統計数学II 第13回

担当:三角 淳 2013年7月9日

講義概要

・ $\{X_n\}_{n=0}^\infty$ はマルコフ連鎖で、状態空間を I とする。 $p_{ij}^{(n)}$ は n ステップ推移確率、 $f_{ij}^{(n)}$ は 初通過確率を表す。 $i\in I$ が再帰的のとき、

$$\mu_i = \sum_{n=1}^{\infty} n f_{ii}^{(n)}$$

とおく。 $\mu_i < \infty$ のとき、i は正再帰的であるという。また $\mu_i = \infty$ のとき、i は零再帰的であるという。

- ・ $\{X_n\}_{n=0}^\infty$ が既約かつ周期1 で、全ての状態が正再帰的であるとき、エルゴード的であるという。I が有限集合のときは、既約かつ周期1 ならばエルゴード的である。
- ・P を推移行列とする。 $\pi=(\pi_j)_{j\in I}$ で、 $\pi_j\geq 0\ (j\in I),\ \sum_{j\in I}\pi_j=1$ かつ $\pi \mathbf{P}=\pi$ をみたすようなものを定常分布と呼ぶ。
- ・ $\{X_n\}_{n=0}^\infty$ がエルゴード的であるとする。定常分布を π とするとき、次が成り立つ。

$$\lim_{n \to \infty} p_{ij}^{(n)} = \frac{1}{\mu_j} = \pi_j > 0 \quad (i, j \in I)$$

<u>レポート問題</u> 以下の [1] の解答を、次回の授業のはじめに提出して下さい。(授業に関する要望・質問等があれば、レポートの余白に記入して下さい。)

- $\begin{bmatrix} \mathbf{1} \end{bmatrix}$ 推移行列が $\begin{pmatrix} 0 & 1 & 0 \\ 1/4 & 0 & 3/4 \\ 0 & 1/2 & 1/2 \end{pmatrix}$ で与えられるマルコフ連鎖を考える。
 - (1) このマルコフ連鎖がエルゴード的である事を示せ。
 - (2) このマルコフ連鎖の定常分布を求めよ。

補充問題

[2] 推移行列が $\begin{pmatrix} 1/2 & 1/2 & 0 \\ 0 & 0 & 1 \\ 1/2 & 1/2 & 0 \end{pmatrix}$ で与えられるマルコフ連鎖に対して、全ての状態が正

再帰的である事を直接確かめよ。なお状態空間 $I=\{1,2,3\}$ とする。

[3] 推移行列が次で与えられるマルコフ連鎖がエルゴード的かどうか調べよ。

$$(1) \begin{pmatrix} 0 & 1/2 & 1/2 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1/2 & 1/2 & 0 \end{pmatrix}, \quad (2) \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 \end{pmatrix}.$$