Non-trivial deformation of an entire function $abz + e^{bz} + c$

Shunsuke Morosawa*

Department of Mathematics and Information Science, Faculty of Science, Kochi University, Kochi 780-8520, Japan

and

Masahiko Taniguchi

Department of Mathematics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

Abstract

In this note, we consider dynamics of the family of transcendental entire functions $f(z; a, b, c) = abz + e^{bz} + c$. In particular, studying the case where they have a Baker domains, we investigate the area of Julia sets and the Hausdorff convergence of Julia sets.

Keywords: transcendental entire function; Baker domain; Julia set; Hausdorff convergence

Classification Categories: AMS No. 30D05, 58F23

Consider the family

$$f(z; a, b, c) = abz + e^{bz} + c.$$

These f(z; a, b, c) with $a, b \neq 0$ are structurally infinite ([7]), for they have infinitely many critical values. For the sake of simplicity, we assume that a, b and c are real.

Theorem 1 Let $ab \ge 1$, a > 0, $c \le -1$ and

$$a\log a - a + c < 0,$$

^{*}Partially supported by Grant-in-Aid for Scientific Research 09640199

then f = f(z; a, b, c) has a Baker domain $B = B_{a,b,c}$, which is completely invariant.

In particular, The Julia set is the boundary of B.

Proof. We set $D_0 = \{ \text{Re } z < 0 \}$. Elementary calculation shows that D_0 is mapped by f to a proper subdomain in D_0 , and hence D_0 is invariant. The Fatou component B containing D_0 is a Baker domain, for if $z \in D_0$, then

$$\operatorname{Re} f(z) < ab \operatorname{Re} z$$
.

Also the line $L_k = \{z = x + iy \mid x \geq 0, y = (2k+1)\pi/b\}$ for $k \in \mathbb{Z}$ is mapped by f into D_0 , since the assumptions imply that

Re
$$(abz + e^{bz} + c) = abx - e^{bx} + c < 0$$
,

for every $z \in L_k$.

Since every preimage of D_0 by f contains either D_0 or some L_k , it intersects with D_0 , which shows that B is completely invariant.

The set D_0 in the proof is called a fundamental set of the Baker domain B (see [1]).

The function f = f(z; a, b, c) as above has a completely invariant Baker domain B containing the left half plane and the rays L_k . Since, for the set of all the critical points,

$$\left\{z_m = rac{\log a + (2m+1)\pi i}{b}
ight\}_{m\in\mathbb{Z}} \subset D_0 \cup \{L_k\}_{k\in\mathbb{Z}},$$

the orbits of every critical point have the imaginary parts tending to $-\infty$. Hence, a theorem of Hinkkanen, Krauskopf and Kriete [2] (essentially due to Bergweiler [3]) gives the following

Theorem 2 For such an f(z; a, b, c) as in Theorem 1,

$$F(f) = B$$
.

Proof. First, the boundary of the Baker domain B has a positive Euclidean distance, say $\sigma > 0$, from the post-critical set C^+ , consisting of the forward orbits of all critical points of f.

On the other hand, since B contains all L_k , every other Fatou component U has a bounded distance, say η , from the boundary of B. Then a theorem of Hinkkanen, Krauskopf and Kriete gives the assertion.

But for the sake of convenience, we include a proof, following their preprint. Suppose that there were a Fatou component U, which should be either a wandering domain or a Baker domain disjoint from B. Fix a point $\zeta \in U$, and set $\zeta_n = f^n(\zeta)$. Then the disk D_n with center ζ_n and radius

$$r_n = \sigma + d(\zeta_n, B)$$

satisfies that $D_n \cap C^+ = \emptyset$. Then there are a univalent branch ϕ_n of $(f^n)^{-1}$ which send ζ_n to ζ , and a point $\xi_n \in J(f)$ such that

$$|\zeta_n - \xi_n| = d(\zeta_n, B),$$

for every n. Since functions

$$g_n(z) = \phi_n(r_n \ z + \zeta_n)$$

on $\{|z|<1\}$ map 0 to ζ and the images are disjoint from C^+ , $\{g_n\}$ is a normal family. So assume that g_n converges to g uniformly on compact sets. Then the preimages w_n of $\xi_n'=\phi_n(\xi_n)$ by g_n satisfy that

$$1>rac{\eta}{\sigma+\eta}>|w_n|>d$$

with some d>0 by Schwarz lemma, since $\xi_n'\in J(f)$ can not tend to ζ . Thus g is non-constant and hence a univalent map, and the Carathéodory convergence theorem implies that, for an r<1 sufficiently near to $1,\{f^n\}$ on $D=g(\{|z|< r\})$ converges uniformly, and hence $D\subset F(f)$. But this contradicts the fact that $\xi_n'\in J(f)$ are contained in D for all but finite n.

Remark If every point z in a component U as in the above proof has such orbits that their real parts tending to $+\infty$, then the standard argument due to Eremenko and Lyubich gives the same contradiction.

We further note the following facts.

Theorem 3 The Julia set of such an f(z; a, b, c) as in Theorem 1 has vanishing area

Proof. We can find an $\epsilon > 0$ such that

$$(L_k)_{\epsilon} = \{ w \in \mathbb{C} \mid d(w, L_k) \leq \epsilon \} \subset B$$

for every k, the assertion follows from McMullen-Stallard theorem in [6].

Proposition 4 Set $a = e^{i\alpha}$ and $b = i\beta$. Then we have

$$f(z;a,b,c)=\int_0^z\,2be^{(eta t+lpha)i/2}rac{eta t-lpha+\pi}{2}\prod_{k=1}^\infty\left(1-rac{(eta t-lpha+\pi)^2}{4k^2\pi^2}
ight)dt+d$$

Proof. Since

$$f'(z) = 2be^{(\beta z + \alpha)i/2}\cosrac{eta z - lpha}{2},$$

by using the famous equation

$$\sin \pi z = \pi z \prod_{k=1}^{\infty} \left(1 - \frac{z^2}{k^2} \right),\,$$

we have

$$f'(z)=2be^{(eta z+lpha)i/2}rac{eta z-lpha+\pi}{2}\,\prod_{k=1}^{\infty}\left(1-rac{(eta z-lpha+\pi)^2}{4k^2\pi^2}
ight).$$

Hence we obtain the desired equation.

Finally we consider convergence of Julia sets for two cases.

Theorem 5 Fix b > 0 and c < -3 satisfying $1 - bc + \log b > 0$ and let ab < 1. Then the sequence of the Julia sets $f_a(z) = f(z; a, b, c)$ converges to the Julia set of $f(z) = z + e^{bz} + c$ in the sense of the Hausdorff convergence as $ab \nearrow 1$.

Proof. The assumption $1 - bc + \log b > 0$ implies F(f) consists of only one Baker domain, which can be seen by the same argument as in the proof of Theorem 1.

In the case ab < 1, there exists an attracting fixed point on the negative real axis, say $-r_a$ $(r_a > 0)$. It is easy to see that r_a tends to infinity monotonically as $ab \nearrow 1$. We set

$$D_a = \{|z + r_a| < r_a\}.$$

For $z \in D_a$, we have

$$|f_a(z) + r_a| < abr_a + 2 < r_a + c + 3 < r_a.$$

This means D_a is a collapsing disk for the attracting fixed point $-r_a$. The sequence $\{D_a\}$ is monotonically increasing and converges to $D_0 = \{\text{Re } z < 0\}$ in the sense of the Carathéodory convergence. To see the sequence of

the basins B_a of the attracting fixed points $-r_a$ to F(f) in the sense of the Carathéodory convergence, we need to show only that, for an arbitrary compact set $E \subset F(f)$, there exists an A > 0 such that $E \subset B_a$ for all a > A with ab < 1.

There exists an n such that $f^n(E) \subset D_0$, for D_0 is a fundamental set. Since $\{f_a\}$ converges to f uniformly on compact sets as $ab \nearrow 1$, we have $f^n(E) \subset D_a$, and hence E is contained in B_a for all a > A for some A with ab < 1 (see [5]). Therefore the sequence of the complement $\{B_a^c\}$ converges to the complement $F(f)^c = J(f)$ in the sense of the Hausdorff convergence. Since J(f) has no interior points, we see that $\{J(f_a)\}$ converges to J(f) in the sense of the Hausdorff convergence.

The Fatou set of $z \mapsto z + e^z$ contains infinitely many Baker domains, each of which is contained in the strip

$$S_m = \{ | \text{Im } z - (2m - 1)\pi | < \pi \}$$

for some $m \in \mathbb{Z} \setminus \{0\}$ (see [4]). The orbits of every point in the Baker domain have the real parts tending to $-\infty$.

Theorem 6 Let $f_c(z) = z + e^z + c$ with c < 0, then $F(f_c)$ consists of only one Baker Domain. Furthermore $\{J(f_c)\}$ converges to $J(z + e^z)$ as $c \nearrow 0$ in the sense of the Hausdorff convergence.

Proof. We set $f(z) = z + e^z$. Let B_m be the Baker domain in S_m . If $z = x + i\{(2m-1)\pi \pm (\alpha + \pi/2)\}$ with $0 \le \alpha < \pi/2$, then we have

Re
$$f(z) = x + e^x \sin \alpha > x$$
.

If $z = x + i\{(2m-1)\pi \pm \alpha\}$ with $0 \le \alpha < \pi/2$ and x < 0, then we have

Im
$$f(z) = (2m-1)\pi \pm \alpha \mp e^x \sin \alpha$$

and thus

$$(2m-1)\pi - \alpha < \text{Im } f(z) < (2m-1)\pi + \alpha.$$

Hence, for $z \in B_m$, there exists an N such that

$$|\mathrm{Im}\,\, f^n(z)-(2m-1)\pi|<\frac{\pi}{2}$$

for all n > N. Setting

$$K_m = \left\{ |{
m Im} \; z - (2m-1)\pi| < rac{\pi}{2}, \; {
m Re} \; z < 0
ight\},$$

we see that K_m is a fundamental set of B_m .

We consider only the case c > -1. Let $D_0 = \{\text{Re } z < \log(-c)\}$, then it is a fundamental set of a Baker domain of f_c . Since $f_c(z) = f(z) + c$,

$$D_0 \bigcup \left(igcup_{m \in \mathbb{Z} \setminus \{0\}} K_m
ight)$$

is also a fundamental set. By the argument similar to that in the proof of Theorem 1, we see that $F(f_c)$ consists of only one Baker domain. Further by the argument similar to that in the proof of Theorem 5, we see that $\{J(f_c)\}$ converges to J(f) as $c \nearrow 0$ in the sense of the Hausdorff convergence.

References

- [1] C. Cowen, Iteration and the solution of functional equations for functions analytic in the unit disk, Trans. Amer. Math. Soc., 265(1981) 69-95.
- [2] A. Hinkkanen, B. Krauskopf and H. Kriete, Growing a Baker domain from attracting islands I: The dynamics of the limit function, preprint.
- [3] W. Bergweiler, Invariant domains and singularities, Math. Proc. Camb. Phil. Soc. 117 (1995) 525-532.
- [4] S. Morosawa, Y. Nishimura, M. Taniguchi, and T. Ueda, *Holomorphic Dynamics*, Cambridge Univ. Press, 1999.
- [5] S. Morosawa, The Carathéodory convergence of Fatou components of Polynomials to Baker domains or wandering domains, to appear in Proceedings of the Second Congress ISAAC
- [6] G.M. Stallard Entire functions with Julia sets of zero measure, Math Proc. Camb. Phil. Soc. 108 (1990) 551-557.
- [7] M. Taniguchi, Maskit surgery and structurally finiteness of entire functions, to appear