-\beta)$-admissible
$\stackrel{\text { def }}{\rightleftharpoons}\left(x_{n}\right)$ is the $(-\beta)$-expansion of some $x \in\left[l_{\beta}, r_{\beta}\right)$.

Notation

$$
\begin{aligned}
d(x,-\beta) & =\left(a_{1}(x), a_{2}(x), \cdots\right) \\
d^{*}\left(r_{\beta},-\beta\right) & :=\lim _{\epsilon \in 0} d\left(r_{\beta}-\epsilon,-\beta\right)
\end{aligned}
$$

Theorem

$\left(x_{n}\right)_{n \geq 1}$ is $(-\beta)$-admissible

$$
\begin{aligned}
& \Longleftrightarrow \\
& d\left(l_{\beta},-\beta\right) \preceq_{I S}\left(x_{m}, x_{m+1}, \cdots\right), \\
& \left(x_{m}, x_{m+1}, \cdots\right) \preceq_{I S} d^{*}\left(r_{\beta},-\beta\right)
\end{aligned}
$$

for $\forall m \geq 1$, where

$$
\begin{aligned}
& \left(a_{n}\right)_{n \geq 1} \preceq_{I S}\left(b_{n}\right)_{n \geq 1} \\
& \stackrel{\text { det }}{\Longrightarrow}\left((-1)^{n} a_{n}\right)_{n \geq 1} \preceq_{l e x}\left((-1)^{n} b_{n}\right)_{n \geq 1}
\end{aligned}
$$

(3) Shift Space

Def.

$X_{-\beta}:=\left\{\left(x_{n}\right)_{n \in \mathbf{Z}} \mid \quad \forall\right.$ subword of $\left(x_{n}\right)$ appears in an $(-\beta)$ admissible seq. $\}$

Theorem

$X_{-\beta}$ is sofic
$\Longleftrightarrow d\left(l_{\beta},-\beta\right)$ is eventually periodic.

Ex.

$$
\begin{aligned}
& \beta=\tau:=(1+\sqrt{5}) / 2 \\
& d\left(l_{\beta},-\tau\right)=(1,0,0, \cdots)
\end{aligned}
$$

The set of forbidden words is

$$
\{1 \underbrace{0 \cdots 01}_{\text {odd }} 1\}
$$

(4) Invariant Measure

Theorem

The invariant measure is

$$
\nu(E)=\int_{E} h_{-\beta}(x) d x
$$

where

$$
h_{-\beta}(x)=\sum_{n=0}^{\infty} 1_{\left\{T_{-\beta}^{n}\left(l_{\beta}\right) \leq x\right\}} \cdot(-\beta)^{-n} .
$$

Normalization Constant

$$
F(-\beta):=\int_{l_{\beta}}^{r_{\beta}} h_{-\beta}(x) d x
$$

$Q_{\text {even }}:=\left\{\beta \mid d\left(l_{\beta},-\beta\right)\right.$ is even periodic $\}$
$Q_{\text {odd }}:=\left\{\beta \mid d\left(l_{\beta},-\beta\right)\right.$ is odd periodic $\}$

Theorem

(1) At $\beta \in Q_{o d d}, F(-\beta)$ is rightcontinuous, and left-discontinuous, (2) At $\beta \in Q_{\text {even }}, F(-\beta)$ is leftcontinuous, and right-discontinuous.
$\S 3$ An ($-\beta$)-expansion related to Sturmian seq.
(1) Definition (for $\beta=\tau$)
(ext'd. to α 's with $\alpha^{2}+k \alpha=1, \beta=\alpha^{-1}$, $k \in \mathbf{N})$.

$$
x \in\left[-\frac{1}{\tau^{2}}, \frac{1}{\tau}\right]
$$

$$
\begin{aligned}
& x \mapsto(R, L, R, L, \cdots) \quad(R \mapsto 1, L \mapsto 01) \\
& \quad \mapsto(1,0,1,1,0,1, \cdots) \\
& \quad=:\left(a_{2}(x), a_{3}(x), \cdots\right)
\end{aligned}
$$

then $\quad x=\sum_{j \geq 2} \frac{a_{j}(x)}{(-\beta)^{j}}$

Relation to Fibonacci words

$v_{\theta}(n)=1_{\left[1-\frac{1}{\tau}, 1\right)}\left(\frac{1}{\tau} \cdot n+\theta\right), \quad \theta \in[0,1), n \in \mathbf{Z}$.
$\underline{R, L \text {-construction of } v_{\theta}}$

$$
\begin{aligned}
s_{-1} & =1, \quad s_{0}=0, \quad s_{1}=1 \\
s_{n+1} & =s_{n} s_{n-1}
\end{aligned}
$$

$$
\begin{aligned}
& s_{n} \\
& \quad \downarrow R
\end{aligned}
$$

s_{n}	s_{n-1}

s_{n+1}

Any v_{θ} can be constructed in this manner.

$$
v_{\theta} \mapsto(R, L, R, L, \cdots)
$$

which has the same rep. for

$$
x \mapsto(R, L, R, L, \cdots)
$$

with

$$
x+\frac{1}{\tau^{2}}=\theta
$$

Results

(2) Admissible seq.
$\left(x_{n}\right)_{n \geq 1}$ is $(-\tau)$-admissible
$\Longleftrightarrow(0,1,0,1, \cdots) \preceq_{l e x}\left(x_{m}, x_{m+1}, \cdots\right), \forall m \geq 1$, and $\left(x_{n}\right)$ does not have tail of $011 \overline{01}$. $\Longleftrightarrow 0$ is isolated and $\left(x_{n}\right)$ does not have tail of 01101 .

(3) Shift Space

$\left(x_{n}\right)_{n \in \mathbf{Z}} \in X_{-\tau}$
$\Longleftrightarrow 0$ is isolated
\Longleftrightarrow The set of forbidden word is $\{00\}$
Hence $X_{-\tau}$ is SFT.

(4) Invariant Measure

$$
h_{-\tau}(x)= \begin{cases}\frac{1}{\tau} & \left(-\frac{1}{\tau^{2}}<x<0\right) \\ 1 & \left(0<x<\frac{1}{\tau}\right)\end{cases}
$$

(5) Relation between two expansions

$$
\frac{1}{(-\tau)^{k}}-\frac{1}{(-\tau)^{k+1}}=\frac{1}{(-\tau)^{k+2}}
$$

Hence

$$
\begin{array}{rlll}
1 & 1 & 0 & \\
= & 0 & 1
\end{array} \quad \cdots(*)
$$

Any $\left(x_{n}\right)_{n=1}^{\infty}\left(\subset\{0,1\}^{\mathrm{N}}\right)$ can be "modified" via (*) into both
(i) IS -admissible seq.
and
(ii) Sturmian -admissible seq.

$$
\begin{array}{rlll}
1 & 1 & 0 \\
0 & 0 & 1
\end{array} \quad \cdots(*)
$$

Ex.
(1) IS \rightarrow S

$$
\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
& & & & 1 & 1 & 0 \\
& & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0
\end{array}
$$

(2) $\mathrm{S} \rightarrow$ IS

$$
\begin{array}{llllllllll}
1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}
$$

