next up previous contents
Next: Reduced trace and reduced Up: First properties of Weyl Previous: uniqueness of an operator   Contents


Algebra endomorphisms of Weyl algebras are determined by its restriction to the center

In this subsection we assume that $ k$ is a field of positive char.

Lemma 10   The natural group homomorphism $ \operatorname{Aut}_{\mbox{k}\operatorname{-alg}}(A_n(k)) \to \operatorname{Aut}_{\mbox{k}\operatorname{-alg}}(Z_n(k))$ (restriction map) is injective.

The uniqueness of operator $ p$-th root for generators of $ Z_n$. $ \qedsymbol$

Note.

It is not surjective. For example, let $ k$ be a field of odd characteristic and consider an algebra automorphism $ \psi$ of $ Z_1(k)$ given by

$\displaystyle \psi(\xi^p)=\xi^p,\quad \psi(\eta^p)= -\eta^p.
$

Then by the uniqueness of the operator $ p$-th root we see that the lift $ \phi$ of $ \psi$ should satisfy

$\displaystyle \phi(\xi)=\xi, \quad \phi(\eta)=-\eta.
$

But this $ \phi$ is not an algebra homomorphism.

Lemma 11   The restriction map

$\displaystyle \operatorname{End}_{\mbox{k}\operatorname{-alg}} (A_n(k)) \to \operatorname{End}_{\mbox{k}\operatorname{-alg}} (Z_n(k))
$

is injective.

Let $ \overline{A_n(k)}$ be a copy of $ A_n(k)$ and consider two $ k$-algebra homomorphisms

$\displaystyle \phi^{(1)},\phi^{(2)}:\overline{A_n(k)} \to A_n(k).
$

Then we have $ k$-algebra isomorphisms

$\displaystyle \phi^{(1)}\otimes \operatorname{id}_{Z_n(k)}:
\overline{A_n(k)}\otimes_{\overline{Z_n(k)}}Z_n(k) \to A_n(k)
$

where $ \overline{Z_n(k)}$ is the center of $ \overline{A_n(k)}$. Since these two isomorphisms coincide on the center, we deduce from the previous lemma that both maps coincide. $ \qedsymbol$ ARRAY(0x8ec10fc)ARRAY(0x8ec10fc)
next up previous contents
Next: Reduced trace and reduced Up: First properties of Weyl Previous: uniqueness of an operator   Contents
2003/3/3