About the Operator Space and its topological spaces

太田 崇啓 (京都大学)

平成15年7月29日

operator space とは B(H) の closed subspace であるような空間のことをいいます。

この空間の持つ種々の性質を述べるのが講演の目的です。

<u>Definition</u> Let E, F be operator spaces and $u: E \to F$ be a linear map then

u is completely bounded(c.b.) $\Leftrightarrow_{def} \sup_{n\geq 1} \|u\otimes I_{M_n}\|_{M_n(E)\to M_n(F)} < \infty$ Then we define

$$||u||_{cb} = \sup_{n>1} ||u \otimes I_{M_n}||$$

u is completely isomorphic $\Leftrightarrow_{def} u$ is isomorphic and u and u^{-1} are c.b. u is completely isometric $\Leftrightarrow_{def} u \otimes I_{M_n}$ is isometric for all $n \geq 1$

We define

$$d_{cb}(E,F) = \inf \{ \|u\|_{cb} \|u^{-1}\|_{cb} | u: E \to F : completely \ isomorphism \}$$

 OS_n を すべての n 次元 operator space のなす空間とします。 OS_n の 2 元は completely isometric のとき同じとみなします。

そのとき、
$$\delta_{cb}(E,F) = Logd_{cb}(E,F)$$
 は OS_n 上に距離を定めます。

Theorem The metric space (OS_n, δ_{cb}) is non-separable if n > 2

これの応用として,

Theorem If $\dim(H) = \infty$, there is more than one C^* - norm on $B(H) \otimes B(H)$. In other words we have

$$B(H) \otimes_{min} B(H) \neq B(H) \otimes_{max} B(H)$$

References

 $[1] \mbox{Effros}$ and Ruan, $Operator\ Spaces, Oxford\ Univ.\ Press, 2000$

[2]G.Pisier, Exact oparator spaces, Asterisque,232,(1995) 159-186

[3] M.Junge and G.Pisier, $BILINEAR\ FORMS\ ON\ EXACT\ OPERATOR$

 $SPACES\ AND\ B(H)\otimes B(H)$, Geom. Funct. Anal., Vol.5, (1995) 329-363.