next up previous contents
Next: invariance of trace and Up: Reduced trace and reduced Previous: Reduced trace and reduced   Contents

calculation of reduced trace

Lemma 12   The trace of a differential operator $ \xi^k (d/d\xi)^l$ on a vector space $ k[\xi]/(\xi^p)$ is non zero if and only if $ k=l=p-1$.

[proof] If $ k\neq l$ then $ \xi^i(d/d\xi)^j$ is represented by a strictly triangular matrix and the trace is 0. If $ k=l$, we have

$\displaystyle (\xi^l(d/d\xi)^l).\xi^s=s(s-1)\dots(s-k+1) \xi^s.
$

Summing up this we obtain the result.

$ \qedsymbol$

Corollary 6  

\begin{displaymath}
\operatorname{tr}(({\mu}+T)^k({\nu}+U)^l)=
\begin{cases}
-T^...
...+(p-1), l=l_0 p+(p-1)$} \\
0 & \text{otherwise}\\
\end{cases}\end{displaymath}

Lemma 13  
  1. If $ 0\leq i,j \leq p-1$, then $ \operatorname{trd}(\xi^i \eta^j)$ is an element of $ k$.
  2. \begin{displaymath}
\operatorname{trd}(\xi^i\eta^j)=
\begin{cases}
-1 &\text{(if $i=j=p-1$)}\\
0 & \text{otherwise}
\end{cases}\end{displaymath}

A formula for the reduced trace when $ n>1$ is easily obtained by noting that $ A_n(k)$ is isomorphic to a tensor product $ A_1(k)\otimes_kA_1(k)\otimes_k \dots\otimes_k A_1(k)$ of $ A_1(k)$ 's.

Lemma 14   Let $ k$ be a field of characteristic $ p$. Let $ \phi$ be a $ k$-endomorphism of $ A_n(k)$. Let $ I,J$ be an element of $ \{0,1,2,\dots,p-1\}^n$ (multi-index). Then for any $ f \in Z(A_n(k))$, we have

\begin{displaymath}
\operatorname{trd}( \xi^I \eta^J f)=
\begin{cases}
-f & \tex...
... } I=J=(p-1,p-1,\dots,p-1) \\
0 & \text{otherwise}
\end{cases}\end{displaymath}

ARRAY(0x8ee5f80)


next up previous contents
Next: invariance of trace and Up: Reduced trace and reduced Previous: Reduced trace and reduced   Contents
2003/3/3